
Pergamon
Computers & Geosciences Vol. 21, No. I, pp. 3149, 1995

0098-3004(94)00058-1
Copyright c 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
009%3004/95 $9.50 + 0.00

C PROGRAM FOR AUTOMATIC CONTOURING OF

SPHERICAL ORIENTATION DATA USING A MODIFIED

KAMB METHOD

FREDERICK W. VOLLMER

Department of Geological Sciences, State University of New York at New Paltz, New Paltz,
NY 12561, U.S.A.

e-mail: vollmerf@npvm.newpaltz.edu

(Received 13 July 1992; accepted 6 October 1992; reaised 13 July 1994)

Abstract-Kamb’s method for contouring density diagrams is a simple technique for the preliminary
analysis and comparison of orientation data distributions. The method is based on the departure from
a uniform distribution, and, unlike the Schmidt method, the dependence of contours on sample size is
limited. Several improvements can be made, particularly with regard to the implementation of automatic
contouring. To reduce smoothing, the expected count for a random sample drawn from a uniform
distribution can be decreased. This gives more localized density estimates that can improve the resolution
of features. Density estimates are done directly on the sphere for accuracy. This also permits contouring
on stereographic and other nonequal area projections, and accommodates vectorial data. Weighting
functions provide better density estimates and increase the smoothness of contour lines. These concepts
are implemented in the C program Sphere Contour. Options include selection of data rotation, linear or
planar data, equal area or stereographic projection, upper or lower hemisphere, and scatter diagrams.
Graphics output is either to the screen (MS-DOS) or to a computer-aided drafting file (AutoCAD DXF).
The program is modified easily for other computer systems and graphics devices.

Key Words: Axes, C language, Computer-aided drafting, Density diagrams, Graphics, Spherical projec-
tions, Vectors.

INTRODUCTION

Spherical orientation data, including directed lines
(unit vectors), nondirected lines (unit axes), and poles
to planes (unit axes or vectors) are abundant in
structural geology, geophysics, and other fields. They
are plotted typically as scatter diagrams on equal area
projections of a unit hemisphere and contoured to
produce density diagrams. In the Schmidt and related
methods, a counting circle comprising 1% of the total
area is used to make density estimates at the nodes of
a regular grid, and the grid is contoured in units of
percent density per 1% area (Turner and Weiss, 1963,
p. 58-67; Ragan, 1985, p. 274-279; Marshak and
Mitra, 1988, p. 148-157).

Although widely used, the Schmidt and other 1%
area methods are not well suited for comparing data
sets because the contours are dependent strongly on
sample size (Flinn, 1958; Kamb, 1959; Dudley,
Perkins, and Gine, 1975; Starkey, 1976; Schaeben,
1982). This is significant particularly for geological
field studies, where sample sizes may range widely.
Kamb (1959) proposed an alternative in which con-
tours represent standard deviations away from the
expected density for a random sample drawn from a
uniform distribution. Kamb’s method reduces the
effect of sample size on contours, allowing compari-
son of data sets with different sample sizes.

Dudley, Perkins, and Gine (1975) and Schaeben
(1982) provide reviews of fabric diagram construction
and related statistical methods. Other discussions of
Kamb’s method include Starkey (1976), Cheeney
(1983, p. 108-llO), Robin and Jowett (1986), and
Jowett and Robin (1988). Various published and
unpublished computer implementations of Kamb’s
method exist (e.g. Tocher, 1978, 1979; Griffis,
Gustafson, and Adams, 1985; Robin and Jowett,
1986; Allmendinger and others, 1991; Van Everdin-
gen, Van Gool, and Vissers, 1992). Computer im-
plementations of other types of density diagrams are
numerous; early examples include those by Robinson,
Robinson, and Garland (1963), Spencer and
Clabaugh (1967), Starkey (1969), and Warner (1969).
Ramsden and Cruden (1979), Schaeben (1982, 1986),
Diggle and Fisher (1985), and Fisher, Lewis, and
Embleton (1987, p. 4146) describe alternate methods
involving the estimation of the probability density
function of a data distribution.

This paper first reviews Kamb’s method and a
number of modifications which have been adopted
for automatic contouring. These include changing the
expected count for a uniform distribution, estimating
point density on the sphere, modification for directed
data, and using weighting methods for smoothing.
Example data sets are used to illustrate these modifi-
cations, and to compare qualitatively variations of

31

32 F. W. Vollmer

the Kamb method, the Schmidt method, and the
method of Diggle and Fisher (1985). These ideas are
used in the C program Sphere Contour which is
implemented on an IBM PC microcomputer, and can
export diagrams into AutoCAD. It is written in
ANSI C for easy porting to other systems.

KAMB’S METHOD

Kamb (1959) proposed a method for producing
density diagrams based on binomial statistics. A
binomial random variable has mean, ~1. and standard
deviation, IS

~1 =nP (I)

0 = [np (1 -_P)]“~ (2)

where n is the number of trials and p is the probability
of success for a single trial (Hoel, 1971, p. 58-63). If
n points are selected randomly from a uniform popu-

lation distributed over an area A, then the probability
that any given point will lie within an arbitrary

subarea, a, of A will be

p = a/A. (3)

The number of points occurring within area c1 then
can be treated as a binomial random variable with an
expected count, E, equal to the mean, p. For a
circular area A with radius R, and a counting circle
of area a and radius r, Equation (3) can be rewritten
as

p = r2/R ‘. (4)

Kamb (1959) selected a binomial probability model
with

E=p=30 (5)

so that, given a random sample from a uniform
population, the counting circle would be large
enough so the observed counts would not be likely to
fluctuate wildly from the expected count. Combining
Equations (l), (2), and (5) gives

p = 9/(n + 9) (6)

and substituting Equation (4) in (6) gives the desired
radius of the counting circle

r = 3R/(n + 9)‘12. (7)

For manual contouring, the centers of two count-
ing circles are joined by a line of length 2R, and
overlain on an equal area projection so the line
remains on the center of the projection. Counting is
done on a regular grid. A grid spacing of I usually is
used (e.g. Marshak and Mitra, 1988), but this can
give poor results for small sample sizes. A regular grid
of about 21 x 21 nodes probably is more appropriate
for hand contouring.

Contour levels greater than 30 (E) indicate a den-
sity higher than expected for a uniform distribution,
and levels less than 3a indicate a density lower than
expected. The Oa contour, for example, represents
densities 3SDs less than expected (E - 30). Contour

levels may be set at 20, but can be set at multiples of
E. It should be cautioned that the assignment of
confidence levels to the contours is not straightfor-
ward. For example, the E + 20 contour does not
imply a 95% confidence level as might be expected
from comparison with a normal distribution, a larger
departure generally is required for such confidence
(Dudley, Perkins, and Gine, 1975). Jowett and Robin
(1988) give empirical methods for statistical evalu-
ation of peak and trough densities.

COUNTING ELEMENT SIZE AND SAMPLE SIZE

A primary benefit of Kamb’s method is that it
reduces the influence of sample size by differing the
counting element size [Eq. (7)]. Kamb selected a
binomial model with E = 3a to define this relation-
ship. However, other functions are possible. The use
of a counting circle with an area i/n times the
projection area has been suggested (Flinn, 1958;
Starkey, 1976). Procedures for determining an opti-
mal counting element size are available (Ramsden
and Cruden, 1979; Schaeben, 1982, 1986; Diggle and
Fisher, 1985). Kamb’s approach does not provide
necessarily such an optimal density estimate. In par-
ticular, as shown in the examples, it may over-smooth
distributions with strong preferred orientations.
Changing the binomial model will alter the amount
of smoothing (Dudley, Perkins, and Gine, 1975;
Robin and Jowett, 1986). The following modifi-
cations therefore are suggested for subjective control
of the contouring process.

If the number of standard deviations defining the
expected count for a uniform distribution is allowed
to differ, so that E = ka where k is the expected count
in standard deviations, then Equations (6) and (7)
become

p =k*/(n +k*) (8)

r = kR/(n + k 2)‘12. (9)

Note that, for models where E = 30, E = 2a, and
E = la, a count of 0 will differ from the expected
count by 3, 2, or I SDS, an increasingly smaller
departure. Selecting a lower k gives a smaller count-
ing element, more localized density estimates, and less
smoothing.

Figure 1 illustrates the effect of sample size on the
expected distribution of counts in a random sample
from a uniform distribution. These statistics apply
only to arbitrary, prospectively selected counting
areas (Dudley, Perkins, and Gine, 1975). The
Schmidt and related 1% methods set the probability
to 0.01 regardless of sample size. This generally is too
small, giving, for example, an expected count of
0.50 f 0.70 for a sample of 50 points [E _t 0, Eqs. (I)
and (2)]. A sample size of 99 is required before
E = la, 396 for E = 20, and 891 for E = 30. In
contrast, the standard Kamb method gives an ex-
pected count of 7.63 f 2.54 (Fig. 1).

Automatic contouring of spherical orientation data 33

0.6 ” ” ” ” ” ” ” ” ’ ”

E=3a

0.2

0.0
0 5 10 15 20

h 0.6”“’ ““““I ” ” ’ ”
+ .- E=2a
-
z 0.4

i t

f &?k ,,,,,,,, j
0 5 10 15 20

0.6” I’ ” I’ ” ” ” ” ” ’ ”

E=la
0.4 10

k
2000

1::
0 5 10 15 20

” ” ” ” ” ” ” ” ” ”

1%

Count
Figure 1. Probability distributions illustrating effect of sample size on probability of obtaining different
counts for random sample of uniform distribution. E is expected count for Kamb method. 1% model
represents Schmidt method. Six curves in each diagram are for sample sizes: IO, 50.99, 396,891, and 2000.

As illustrated in the examples, for data sets that
clearly deviate from a uniform distribution, models
with E = 20 or E = la may improve the resolution of
features, while limiting the effect of sample size. For
weak fabrics a higher degree of smoothing may be
obtained by increasing the expected density.

COUNTING ON THE SPHERE

When estimating density it is necessary to deter-
mine the number of points that lie within a counting
element on the surface of a sphere. This can be
approximated by using counting circles on a projec-
tion, but counting directly on the sphere is more
accurate and computationally simpler (Warner,
1969). The area of a spherical cap on a unit radius
sphere is

a =2n(l -cosO) (10)

where 0 is the semiapical angle of the cone defining
the cap. For directed data distributed on a unit sphere
of area 471 this gives

p = a/A = (1 - cos 0)/2 (11)

case =(n -k2)/(n +k*) (12)

and for axial data distributed on a unit hemisphere of
area 271

p =a/A = I -costI (13)

coso =n/(n +k?). (14)

Similar equations are given by Robin and Jowett
(1986).

For any desired location on the sphere, the number
of data points that fall within the angular distance 0
can be counted by computing dot products, taking
the absolute values for axial data. The complexity
and inaccuracy of the double circle algorithm used in

hand contouring are unnecessary.

WEIGHTING FUNCTIONS

A simple tally of points within counting elements
results in marginally satisfactory contours. Decreas-
ing the grid spacing helps to bring out additional
maxima by increasing the resolution of the contours,
but tends to create jagged contours. The problem is

34 F. W. Vollmer

that the density estimate at a point must be made over
a finite area. In standard counting each data point
within an element is assigned a weight, w, of I,
whereas a weight of zero is given to all points outside.
This is the step function

w=l (x <a) (15)

taken over the area of the spherical cap, a, where x
is the area of a cap centered at the same location with
the counted point on its perimeter. A simple inverse
area weighting function is

w = 2(1 -x/a) (x < a). (16)

A higher degree of smoothing is given by the function

w = 3(1 - x/a)2 (x < a) (17)

which gives an inverse area squared weighting (Fig.
2). These are analogous to inverse distance weighting
used in map contouring, where the influence of a data
point falls off with distance from a node (Davis, 1986,
p. 366368), and act as filter operators for convolu-
tion of the data (Kalkani and Von Frese, 1982). Each
of these functions has a volume equal to a when
integrated over the cap area, so the expected density
is not altered. This was confirmed empirically in 30
tests on five geologic data sets with sample sizes from
38 to 957; the average point counts on 25 x 25 grids
were 0.99 + 0.01 of the nonsmoothed grid counts.

An exponential weighting function, based on a
spherical Gaussian or Fisher distribution, has been
applied to Kamb’s method (Robin and Jowett, 1986).
It is a model of an ideal unimodal distribution and
uses all points over the sphere. In general it will have
a greater smoothing effect than Equations (16) and
(17) (Fig. 2). This and other smoothing techniques are
discussed by Ramsden and Cruden (1979), Kalkani
and Von Frese (1980, 1982) Robin and Jowett
(1986) and Charlesworth and others (1989).

“n

Angle from Node

Figure 2. Weighting functions for smoothing density esti-
mates calculated for p = 0.01. A-standard step function;
B-inverse area; C-inverse area squared; D-exponential.
Examples of effect of these functions are shown in Figure 3.

None (Step)

Inv. Area Sqr.

Inv. Area

Exponential

Figure 3. Contoured density diagrams illustrating effect of
weighting functions of Figure 2. A-no smoothing (step
function); B-inverse area; C-inverse area squared; D-x-
ponential. I I2 c-axis orientations in ice (from Kamb, 1959)
contoured using Kamb method with E = 30. Contour inter-

val is 20 beginning at 20.

The effect of these functions is illustrated in Figure
3 with a set of 112 c-axes in ice (digitized from fig. 7
of Kamb, 1959; 13 of the 125 points could not be
resolved). All diagrams are lower hemisphere equal
area projections (except as noted in fig. 8); this data
set has up at the top, all others have north at the top.

GRIDDING AND CONTOURING

In the gridding algorithm used here, the nodes of
a regular square grid are back-projected onto the
sphere. This gives a coverage greater than one full
hemisphere allowing contours to be extended to the
edge of the projection, where they are clipped. After
weighted counts are made at each node the grid is
preprocessed for contouring. Because the point count
is a noncontinuous variable, and the best estimate of
a contour lies halfway between consecutive values,
0.5 is subtracted from each total. For example, a
contour line for a density of 0 will pass halfway
through two nodes of count values 0 and 1, rather
than through the first node. The grid values then are
normalized to 1 SD.

The contour lines are drawn by linear interpolation
through the grid. Any errors in contour location
resulting from interpolation are confined between the
nodes; a reasonably fine grid spacing will minimize
these errors. Numerous other gridding and contour
interpolation methods, including the use of poly-
nomial fitting and alternate grid geometries, have
been used (e.g. Kalkani and Von Frese, 1979; Tocher,
1979; Chaio, 1985; Diggle and Fisher, 1985; Yates,
1987; Charlesworth and others, 1989).

Kamb

Automatic contouring of spherical orientation data

E=3o
2cr,40,...

E=2o
la,3a,...

E=lo
Oa,2a,...

Prob. Density
20%,40%,...

Schmidt
2%,4%,...

N=ll2

Figure 4. Data (as in Fig. 3) with weak maxima contoured using methods described in text. Diagrams
A-H use Kamb contouring with contour intervals of 2~. A, &methods analogous to hand contouring;
C, D, E-inverse area squared smoothing; F, G, H+xponential smoothing; I-method of Diggle and
Fisher (1985), contours in percent of estimated probability density function; J-Schmidt method, contours

in percent per I% area: K-scatter plot of raw data.

EXAMPLES

Three data sets displayed in Figures 4, 5, and 6
illustrate a range of geologic distributions. A triangu-
lar fabric plot (Vollmer, 1989, 1990) of the three data
sets illustrates the variation of fabric types among the
three data sets (Fig. 7). All diagrams, except A, B,
and J, were created with a 30 x 30 grid.

Diagrams A-H were generated using variations of
the Kamb method. A and B were generated using
double counting circle algorithms on the projection
plane with a grid spacing equal to the counting circle
radius. These are equivalent to hand-contoured dia-
grams. C, D, and E use modified Kamb methods with
E = 30, E = 2~, and E = lo respectively and inverse
area squared weighting. F, G, and H are similar, but
with exponential weighting. Note that inverse area
squared weighting gives greater resolution and less
smoothing, whereas exponential weighting gives
smoother, more averaged contours.

Diagram I was generated using the probability
density function estimation algorithm of Diggle and
Fisher (1985). Estimation of the concentration par-
ameter was done using cross-validation log-likeli-
hood maximization, as the data sets are multimodal
and asymmetric. The gridded values are estimates of
a probability density function, with contours equally
spaced over the range of grid values. J was generated
using the Schmidt method and an algorithm similar
to that used for diagrams A and B.

Diagrams C-H, and K (also A and B in Fig. 8)
were generated using the Sphere Contour program.
Diagrams A, B, and J were generated using an early
version of the program Orient (by Vollmer, see
Allmendinger and others, 1991). Diagram I (also C in
Fig. 8) was generated with an unpublished program
(by Vollmer) using Diggle and Fisher’s (1985) algor-
ithm. Final drafting and layout was done in Auto-
CAD.

36 F. W. Vollmer

Example 1 -weak maxima Example 3-girdle

The data in Figure 4 (from Kamb, 1959; same data
as in Fig. 3) have a large amount of scatter, and broad
weak maxima. The characteristics are well-defined
using the Kamb method with E = 30. Kamb (1956)
categorized this fabric as a single broad maximum as
it appears in A (compare with fig. 7 of Kamb, 1959).
However, it is clear that two significant maxima are
present.

Density diagrams of 56 normals to bedding planes
from a series of asymmetric folds in Ordovician
graywacke (from Vollmer, 1981) are shown con-
toured as axial data in Figure 6. This data set has a
significant girdle pattern with a point maximum. As
in the previous example, a reduction of the expected
count emphasizes finer details, giving a narrower
girdle pattern.

E.uample 2-bimodal

Figure 5 shows a set of 38 normal fault striations
(from Angelier, 1979), contoured as axial data. The
unmodified Kamb method, shown in A, fails to bring
out the two maxima partially because the small
sample size resulted in a large counting circle and a
coarse grid, giving poor resolution. For this relatively
strong double maxima fabric, a reduction of the
expected count more strongly emphasizes finer details
of the data set.

Kamb

E=3a
2a,4a,...

E=2a
la,3a,...

Example 4-directed data

Figure 8 shows lower and upper equal area projec-
tions of magnetic remanence measurements from
Precambrian volcanics (from Schmidt and Embleton,
1985, as tabulated in Fisher, Lewis, and Embleton,
1987, table B6). These data are unit vectors and
therefore are contoured on the sphere rather than the
hemisphere. For diagram C the method of Diggle and
Fisher (1985) was used, with the concentration par-
ameter (13.62) selected by cross-validated log-likeli-
hood maximization. The contours derived using the

G

Q @ $2
.

@
. *

E=la
Oa,2u,...

Prob. Density
10%,20%,...

J 0 w
o&f .!

Schmidt
3%,6%,...

N=38

Figure 5. Bimodal data set of 38 normal fault striations (from Angelier. 1979) contoured as axial data

using methods as in Figure 4.

Kamb

Automatic contouring of spherical orientation data

E=3a
2a,4o,...

E=2a
la,3a,...

E=la
Ou,2u,...

Prob. Density
10%,20%,...

Schmidt
3%,6%,...

N=56

Figure 6. Girdle distribution of 56 poles to bedding planes from series of asymmetric folds (from Vollmer,
1981) contoured as axial data using methods as in Figure 4.

three methods differ in resolution and smoothness,
albeit the overall forms are similar.

THE SPHERE CONTOUR PROGRAM

With the Sphere Contour program the user can
select options interactively, preview a plot on the

Random
Figure 7. Triangular fabric plot (Vollmer, 1989, 1990)
showing range in fabric types used in Examples I, 2. and 3.

Corresponding data sets are plotted in Figures 4-6.

screen, and then output a plot to a computer-aided

drafting (CAD) file. Selected options can be saved to
a configuration file, and additional plots can be
generated automatically by entering data file names
on the command line. Data are read from a text file
in one of four formats: strike (strike, dip, dip octant),
dip azimuth (dip, dip azimuth), line (plunge, trend
or inclination, declination), or spherical polar
(colatitude, longitude). The program will rotate
the data up to sixteen times about the coordinate
axes.

As written, the program uses DOS screen graphics
and AutoCAD DXF files. For convenience in draft-
ing, various parts of the drawing are placed on
different layers in the DXF file. The file can be
imported directly into AutoCAD using the Auto-
CAD DXFIN command. The device dependent
graphics routines are confined to three procedures:
InitGraphic, DoneGraphic, and LineOut, making
adaptation to other graphics devices and file formats
straightforward. Global constants beginning with
“dev” control the transformation from millimeters to

CAGkO ?I I-”

38 F. W. Vollmer

2a,4a,...

2o,4a,...

Probability Density
10%,20%,...

Figure 8. Lower (left) and upper (right) hemisphere equal
area projections of 107 measurements of magnetic rema-
nence from Precambrian volcanics (from Schmidt and Em-
bleton, 1985, as tabulated in Fisher, Lewis, and Embleton,
1987, table B6) contoured as vectorial data. A-Kamb
method with area squared smoothing, contour interval of 20
beginning at 20; B-as A, with exponential smoothing;
C-method of Diggle and Fisher (1985). with contour

interval of 10%.

device coordinates. Nonstandard (non-ANSI) C pro-
cedures are kept to a minimum, and are commented.

DISCUSSION

Although Kamb’s method does not necessarily
provide optimal density estimates, it is a simple and
useful graphical technique for the preliminary exam-
ination of orientation data. With the ability to subjec-
tively control the magnitude of smoothing using the
methods described here, it should suffice for many
studies. Methods for evaluating the statistical signifi-
cance of contours are available (Jowett and Robin,
1988). Other more complex techniques for estimating
the probability density function of the population
(Schaeben, 1982, 1986; Diggle and Fisher, 1985) also
should be considered.

From the examples given here, it is clear that a
wide range of density diagrams can be generated from
any given data set. As noted, many other techniques
and contouring programs are available. Even a cur-
sory examination of current geological literature re-
veals that the methods used to produce density
diagrams may be described inadequately. It thus is
recommended strongly that the contouring pro-
cedures, weighting methods, contour levels, and com-
puter programs be stated clearly for all published
diagrams. Whenever feasible, the contour lines
should be superimposed upon a scatter plot of the
original data, allowing the reader to evaluate visually
their significance. To allow comparison of data sets
with the results of other studies, contouring methods
that are influenced strongly by sample size should be
avoided.

Acknowledgment-The author thanks Donal M. Ragan
and two anonymous reviews for their comments. Portions
of this study were funded by National Science Foundation
grant EAR-9003935 to Vollmer.

REFERENCES

Allmendinger, R. W., Charlesworth, H. A. K., Erslev. E. A.,
Guth, P., Langenberg, C. W.. Pecher, A., and Whalley,
J. S., 1991, Microcomputer software for structural geol-
ogists: Jour. Struct. Geology, v. 13, no. 9, p. 1079-1083.

Angelier, J., 1979, Determination of the mean principal
stress directions of stresses for a given fault population:
Tectonophysics, v. 56, no. 34, p. T17-T26.

Charlesworth, H., Cruden, D., Ramsden, J., and Huang, Q.,
1989, ORIENT: an interactive FORTRAN 77 program
for processing orientations on a microcomputer: Com-
puters & Geosciences. v. 15, no. 3. p. 2755293.

Chiao, L., 1985, FORTRAN-V program for contouring
point density on pi-diagrams using a microcomputer:
Computers & Geosciences, v. 1 I, no. 5, p. 6477657.

Cheeney, R. F., 1983, Statistical methods in geology:
George Allen & Unwin, London, 169 p.

Davis, J. C., 1986. Statistics and data analysis in geology
(2nd ed.): John Wiley & Sons, New York, 646 p.

Diggle, P. J., and Fisher, N. I., 1985, Sphere: a contouring
program for spherical data: Computers & Geosciences,
v. 1 I, no. 6, p. 725-766.

Dudley, R. M., Perkins, P. C., and Gine, M. E., 1975,
Statistical tests for preferred orientation: Jour. Geology.
v. 83, no. 6. p. 685-705.

Fisher, N. I., Lewis, T.. and Embleton, B. J. J., 1987.
Statistical analysis of spherical data: Cambridge Univ.
Press, Cambridge, 329 p.

Flinn, D., 1958, On tests of significance of preferred orien-
tation in three-dimensional fabric diagrams: Jour.
Geology, v. 66, no. 5, p. 5266539.

Griffis, R. A., Gustafson. S. J., and Adams. H. G.. 1985,
PETFAB: user-considerate FORTRAN 77 program for
the generation and statistical evaluation of fabric dia-
grams: Computers & Geosciences, v. I I, no. 4.
p. 369408.

Hoel, P. G., 1971. Introduction to mathematical statistics
(4th ed.): John Wiley & Sons, New York. 409 p,

Jowett, E. C.. and Robin, P. F., 1988, Statistical significance
of clustered orientation data on the sphere: an empirical
derivation: Jour. Geology, v. 96, no. 5. p. 591&599.

Kalkani, E. C., and Von Frese, R. R. B., 1979, An efficient
construction of equal-area fabric diagrams: Computers
& Geosciences, v. 5. no. 3. p. 301-3 I I.

Automatic contouring of spherical orientation data 39

Kalkani, E. C.. and Von Frese, R. R. B., 1980, Computer Spencer, A. B., and Clabaugh. P. S., 1967, Computer
construction of equal-angle fabric diagrams and pro- program for fabric diagrams: Am. Jour. Science, v. 265,
gram comparisons: Computers & Geosciences, v. 6, no. 2, p. 166-172.
no. 3, p. 279-288. Starkey, J., 1969, A computer programme to prepare orien-

Kalkani, E. C., and Von Frese, R. R. B., 1982, Convolution tation diagrams, in Paulitsch, P., ed., Experimental and
of fabric data to determine probability distribution: natural rock deformation: Springer-Verlag, New York.
Jour. Strut. Geology, v. 4, no.-I, p. 93-103.

Kamb. W. B., 1959. Ice petrofabric observations from Blue
Glacier, Washington; in relation to theory and exper-
iment: Jour. Geophys. Res., v. 64, no. I I, p. 1891-1909.

Marshak, S.. and Mitra, G., 1988, Basic methods of struc-
tural geology: Prentice Hall, Englewood Cliffs, New
Jersey, 446 p.

Starkey. J., 1976, The contouring of orientation data rep-
resented in spherical projection: Can. Jour. Earth Sci-
ence, v. 14, no. I, p. 268-277.

Tocher, F. E., 1978, Petrofabric point-counting program
fabric (FORTRAN IV): Computers & Geosciences, v. 4,
no. I, p. S-21.

Ragan, D. M., 19185, Structural geology, an introduction to Tocher, F. E., 1979, The computer contouring of fabric
geometrical techniques (3rd ed.): John Wiley & Sons, diagrams: Computers & Geosciences, v. 5, no. I.
New York, 393 p. p. 73-l 26.

Ramsden, J., and Cruden, D. M., 1979, Estimating densities
in contoured orientation diagrams: Geol. Sot. America
Bull., v. 90, no. 3, pt. I, p. 229-231; v. 90, no. 3, pt. II,

Turner, F. J., and Weiss, L. E., 1963, Structural analysis of
metamorphic tectonites: McGrawHill Book Co., New
York, 545 p.

p. 51-74.
. -

p. 580-607. - - Van Everdingei, D. A., Van Cool, J. A. M., and Vissers,
Rankin, J. R., 1989, Computer graphics software construc- R. L. M., 1992, Quickplot: a microcomputer-based

tion: Prentice Hall, New York, 544 p. program for processing of orientation data: Computers
Robin, P. F., and Jowett, E. C., 1986, Computerized density & Geosciences, v. 8, no. 2/3, p. 183-287.

contouring and statistical evaluation of orientation data Vollmer, F. W., 1981, Structural studies of the Ordovician
using counting circles and continuous weighting func-
tions: Tectonophysics, v. 121, no. I, p. 207-223.

Robinson, P., Robinson, R., and Garland, S. J., 1963,
Preparation of beta diagrams in structural geology by a
digital computer: Am. Jour. Science, v. 261, no. IO,
p. 913-928.

Rodgers, D. F., and Adams, J. A., 1976, Mathematical
elements for computer graphics: McGraw-Hill Book
Co., New York, 239 p.

Schaeben, H., 1982, Fabric-diagram contour precision and
size of counting element related to sample size by
approximation theory methods: Jour. Math. Geology,
v. 14, no. 3, p. 205-216.

Schaeben, H., 1986, Comment on sphere: a contouring
program for spherical data: Computers & Geosciences,
v. 12, no. 5, p. 729.

flysch and melange in Albany County. New York:
unpubl. masters thesis, State University of New York at
Albany, I51 p.

Vollmer, F. W., 1989, A triangular fabric plot with appli-
cations for structural analysis (abstr.): Eos (Am.
Geophys. Union Trans.), v. 70. no. 15, p. 463.

Vollmer, F. W., 1990, An application of eigenvalue methods
to structural domain analysis: Geol. Sot. America Bull..
v. 102, no. 6, p. 786-791.

Warner, J., 1969. FORTRAN IV program for the con-
struction of pi diagrams with the Univac II08
computer: Kansas Geol. Survey Computer Contr. 33,
38 p.

Yates, S. R.. 1987, CONTUR: a FORTRAN algorithm for
two-dimensional high-quality contouring: Computers &
Geosciences, v. 13. no. I, p. 61-67.

APPENDIX

;
l

l

*

l

*

*

*

*

t

l

1

t

l

t

l

Sphere Contour Program Listing

Program : Sphere Contour
File : sc0n.c
Purpose : Contoured density diagrams of spherical orientation data
Language : C
Compiler : Borland Turbo C++ 1.00
Author : F.W. Vollmer
Update : 6/92, 7/93, 9/93. 5/94

Portability Notes - Non-ANSI Code
_____________________---____----_

cl rscr(> clears screen in text mode
MAXPATH maximum characters in DOS filename
ChangeFi 1 eExt() - changes extension of a DOS filename
DoneCraphi cs() - shuts down graphics system
Ini tCraphi cs() - initializes graphics system
Li neOut() - draws line in mm units

l /

#include <conio.h> /* Turbo C++ Library: Console IO */
#include <di r . h> /* Turbo C++ Library: LXX directories */
#include <graphics. h> /* Turbo C++ Library: BGI graphics
#include <ctype. h> /* ANSI C Libraries...
+i ncl ude <math. h>
#include <stdio.h>
#include <stdlib.h>
Ui ncl ude <string . h>

40 F. W. Vollme

char szInfo[] =
"SPHERE CONTOUR\n"
"______________\n"
"Creates contoured density diagrams of spherical orientation data.\n"
"Output is to graphics screen or AutoCAD DXF file. Data must be entered\n"
"into a text f!le in one of the following formats:\n"
::\n"

FORMAT COMPONENTS EXAMPLE\n"
11 Strike strike, dip, dip octant 190 60 E\n"
w Dip dip, dip azimuth 60 lOO\n"
1: Line plunge, trend (inclination, declination) 30 280/n"

Polar colatitude, longitude 120 170\n"
"\n"
"Angles are in degrees. Strike, dip azimuth and trend are measured\n"
"clockwise from Y (north). Longitude is measured anticlockwise from X\n"
"(east). Dip and plunge are measured downward from the XY plane. Colatitude\n"
"is measured from 2 (up). Each data point must occupy one line, with\n"
"components separated by spaces or commas. For automatic mode, save desired\n"
"options, then enter the data file name on the command line.\n"
"\n"
"F.W. Vollmer, 1993-1994\n"
"Department of Geological Sciences, SUNY New Paltz, New York 12561\n"
"Internet: vollmerf@npvm.newpaltz.edu\n"
"\n"
"Press ENTER to continue...";

#define ENTER '\n' /* enter key */
#define DTOR 0.01745329252 /* degrees to radians
#define RTOD 57.2957795131 /* radians to degrees
#define MAXCRID 85 /* maximum number of grid nodes

;;

#define MAXSTR
#define WIDTHSTR

a0 /* maximum size of user input string */
48 /* format width for prompt strings */

#define round(x) (int)floor((x)+O.S)
double sqrarg;
#define sqr(x) ((sqrarg=(x)) == 0.0 ? 0.0 : sqrarg'sqrarg)

enum boolean
enum datatypes
enum devices
enum formats
enum hemispheres
enum methods
enum projections
enum plots
enum symbols
enum smoothing

{FALSE, TRUE}:
{AXES, VECTORS};
{BCI, DXF};
{STRIKE, DIP, LINE, POLAR];
{LOWER, UPPER];
(KAMB. SCHMIDT):
IEQUALAREA, STER~XXAPHIC):
{SCATTER, CONTOUR, BOTH};
{NOSYM, CROSS, TRIANGLE, SQUARE, HEXAGON];
{NOSMOOTH, INVAREA, INVAREASQR, EXPONENTIAL];

typedef struct {
double ci;
int device;
int dataType;
int format;
int hemi;
int maxdata;
int method:
double minimum;
double netX;
double netY;
int nCrid;
int nRot;
int plot;
int proj;
double radius:
double rot[lbj;
int rotAxis[16];
double sigma;
int smooth;

int symbol;

double symSize;
) optiontype;

typedef double point[3];

holds user options
contour interval
BCI or DXF
AXES or VECTORS

l i

STRIKE or DIP or PLUNGE
LOWER or UPPER

;;

maximum number of data points */
KAMB or SCHMIDT */
minimum contour
x coordinate of center
y coordinate of center
number of grid nodes
number of rotations
SCATTER, CONTOUR or BOTH
EQUALAREA or STEREOGRAPHIC
radius
rotation angles
rotation axes, X=0, Y=l, Z=2
binomial sigma value
NOSMQOTH, INVAREA, INVAREASQR
or EXPONENTIAL
NOSYM, CROSS, TRIANGLE,
SQUARE or HEXAGON
symbol size in mm

Automatic contouring of spherical orientation data 41

/*** Global Variables *** /

optiontype opt;
point *data:
int nData:

/* holds user options
/* data direction cosines :;
/* number of data ooints */

double grid[MAXGRID][MAXCRID]; I* the grid ’
FILE 'dxf; /* DXF text file

double dev_xRatio; /* X device/mm ratio, negative
double dev_yRatio; /* Y device/mm ratio, negative
double dev_xOrigin; /* left X device coordinate
double dev_yDrigin; /* bottom Y device coordinate

char data_file[MAXPATH]; /* data file name
char out_file[MAXPATH]; /* DFX file name

/*** User Input l **/

/* CetKey - gets a character from keyboard. */
in:hE;t:ey(void) {

:;CricharO ;
= '\n'> getchar(/* get linefeed */

return c;
]

/* CetInt - gets a prompted integer from user. */
void CetInt(char l pint, int l i) {

char buf[MAXSTR];
int j;

for right origin */
for top origin */

l /
*/

printf("%-*s X12d: ",WIDTHSTR,pmt,*i);
fgets(buf,MAXSTR,stdin);
if (sscanf(buf,"%d",&j) =P I) *i = j;
]

/* CetDbl - gets a prompted double from user. */
void CetDbl(char *pmt, double *x) {

char buf[MAXSTR]:
double y;
printf("%-•s %12g: ".WIDTHSTR,pmt,*x);
fgets(buf,MAXSTR,stdin);
if (sscanf(buf,"%lf",&y) == 1) *x = y;
]

/* CetStr - gets a prompted string from user. */
int CetStr(char *pmt. char *s) {

char buf[MAXSTR];
char tCMAXSTR1;
printf("%-*s X12s: ",WIDTHSTR,pmt,s);
fgets(buf,MAXSTR,stdin);
if (sscanf(buf,"%s",t) == 1) { strcpy(s,t); return TRUE; }
return FALSE:
1

/* GetChoice - sets a promoted selection from user. Returns number of
I* response in &ring,.0 is first choice. */
int CetChoice(char l pint, char *choices, int *i> (

char l r,c;
printf("X-•s X12c: ",WIDTHSTR,pmt,choices[*i]);
c = toupper(CetKey());
r = strchr(choices,c);
if (r) l i = (int)(r-choices);
return *i.
I ’

points to first occurance */
offset into string */

/* Error&g - prints error message, with integer if i > 0. */
void ErrorMsg(char l s, int i) {

if (i > 0) fprintf(stderr."%s %d. Press ENTER...",s.i);
else fprintf(stderr."%s. Press ENTER...",s);
CetKey(); /* wait */
1

/* ChangeFileExt - changes a DOS file name extension. */
void ChangeFileExt(char *fnew, char *fold, char *fext) {

char drive[MAXDRIVE],dir[MAXDIR],file[MAXFILE],ext[MAXEXT];
fnsplit(fold.drive,dir,file,ext);

42 F. W. Vollmer

fnmerge(fnew,drive,dir,file,fext);
1

/*** Rotations ***/

/* maxisrot3 - calculates 3D rotation matrix of theta radians about */
/* coordinate axis (0=X, l=Y, 2~2). l /
void maxisrot3(int axis, double theta, double t[3][3]> {

int al,a2,i,j;
double c,s;
for (i-0; i<3; i++) for (j=O; j<3; j++) t[i][j] = 0.0:
t[axis][axis] = 1.0;
al = (axis+l) % 3;
a2 = (al+l> % 3;
c = cos(theta); s = sin(theta);
t{al][al] = c; t[a2][a2] = c;
t[al][a2] = -s; t[a2][al] = s;
3

/* x=012 y=120 a=201 */

/* mmult - multiplies 3x3 matrix x
void mmult3(double x[3][3], double
int i,j,k;

by Y. */
yC31C31, double 2[31[33) {

for (i=O; i<3; i++) for (j=O; j<3; j+t) {
z[i][j] = 0.0;
f"r (k=O; k<3; k++) z[ilCjl += xCilCk1 * yCklCj1;

3

/* CetRotMat - builds the rotation matrix from user data. l /
void CetRotMat(double r[3][3]) {

int i.j,n;
double s[31[33,t[33[31;
for (i=O; i<3; i++) { for (j=O; j<3; j++) r[i][j] - 0.0; r[i][i] = 1.0;)
for (n-0; n<opt.nRot; n++> {

for (i=O; i<3; i++) for (j=O; j<3; j++> t[i][j] = r[i][j]; /* copy l /
maxisrot3(opt.rotAxis[n],opt.rot[n]*DTOR,s);
mmult3(s,t,r);
]

/*** Conversions l **/

/* OctantVal - converts an octant string to degrees. l /
int OctantVal(char l s, double *r) (

int i;
for (ilo; s[i] != '\O'; i++) toupper(s[i]);
if (strcmp(s,"N") == 0) l r = 0.0;
else if (strcmp(s,"NE") -= 0) l r - 45.0;
else if (strcmp(s."E" > == 0) l r = 90.0;
else if (strcmp(s."SE") == 0) *r = 135.0:
else if (strcmp(s,"S" j -= oj l r I 180.0;
else if (strcmp(s,"SW") I= 0) *r = 225.0;
else if (strcmp(s,"W") == 0) *r = 270.0;
else if (strcmp(s,"NW") =I 0) *r I 315.0;
else return FALSE;
return TRUE:
]

/" PTTODC- converts plunge, trend in degrees to XYZ direction cosines. */
void PTToDC(double p, double t, double dc[3]) {

double cp;
p = p*DTOR; t = t*DTOR; cp = cos(p);

;Iccol
= cp*sin(t); dc[l] - cp*cos(t); dc[Z] = -sin(p):

/* SphereProject - projects direction cosines to Cartesian coordinates of */
/* unit spherical projection. l /
int SphereProject(double dc[3], double l x, double l y,

int proj. int hemi, int datatype) {
int i;
double f,t[3];
for (i=O; i<3; i++) t[i] = dc[i];
if (hemi -= LOWER) t[2] - -t[2];
if (datatype =- AXES & t[2] c 0.0) for (i=O; i<3; i++) t[i] = -t[i];
if (t[2] < 0.0) return FALSE;
if (proj == STEREDCRAPHIC) f = l.O/(l.O+t[2]);

Automatic contouring of spherical orientation data 43

else f - l.O/sqrt(l.O+t[2]);
‘x - f.t[0]; l y = f't[ll;
return TRUE;
]

/* SphcreBProject - back projects Cartesian coordinates of unit spherical l /
/* projection to direction cosines. l /
void SphereBProject(double x, double y, double dc[3], int proj, int hemi) {

double r2,f;
r2 - <x’x>+<Y’Y> :

if (pioj i=
-_ _-
STEREOGRAPHIC) { dc[2] = (l.O-r2)/(1.O+r2); f - l.O+dc[2];)

else { f = sqrt(fabs(2.0-r2)); dc[2] = l.O-r2;]

dcCO1 - f*x; dc[l] - f'y;
if (hemi = LOWER) dc[Z] = -dc[2];
I

/*** System Dependent Graphics l **/

/* InitCraphics - initializes graphics system. l /
int InitCraphics(char 'exepath) {

char path[MAXPATH].drive[MAXDRIVE],dir[HAXDIR].file[MAXFILE].ext[HAXEXT];
int grmode=O,grdriver=DETECT;
if (opt.device -- DXF) {

if ((dxf - fopen(out_file,"wt")) -= NULL) {
ErrorMsg("Error opening DXF file",-1);
return FALSE;
]

printf("Plotting to Xs...",out_file);
fprintf(dxf," O\nSECTION\n 2\nENTITIES\n"):
1

l l;e {
fnsplit(exepath,drive,dir,filc,ext); /* get exe path
fnmerge(path,drive,dir."",""); /* driver is in exe directory :;
initgraph(&grdriver,&grmode,path); /* load device driver _ l /
if (graphresult !- gr0k) {

ErrorMsg("Craphics error, required BCI driver file not found",-1);
return FALSE;
3

setgraphmode(getmaxmodeO);
setfillstyle(SOLID_FILL,getmaxcolor());
bar(O.O,getmaxx(),getmaxy());
setcolor(0);
dev_xRatio = 2.5 l (getmaxx()+1.0)/640.0; /* use 14" VGA as model, l /
dev_yRatio = -2.5 l

dev_xOrigin = 0.0;
(getmaxy()+1.0)/480.0; ;* ;tf:as 2.5 pixels/mm

dev_yOrigin = getmaxyo; 1: bEttom
)

return TRUE;
)

/* DoneGraphics - close down graphics system. l /
void DoneCraphics(void) {

if (opt.device -- DXF)~{
fprintf(dxf," O\nENDSEC\n O\nEOF\n");
fclose(dxf);
printf("done\n");
1

elie {
CetKey();
closebraph();

/* wait l /

I
I

/* LineOut - output
/* the layer output
void LineOut(double

line to graphics system. The string "layer" specifies l /
to in a DXF file. l /
xl, double yl, double x2, double y2, char *layer) {
DXF) if (opt.device --

fprintf(dxf," O\nLINE\n 8\n%s\n lO\n%g\n 20\nXg\n ll\n%g\n 2l\n%9\n”,
layer,xl,yl,x2,y2);

else { /* SCREEN l /
xl - xl*dev_xRatio+dev_xOrigin; yl - yl*dev_yRatio+dev_yDrigin;
x2 - x2*dev_xRatio+dev_xOrigin: y2 = y2*dev_yRatio+dev_yOrigin;
line(round(xl),round(yl).round(x2),round(y2)):
3

I

44 F. W. Vollmer

/*** Non-System Dependent Graphics l **/

/* LineCircleInt - determine intersection parameters for line segment and l /

/* circle. Adopted from Rankin 1989, p.220. '/
int LineCircleInt(double xl, double yl, double x2. double y2,

double xc, double yc, double r, double 'tl, double l t2) C
double t,a,b,c,d,disc,dxc,dyc,dx,dy;
et1 = l t2 = -1.0;
dx = x2-x1; dy - y2-yl; dxc = xl-xc; dye - yl-yc;
a - dx*dxc + dy*dyc; b I dx*dx + dy*dy; c = dxc*dxc + dyc*dyc - r'r;
disc - a*a - b*c;
if (disc > 0.0 8& fabs(b) > le-6) {

d - sqrt(disc);
l t1 = (-a + d)/b; l t2 = (-a - d)/b;
if (*tl > l t2) { t = l tl; l tl - l t2; l t2 - t;)
return TRUE;
1

return FALSE;
1

/* ClipLineCircle - clip line segment to circle. l /
int ClipLineCircle(double xc, double yc, double r,

double *xl, double l yl, double *x2. double l y2) {
double xO,yO,tl,t2;
if ((*xl < xc-r &&I *x2 =z xc-r) II (*xl > xc+r MC *x2 > xc+r) II

(*yl < yc-r &% l y2 < yc-r) II (*yl > yc+r ddr l y2 > yc+r)) return FALSE;
if (!LineCircleInt(*xl,*yl,*x2,*y2,xc,yc,r,&tl,&t2)) return FALSE;
if (t2 < 0.0 II tl > 1.0) return FALSE;
x0 = 'x1; yo - l y1;
if (tl B 0.0) { *xl = x0 + (*x2-x0) l tl; l yl = y0 + (*y2-y0) l tl; }
if (t2 < 1.0) { *x2 = x0 + (*x2-x0) l t2; l y2 = y0 + (*y2-y0) l t2;)
return TRUE:
1

/* DrawCircle - output a circle. Adopted from Rodgers and Adams, 1976. p. 216. l /
void DrawCircle(double x, double y, double radius, int n, char* layer) (

double ainc,cl,sl,xl.x2,yl,yZ;
int i;
ainc = 2.O*M_PI/n;
Cl = cos(ainc); sl = sin(ainc);
xl = x + radius: yl = y;
for (i-0; i<n; i+) {

x2 - x + (xl-x)*cl - (yl-y)*s1; y2 = y + (Xl-x)*sl + (yl-y)*c1;
LineOut(xl.yl.x2,y2,layer);
xl = x2; yl = y2;
1

1

/* CLineOut - output a line segment clipped to current projection. l /
void CLineOut(double xl, double yl, double x2, double y2, char *layer) {

if (ClipLineCircle(opt.netX,opt.netY,opt.radius,&xl,&yl,&x2,&y2))
LineOut(xl,yl,x2,y2,layer);

1

/* DrawSymbol - output a symbol clipped to current projection. l /
void DrawSymbol(double x, double y, int symbol, double size, char *layer) {

double w.h,l;
switch (symbol) {

case CROSS:
w = O.S*size;
CLineOut(x,y-w,x,y+w,layer); CLineOut(x-w,y,x+w,y,layer);
break;

case TRIANGLE:
w - O.S*size: h = w*O.S*sart(3.0):
CLineQut(x-wiy-h,x+w,y-h.iayer); CLineOut(x+w,y-h,x,y+h,layer);
CLineOut(x,y+h,x-w,y-h.layer):
break;

case SQUARE:
h = O.S*size;
CLineOut(x-h,y-h,x+h.y-h,layer): CLineOut(x+h,y-h,x+h,y+h.layer);
CLineOut(x+h,y+h,x-h,y+h,layer); CLineOut(x-h,y+h,x-h,y-h,layer);
break;

case HEXACON:
w I O.S*size; h I w*2.0/sqrt(3.0); 1 - O.S*h;
CLineOut(x,y+h,x-w,y+l,layer); CLineOut(x-w,y+l,x-w,y-1,layer);

Automatic contouring of spherical orientation data

CLincDut(x-w,y-1 ,x,y-h,laycr); CLincOut(x,y-h,x+w,y-1 ,layer);
;:l$Dut(x+w,y-1 ,x+w,y+l ,layer); CLineOut(x+w,y+l ,x,y+h.layer);

/* OrawNetFrame - output projection frame. l /
void OrawNetFrame(char ‘1 ayer) (

double tickSize - 3.O,x,y;
DrawCircle(opt.netX,opt.netY,opt.radius,100,l,yer);
x = opt.netX+opt.radius; y - opt.netY;
LineDut(x,y,x+tickSire.y,layer);
x - opt.netX-opt.radius;
LineDut(x.y,x-tickSize,y,laycr);
x - opt.netX; y = opt.netY+opt.radius;
LineOut(x,y,x,y+tickSize.layer);
y - opt.netY-opt.radius:
LineOut(x,y,x,y-tickSize,layer);
]

/*** Cridding l **/

/* CridKamb - calculates grid of density estimates from direction cosine l /
/* data. The grid is preprocessed for contouring by subtracting 0.5
/* from each count, and normalizing to the contour units. :;

void GridKamb(
double x[][3], int nData, /* dir cos data matrix l /
double sigma, /* sigma value ‘/
int datatype. int projection. int hemisphere, /* projection type
double grid[MAXCRID] [MAXGRID], int nGrid, /* the grid :;

double l zMin, double l zMax)
c

/* min and max of grid l /

double y[33 ,a,alpha,d,dx,f ,xg,yg,zUnit;
int i,j,k;
switch (opt .nethod) {

case SCHMIDT :
a = 0.01;
zUnit = nData’0.01;
break;

default /* K/WE */ :

/* fractional area
/* unit - l%

a = (signa*signa)/(nData+sigma*sigma) ; /* fractional area
zUnit = sqrt(nData*a*(l.O-a)); /* unit = 1 siama
break:

)
if (datatype -- VECTORS) alpha - l.O-2.O.a;
else /* AXES l /

/* half apical angle
alpha - 1.0-a;

switch (opt. smooth) (
case INVAREA :

f - 2.0/(1.0-alpha);
break:

/* weighting factor

case INGAREASQR :
f - 3.0/sqr(l.O-alpha):
break;

. .

case EXPONENTIAL :
if (datatype == VECTORS) (

f - 1.0 + nData/(sigma*sigma);
zUni t
]

- sqrt(nData*(f-1.0>/(4.O*f*f)): /* unit I 1 sigma

else /* AXES l / (
f - 2.0*(1.0 + nData/(sigma*sigma));
zUni t - sqrt(nData*(f*O.S-l.O)/(f*f));
)

break;
)

- 2 .O/(nCrid-1) ; /* node spacing
% (i-0. i<nCrid; i+t) for (j-0; j<nCrid; j++) grid[i][j]

= -1.6.
- 0.0;

8 (i=O*‘i<nCrid; i++) {

%
I -i 0.

(j-6: ‘j<nCrid; j++) (
SphereBProject(xg,yg.y.projection.hcmisphere);
for (k=O; kenData; k++) {

d I yCOl*xCk] [o]+yCll*x[kl [l]+y[23*xCkl C21; /* dot product
if (datatype -- AXES) d - fab, (d) ;
switch (opt. smooth) {

case EXPONENTIAL:

45

46 F. W. Vollmer

grid[i][j] += exp(f*(d-1.0));
break;

case INVAREA:
if (d >- alpha) grid[i][j] += f*(d-alpha);
break;

case INVAREASOR:
if (d >= alpha) grid[i][j] += f*sqr(d-alpha);
break;

default:
if (d >- alpha) grid[i][j] += 1.0;

]

xg-+= dx;
]

*zMin = le30; *zMax = le-30;
f = l.O/zUnit;
for (i=O; i<nCrid; i++) for (j=O; j<nGrid; j++) {

gridCilCj1 = (grid[i][j]-O.S)*f; /* normalize */
if (grid[i][j] > l zMax) *zMax = gridCilCj1; /* find min/max */
If (grid[i][j] < *zMin) *zMin - grid[i][j];

/*** Contouring ***/

/* Interpolate - determine
int Interpolate(double xl,

double *x.

linear interpolation point between two nodes. */
double yl, double zl. double x2. double ~2. double z2.

double dz,dzl,dz2,t;
double iy, double *z> {

dzl = *z-zl; dz2 = *z-z2:
if (dzl == 0.0) {*x = xl: *y = yl; return TRUE;]
if (dz2 == 0.0) f'x = x2; *y = y2; return FALSE:}
if ((dzl > 0.0 8& dz2 > 0.0) II (dzl < 0.0 &% dz2 < 0.0)) return FALSE;
dz = z2-z1;
t = dzl/dz;
*x = xl + (x2-x1) * t; *y = yl + (y2-yl) * t;
return TRUE;
]

/* ContourGrid - output one contour level by linear interpolation among */
/* grid nodes. */
void ContourCrid(

double xl, double yl, double x2, double y2, /* bounding rectangle */
double grid[MAXCRID][MAXCRID], int ng, int mg, /* the grid
double level, char *layer) /* contour level
r

double dl,d2,d3,d4,dnx,dny,nx,ny,nxp,nyp;
double gyl,x3,x4,y3,y4,z,zl,zz,z3,z4;
int i,j,found;
dnx = (x2-xl)/(ng-1.0): dny = (y2-yl)/(mg-1.0);
z = level;
gyl = Yl;

= xl;
Fir (i=O; i<ng-1; i++> {

ny = gyl;
nxp = nx + dnx;
for (j=O; j<mg-1; j++) {

nyp = ny + dny;
zl = grid[i][j]; z2 = grid[i+l][j];
z3 = gridCi+llCj+ll; z4 = grid[i][j+ll;
found = 0;
if (Interpolate(nx,ny,zl,nxp,ny, z2,&xl,&yl,&z)) found += 1;
if (Interpolate(nxp,ny,z2,nxp,nyp,z3,&x2,&y2,&z)) found += 2;
if (Interpolate(nxp,nyp,z3,nx,nyp,z4,&x3,&y3,&z)) found += 4;
if (Interpolate(nx,nyp,zrl,nx,ny, zl,&x4,&y4,&z)) found += 8;
switch (found) C

case -3: tLin~Out(xl,yl,x2,y2,layer);
case 5: CLineOut(xl.yl.x3.y3.layer);
case 9: CLineOut(xl,vl.x4.v4.laver):
case 6: CLineOut(x2;y2~~3;y3;layerji
case 10: CLineOut(xZ,yZ,x4,y4,layer);
case 12: CLineOut(x3,y3,x4,y4,layer);
case 15:

break:
break:
break;
break;
break;
break:

d1 = sqrt(sqr(xl-x2) + sqr(y1-y2)); d2 = sqrt(sqr(x2-x3) + sqr(y2-y3) 1;

Automatic contouring of spherical orientation data 47

d3 = sqrt(sqr(x3-x4) + sqr(y3-y4)); d4 = sqrt(sqr(xrl-xl) + sqr(y4-yl));
if ((dl+d3) < (dZ+d4)) {

CLineOut(xl,yl,xZ,yZ,layer); CLineOut(x3.y3,x4,y4,layer);
1

else {
CLineOut(xZ,yZ,x3,y3,layer); CLineOut(xl,yl,x4,y4,layer);

_ 3

ny = nyp;
] /* for j */

nx = nxp;
} /* for i */

/*** Main Procedures l **/

/* LoadDataFile - loads data from file converting to direction cosine */
/* matrix. Returns FALSE on format error. l /
int LoadDataFile(double x[][3], int *n, FILE *f) {

char buf[MAKSTR];
double ov,p,t,d[3] ,rC3lC31;
char OS [MAKSTR];
*n = 0;
CetRotMat(r);
while (fgets(buf,MAXSTR,f)) {

if (buf[O] == '\O') continue;
if (opt.format == STRIKE) {

if (sscanf(buf."%lf Xlf %s".&t,&p,os) != 3)
if (sscanf(buf,"%lf, Xlf, %s",&t,&p,os) !- 3)

if (sscanf(buf,"%lf, Xlf %s",&t,&p,os) !- 3) return FALSE:
p - 90.0-p; t = t-90.0;
if (t < 0.0) t +r 360.0;
if (!OctantVal(os.&ov)) return FALSE;
if (fabs(ov-t) < 90.0) t += 180.0:
)

else {
if (sscanf(buf,"%lf %lf",&p,&t) != 2)

if (sscanf(buf,"%lf, %lf",&p,&t) != 2) return FALSE:
if (opt.format == DIP) {p = 90.0-p; t += 180.0;)
if (opt.format == POLAR) {p -= 90.0; t = 90.0-t;)
1

&oDC(p,t,d);
xC*nlCOl = dCO1 * r[O][O] + d[l] * r[O][l] + d[2] * rCOlC21;
xC*nlCll = dCO1 * rCllCO1 + dC11 * r Cl1 Cl1 + dC21 * r Cl1 El ;
x[*n][2] = d[O] * r[2][0] + d[l] l r[2][1] + d[2] * r[2][2];
(*n)++:
if (*n.== opt.maxdata-1) {

ErrorMsg("Data array full at",opt.maxdata);
return TRUE;
)

)
return TRUE;
)

/* LoadData - loads data array. */
int LoadData(void) {

FILE *f;
nData = 0:
if (!(f = fopen(data_file. "rt"))) {

ErrorMsg("File not found",-1);
return FALSE;
I

if (!LoadDataFile(data,&nData,f)) {
ErrorMsg("Format error in line",nData+l);
nData = 0;
]

fclose(f);
return (nData > 0);

/* SaveInit l /
void SaveInit(void)

f

;ILE l f;
if (!!(f - fopen("scon.ini", "wb"))) {

fwrite(&opt,sizeof(opt),l,f);

48 F. W. Vollmer

:close(f):
else ErrorMsg("Error writing file",-1);
]

/* GetOptions - gets data from user filling the options record "opt", */
/* "dathfile" and "outfile". */
int CetOptions(void) {

int b,n;
do E

clrscro;
printf("\nSPHERE CONTOUR\n");
printf("- ---__-_---_--\n");
if (CetStr("Enter data file name, or X to exit program",dathfile)) {

if (data_file[O] == 'x' 11 dathfile[D] == 'X') return FALSE;
ChangeFileExt(out_file,dathfile,".dxf");
1

CetInt("Maximum number of data points (up to 32DDD)",&opt.maxdata);
CetChoice("Data format (Strike/Dip/Line/Polar)","SDLP",&opt.format);
CetChoice("Data type (Axes/Vectors)","AV",&opt.dataType);
b = FALSE;
if (CetChoice("Change projection details? (Y/N)","NY",&b)) C

CetChoice(" Projection (Equal area/Stereographic)","ES",&opt.proj);
CetChoice(" Hemisphere (Lower/Upper)","LU",&opt.hemi);
CetDbl(" X coordinate of center in millimeters",&opt.netX);
CetDbl(" Y coordinate of center in millimeters",&opt.netY);
GetDbl(" Radius in millimeters",&opt.radius);
]

b = FALSE;
ifGiE;;F:fice("Change data rotation? (Y/N)","NY",&b)) E

Number of rotations (0 to 16)",&opt.nRot);
for (n=O; n<opt.nRot; n++> {

CetChoice(" Rotation axis (X/Y/Z)","XYZ",&opt.rotAxis[n]);
CetDbl(" Rotation angle in degrees",&opt.rot[n]);
1

]
CetChoice("Plot type (Scatter/Contour/Both)","SCB",&opt.plot);
if (opt.plot != SCATTER) {

CetChoice("Contouring method (Kamb/Schmidt)","KS",&opt.method);
if (opt.method == KAMB)

CetDbl("Expected level for uniform dist (1, 2 or 3)",&opt.sigma);
CetChoice("Smoothing (None/inv Area/inv area Sq/Exp)","NASE",&opt.smooth);
CetDbl("Minimum contour (0, 1, 2 or 3 recommended)",&opt.minimum);
CetDbl("Contour interval (1, 2, or 3 recommended)",&opt.ci);
CetInt("Number of grid nodes (up to 85)",&opt.nCrid);
1

if (opt.plot !P CONTOUR) (
CetChoice("Symbols (None/Cross/Triangle/Square/Hexagon)","NCTSH",&opt.symbol);
CetDbl("Symbo1 size in millimeters",&opt.symSize);
I

CetChoice("Output (Screen/Dxf file)","SD",&opt.device);
if (opt.device =- DXF)

CetStr("DXF file name",out_file);
gp;nW;:n”) ;

;f_(;;;:$ice("Save options? (Y/N)","NY",&b)) SaveInit();
:

tetChoice("Begin plot? (Y/N)","NY",&b);
) while (b -I FALSE):

return TRUE:
]

/* PlotData - outputs scatter plot. */
void PlotData(char *layer) {

int i;
double xn.yn;
if (opt.symbol m NOSYM) return;
for (i-0; i<nData; i++> if (SphereProject(data[i], &xn, &yn,
opt.proj, opt.hemi. opt.dataType)) (

xn = opt.netX+xn*opt.radius; yn =.opt.netY+yn*opt.radius;
DrawSymbol(xn,yn,opt.symbol,opt.symSize,layer);
]

)

/* Contour - grids data and outputs contours. */
void Contour(char *layer) {

Automatic contouring of spherical orientation data

double level,zl,z2,xl,yl,x2,yZ;
if (nData == 0) return;

49

GridK~b(data,nData,opt.sigma,opt.dataType,opt.proj,opt.hemi,grid,opt.nCrid,&zl,&z2);
XI = opt.netX-opt.radius; yl = opt.netY-opt.radius;
x2 = opt.netX+opt.radius; y2 = opt.netY+opt.radius;
level - opt.minimum;
while (level < zZ+le-6) (

ContourCrid(xl,yl.x2,y2,grid.opt.nCrid.opt.nCrid,level,layer):
level += opt.ci;
I

I

/* Initialize - initializes file names and options. */
void Initialize(int argc, char *argv[]) (

FILE l f:
opt.ci - 2.0;
opt.maxdata = 1000;
opt.minimum = 2.0;
opt.netX = 120.0;
opt.netY = 100.0;
opt.nCrid = 30;
opt.plot = BOTH;
oot.radius = 75.0:
opt.sigma - 3.0;
oot.smooth p INVAREASQR;
opt.symbol = HEXAGON;
opt.symSize - 2.0;
if (! !(f = fopen("scon.ini","rb"))) {

fread(&opt,sizeof(opt),l,f);
fclose(f);
I

if (argc > 1) { /* file name on command line */
strncpy(data_file,argv[l],MAXPATH-1);
ChangeFileExt(out_file,dathfile,".dxf");

/* Run - runs main program. */
void Run(char *exepath) {

if (nData -= 0) return;
if <InitGraphics(exepath)) {

DrawNetFrame("FRAME");
if (opt.plot != CONTOUR) PlotData("DATA");
if (opt.plot != SCATTER) Contour("CONTOUR");
DoneCraphicsO;
,

/* main - initializes options, gets user input, and outputs plots. */
int main(int argc, char *argv[]) {

int bBatch = (argc f= 2); /* batch mode if one command line parameter */
Initialize(argc,argv);
if (argc < 2) { /* display startup if no parameters */

clrscro;
printf("%s", szInf0);
if (GetKey !- ENTER) return 1;

whjle (bBatch 11 GetOptions {
if (!(data = malloc((size_t)opt.maxdata*sizeof(point))))

ErrorMsg("Not enough memory for data array",-1);
else (

if (LoadData Run(argv[O]);
free(data);
I

if (bBatch) break;
1

ii(!bBatch) clrscr();
printf("Sphere Contour terminated.\n"):
return 0;‘
)

