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Abstract-Kamb’s method for contouring density diagrams is a simple technique for the preliminary 
analysis and comparison of orientation data distributions. The method is based on the departure from 
a uniform distribution, and, unlike the Schmidt method, the dependence of contours on sample size is 
limited. Several improvements can be made, particularly with regard to the implementation of automatic 
contouring. To reduce smoothing, the expected count for a random sample drawn from a uniform 
distribution can be decreased. This gives more localized density estimates that can improve the resolution 
of features. Density estimates are done directly on the sphere for accuracy. This also permits contouring 
on stereographic and other nonequal area projections, and accommodates vectorial data. Weighting 
functions provide better density estimates and increase the smoothness of contour lines. These concepts 
are implemented in the C program Sphere Contour. Options include selection of data rotation, linear or 
planar data, equal area or stereographic projection, upper or lower hemisphere, and scatter diagrams. 
Graphics output is either to the screen (MS-DOS) or to a computer-aided drafting file (AutoCAD DXF). 
The program is modified easily for other computer systems and graphics devices. 

Key Words: Axes, C language, Computer-aided drafting, Density diagrams, Graphics, Spherical projec- 
tions, Vectors. 

INTRODUCTION 

Spherical orientation data, including directed lines 
(unit vectors), nondirected lines (unit axes), and poles 
to planes (unit axes or vectors) are abundant in 
structural geology, geophysics, and other fields. They 
are plotted typically as scatter diagrams on equal area 
projections of a unit hemisphere and contoured to 
produce density diagrams. In the Schmidt and related 
methods, a counting circle comprising 1% of the total 
area is used to make density estimates at the nodes of 
a regular grid, and the grid is contoured in units of 
percent density per 1% area (Turner and Weiss, 1963, 
p. 58-67; Ragan, 1985, p. 274-279; Marshak and 
Mitra, 1988, p. 148-157). 

Although widely used, the Schmidt and other 1% 
area methods are not well suited for comparing data 
sets because the contours are dependent strongly on 
sample size (Flinn, 1958; Kamb, 1959; Dudley, 
Perkins, and Gine, 1975; Starkey, 1976; Schaeben, 
1982). This is significant particularly for geological 
field studies, where sample sizes may range widely. 
Kamb (1959) proposed an alternative in which con- 
tours represent standard deviations away from the 
expected density for a random sample drawn from a 
uniform distribution. Kamb’s method reduces the 
effect of sample size on contours, allowing compari- 
son of data sets with different sample sizes. 

Dudley, Perkins, and Gine (1975) and Schaeben 
(1982) provide reviews of fabric diagram construction 
and related statistical methods. Other discussions of 
Kamb’s method include Starkey (1976), Cheeney 
(1983, p. 108-llO), Robin and Jowett (1986), and 
Jowett and Robin (1988). Various published and 
unpublished computer implementations of Kamb’s 
method exist (e.g. Tocher, 1978, 1979; Griffis, 
Gustafson, and Adams, 1985; Robin and Jowett, 
1986; Allmendinger and others, 1991; Van Everdin- 
gen, Van Gool, and Vissers, 1992). Computer im- 
plementations of other types of density diagrams are 
numerous; early examples include those by Robinson, 
Robinson, and Garland (1963), Spencer and 
Clabaugh (1967), Starkey (1969), and Warner (1969). 
Ramsden and Cruden (1979), Schaeben (1982, 1986), 
Diggle and Fisher (1985), and Fisher, Lewis, and 
Embleton (1987, p. 4146) describe alternate methods 
involving the estimation of the probability density 
function of a data distribution. 

This paper first reviews Kamb’s method and a 
number of modifications which have been adopted 
for automatic contouring. These include changing the 
expected count for a uniform distribution, estimating 
point density on the sphere, modification for directed 
data, and using weighting methods for smoothing. 
Example data sets are used to illustrate these modifi- 
cations, and to compare qualitatively variations of 
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the Kamb method, the Schmidt method, and the 
method of Diggle and Fisher (1985). These ideas are 
used in the C program Sphere Contour which is 
implemented on an IBM PC microcomputer, and can 
export diagrams into AutoCAD. It is written in 
ANSI C for easy porting to other systems. 

KAMB’S METHOD 

Kamb (1959) proposed a method for producing 
density diagrams based on binomial statistics. A 
binomial random variable has mean, ~1. and standard 
deviation, IS 

~1 =nP (I) 

0 = [np (1 -_P)]“~ (2) 

where n is the number of trials and p is the probability 
of success for a single trial (Hoel, 1971, p. 58-63). If 
n points are selected randomly from a uniform popu- 

lation distributed over an area A, then the probability 
that any given point will lie within an arbitrary 

subarea, a, of A will be 

p = a/A. (3) 

The number of points occurring within area c1 then 
can be treated as a binomial random variable with an 
expected count, E, equal to the mean, p. For a 
circular area A with radius R, and a counting circle 
of area a and radius r, Equation (3) can be rewritten 
as 

p = r2/R ‘. (4) 

Kamb (1959) selected a binomial probability model 
with 

E=p=30 (5) 

so that, given a random sample from a uniform 
population, the counting circle would be large 
enough so the observed counts would not be likely to 
fluctuate wildly from the expected count. Combining 
Equations (l), (2), and (5) gives 

p = 9/(n + 9) (6) 

and substituting Equation (4) in (6) gives the desired 
radius of the counting circle 

r = 3R/(n + 9)‘12. (7) 

For manual contouring, the centers of two count- 
ing circles are joined by a line of length 2R, and 
overlain on an equal area projection so the line 
remains on the center of the projection. Counting is 
done on a regular grid. A grid spacing of I usually is 
used (e.g. Marshak and Mitra, 1988), but this can 
give poor results for small sample sizes. A regular grid 
of about 21 x 21 nodes probably is more appropriate 
for hand contouring. 

Contour levels greater than 30 (E) indicate a den- 
sity higher than expected for a uniform distribution, 
and levels less than 3a indicate a density lower than 
expected. The Oa contour, for example, represents 
densities 3SDs less than expected (E - 30). Contour 

levels may be set at 20, but can be set at multiples of 
E. It should be cautioned that the assignment of 
confidence levels to the contours is not straightfor- 
ward. For example, the E + 20 contour does not 
imply a 95% confidence level as might be expected 
from comparison with a normal distribution, a larger 
departure generally is required for such confidence 
(Dudley, Perkins, and Gine, 1975). Jowett and Robin 
(1988) give empirical methods for statistical evalu- 
ation of peak and trough densities. 

COUNTING ELEMENT SIZE AND SAMPLE SIZE 

A primary benefit of Kamb’s method is that it 
reduces the influence of sample size by differing the 
counting element size [Eq. (7)]. Kamb selected a 
binomial model with E = 3a to define this relation- 
ship. However, other functions are possible. The use 
of a counting circle with an area i/n times the 
projection area has been suggested (Flinn, 1958; 
Starkey, 1976). Procedures for determining an opti- 
mal counting element size are available (Ramsden 
and Cruden, 1979; Schaeben, 1982, 1986; Diggle and 
Fisher, 1985). Kamb’s approach does not provide 
necessarily such an optimal density estimate. In par- 
ticular, as shown in the examples, it may over-smooth 
distributions with strong preferred orientations. 
Changing the binomial model will alter the amount 
of smoothing (Dudley, Perkins, and Gine, 1975; 
Robin and Jowett, 1986). The following modifi- 
cations therefore are suggested for subjective control 
of the contouring process. 

If the number of standard deviations defining the 
expected count for a uniform distribution is allowed 
to differ, so that E = ka where k is the expected count 
in standard deviations, then Equations (6) and (7) 
become 

p =k*/(n +k*) (8) 

r = kR/(n + k 2)‘12. (9) 

Note that, for models where E = 30, E = 2a, and 
E = la, a count of 0 will differ from the expected 
count by 3, 2, or I SDS, an increasingly smaller 
departure. Selecting a lower k gives a smaller count- 
ing element, more localized density estimates, and less 
smoothing. 

Figure 1 illustrates the effect of sample size on the 
expected distribution of counts in a random sample 
from a uniform distribution. These statistics apply 
only to arbitrary, prospectively selected counting 
areas (Dudley, Perkins, and Gine, 1975). The 
Schmidt and related 1% methods set the probability 
to 0.01 regardless of sample size. This generally is too 
small, giving, for example, an expected count of 
0.50 f 0.70 for a sample of 50 points [E _t 0, Eqs. (I) 
and (2)]. A sample size of 99 is required before 
E = la, 396 for E = 20, and 891 for E = 30. In 
contrast, the standard Kamb method gives an ex- 
pected count of 7.63 f 2.54 (Fig. 1). 
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Figure 1. Probability distributions illustrating effect of sample size on probability of obtaining different 
counts for random sample of uniform distribution. E is expected count for Kamb method. 1% model 
represents Schmidt method. Six curves in each diagram are for sample sizes: IO, 50.99, 396,891, and 2000. 

As illustrated in the examples, for data sets that 
clearly deviate from a uniform distribution, models 
with E = 20 or E = la may improve the resolution of 
features, while limiting the effect of sample size. For 
weak fabrics a higher degree of smoothing may be 
obtained by increasing the expected density. 

COUNTING ON THE SPHERE 

When estimating density it is necessary to deter- 
mine the number of points that lie within a counting 
element on the surface of a sphere. This can be 
approximated by using counting circles on a projec- 
tion, but counting directly on the sphere is more 
accurate and computationally simpler (Warner, 
1969). The area of a spherical cap on a unit radius 
sphere is 

a =2n(l -cosO) (10) 

where 0 is the semiapical angle of the cone defining 
the cap. For directed data distributed on a unit sphere 
of area 471 this gives 

p = a/A = (1 - cos 0 )/2 (11) 

case =(n -k2)/(n +k*) (12) 

and for axial data distributed on a unit hemisphere of 
area 271 

p =a/A = I -costI (13) 

coso =n/(n +k?). (14) 

Similar equations are given by Robin and Jowett 
(1986). 

For any desired location on the sphere, the number 
of data points that fall within the angular distance 0 
can be counted by computing dot products, taking 
the absolute values for axial data. The complexity 
and inaccuracy of the double circle algorithm used in 

hand contouring are unnecessary. 

WEIGHTING FUNCTIONS 

A simple tally of points within counting elements 
results in marginally satisfactory contours. Decreas- 
ing the grid spacing helps to bring out additional 
maxima by increasing the resolution of the contours, 
but tends to create jagged contours. The problem is 
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that the density estimate at a point must be made over 
a finite area. In standard counting each data point 
within an element is assigned a weight, w, of I, 
whereas a weight of zero is given to all points outside. 
This is the step function 

w=l (x <a) (15) 

taken over the area of the spherical cap, a, where x 
is the area of a cap centered at the same location with 
the counted point on its perimeter. A simple inverse 
area weighting function is 

w = 2(1 -x/a) (x < a). (16) 

A higher degree of smoothing is given by the function 

w = 3(1 - x/a)2 (x < a) (17) 

which gives an inverse area squared weighting (Fig. 
2). These are analogous to inverse distance weighting 
used in map contouring, where the influence of a data 
point falls off with distance from a node (Davis, 1986, 
p. 366368), and act as filter operators for convolu- 
tion of the data (Kalkani and Von Frese, 1982). Each 
of these functions has a volume equal to a when 
integrated over the cap area, so the expected density 
is not altered. This was confirmed empirically in 30 
tests on five geologic data sets with sample sizes from 
38 to 957; the average point counts on 25 x 25 grids 
were 0.99 + 0.01 of the nonsmoothed grid counts. 

An exponential weighting function, based on a 
spherical Gaussian or Fisher distribution, has been 
applied to Kamb’s method (Robin and Jowett, 1986). 
It is a model of an ideal unimodal distribution and 
uses all points over the sphere. In general it will have 
a greater smoothing effect than Equations (16) and 
(17) (Fig. 2). This and other smoothing techniques are 
discussed by Ramsden and Cruden (1979), Kalkani 
and Von Frese (1980, 1982) Robin and Jowett 
(1986) and Charlesworth and others (1989). 

“n 

Angle from Node 

Figure 2. Weighting functions for smoothing density esti- 
mates calculated for p = 0.01. A-standard step function; 
B-inverse area; C-inverse area squared; D-exponential. 
Examples of effect of these functions are shown in Figure 3. 
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Figure 3. Contoured density diagrams illustrating effect of 
weighting functions of Figure 2. A-no smoothing (step 
function); B-inverse area; C-inverse area squared; D-x- 
ponential. I I2 c-axis orientations in ice (from Kamb, 1959) 
contoured using Kamb method with E = 30. Contour inter- 

val is 20 beginning at 20. 

The effect of these functions is illustrated in Figure 
3 with a set of 112 c-axes in ice (digitized from fig. 7 
of Kamb, 1959; 13 of the 125 points could not be 
resolved). All diagrams are lower hemisphere equal 
area projections (except as noted in fig. 8); this data 
set has up at the top, all others have north at the top. 

GRIDDING AND CONTOURING 

In the gridding algorithm used here, the nodes of 
a regular square grid are back-projected onto the 
sphere. This gives a coverage greater than one full 
hemisphere allowing contours to be extended to the 
edge of the projection, where they are clipped. After 
weighted counts are made at each node the grid is 
preprocessed for contouring. Because the point count 
is a noncontinuous variable, and the best estimate of 
a contour lies halfway between consecutive values, 
0.5 is subtracted from each total. For example, a 
contour line for a density of 0 will pass halfway 
through two nodes of count values 0 and 1, rather 
than through the first node. The grid values then are 
normalized to 1 SD. 

The contour lines are drawn by linear interpolation 
through the grid. Any errors in contour location 
resulting from interpolation are confined between the 
nodes; a reasonably fine grid spacing will minimize 
these errors. Numerous other gridding and contour 
interpolation methods, including the use of poly- 
nomial fitting and alternate grid geometries, have 
been used (e.g. Kalkani and Von Frese, 1979; Tocher, 
1979; Chaio, 1985; Diggle and Fisher, 1985; Yates, 
1987; Charlesworth and others, 1989). 
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Figure 4. Data (as in Fig. 3) with weak maxima contoured using methods described in text. Diagrams 
A-H use Kamb contouring with contour intervals of 2~. A, &methods analogous to hand contouring; 
C, D, E-inverse area squared smoothing; F, G, H+xponential smoothing; I-method of Diggle and 
Fisher (1985), contours in percent of estimated probability density function; J-Schmidt method, contours 

in percent per I% area: K-scatter plot of raw data. 

EXAMPLES 

Three data sets displayed in Figures 4, 5, and 6 
illustrate a range of geologic distributions. A triangu- 
lar fabric plot (Vollmer, 1989, 1990) of the three data 
sets illustrates the variation of fabric types among the 
three data sets (Fig. 7). All diagrams, except A, B, 
and J, were created with a 30 x 30 grid. 

Diagrams A-H were generated using variations of 
the Kamb method. A and B were generated using 
double counting circle algorithms on the projection 
plane with a grid spacing equal to the counting circle 
radius. These are equivalent to hand-contoured dia- 
grams. C, D, and E use modified Kamb methods with 
E = 30, E = 2~, and E = lo respectively and inverse 
area squared weighting. F, G, and H are similar, but 
with exponential weighting. Note that inverse area 
squared weighting gives greater resolution and less 
smoothing, whereas exponential weighting gives 
smoother, more averaged contours. 

Diagram I was generated using the probability 
density function estimation algorithm of Diggle and 
Fisher (1985). Estimation of the concentration par- 
ameter was done using cross-validation log-likeli- 
hood maximization, as the data sets are multimodal 
and asymmetric. The gridded values are estimates of 
a probability density function, with contours equally 
spaced over the range of grid values. J was generated 
using the Schmidt method and an algorithm similar 
to that used for diagrams A and B. 

Diagrams C-H, and K (also A and B in Fig. 8) 
were generated using the Sphere Contour program. 
Diagrams A, B, and J were generated using an early 
version of the program Orient (by Vollmer, see 
Allmendinger and others, 1991). Diagram I (also C in 
Fig. 8) was generated with an unpublished program 
(by Vollmer) using Diggle and Fisher’s (1985) algor- 
ithm. Final drafting and layout was done in Auto- 
CAD. 
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Example 1 -weak maxima Example 3-girdle 

The data in Figure 4 (from Kamb, 1959; same data 
as in Fig. 3) have a large amount of scatter, and broad 
weak maxima. The characteristics are well-defined 
using the Kamb method with E = 30. Kamb (1956) 
categorized this fabric as a single broad maximum as 
it appears in A (compare with fig. 7 of Kamb, 1959). 
However, it is clear that two significant maxima are 
present. 

Density diagrams of 56 normals to bedding planes 
from a series of asymmetric folds in Ordovician 
graywacke (from Vollmer, 1981) are shown con- 
toured as axial data in Figure 6. This data set has a 
significant girdle pattern with a point maximum. As 
in the previous example, a reduction of the expected 
count emphasizes finer details, giving a narrower 
girdle pattern. 

E.uample 2-bimodal 

Figure 5 shows a set of 38 normal fault striations 
(from Angelier, 1979), contoured as axial data. The 
unmodified Kamb method, shown in A, fails to bring 
out the two maxima partially because the small 
sample size resulted in a large counting circle and a 
coarse grid, giving poor resolution. For this relatively 
strong double maxima fabric, a reduction of the 
expected count more strongly emphasizes finer details 
of the data set. 

Kamb 

E=3a 
2a,4a,... 

E=2a 
la,3a,... 

Example 4-directed data 

Figure 8 shows lower and upper equal area projec- 
tions of magnetic remanence measurements from 
Precambrian volcanics (from Schmidt and Embleton, 
1985, as tabulated in Fisher, Lewis, and Embleton, 
1987, table B6). These data are unit vectors and 
therefore are contoured on the sphere rather than the 
hemisphere. For diagram C the method of Diggle and 
Fisher (1985) was used, with the concentration par- 
ameter (13.62) selected by cross-validated log-likeli- 
hood maximization. The contours derived using the 
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Figure 5. Bimodal data set of 38 normal fault striations (from Angelier. 1979) contoured as axial data 

using methods as in Figure 4. 
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Figure 6. Girdle distribution of 56 poles to bedding planes from series of asymmetric folds (from Vollmer, 
1981) contoured as axial data using methods as in Figure 4. 

three methods differ in resolution and smoothness, 
albeit the overall forms are similar. 

THE SPHERE CONTOUR PROGRAM 

With the Sphere Contour program the user can 
select options interactively, preview a plot on the 

Random 
Figure 7. Triangular fabric plot (Vollmer, 1989, 1990) 
showing range in fabric types used in Examples I, 2. and 3. 

Corresponding data sets are plotted in Figures 4-6. 

screen, and then output a plot to a computer-aided 

drafting (CAD) file. Selected options can be saved to 
a configuration file, and additional plots can be 
generated automatically by entering data file names 
on the command line. Data are read from a text file 
in one of four formats: strike (strike, dip, dip octant), 
dip azimuth (dip, dip azimuth), line (plunge, trend 
or inclination, declination), or spherical polar 
(colatitude, longitude). The program will rotate 
the data up to sixteen times about the coordinate 
axes. 

As written, the program uses DOS screen graphics 
and AutoCAD DXF files. For convenience in draft- 
ing, various parts of the drawing are placed on 
different layers in the DXF file. The file can be 
imported directly into AutoCAD using the Auto- 
CAD DXFIN command. The device dependent 
graphics routines are confined to three procedures: 
InitGraphic, DoneGraphic, and LineOut, making 
adaptation to other graphics devices and file formats 
straightforward. Global constants beginning with 
“dev” control the transformation from millimeters to 

CAGkO ?I I-” 
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2a,4a,... 

2o,4a,... 

Probability Density 
10%,20%,... 

Figure 8. Lower (left) and upper (right) hemisphere equal 
area projections of 107 measurements of magnetic rema- 
nence from Precambrian volcanics (from Schmidt and Em- 
bleton, 1985, as tabulated in Fisher, Lewis, and Embleton, 
1987, table B6) contoured as vectorial data. A-Kamb 
method with area squared smoothing, contour interval of 20 
beginning at 20; B-as A, with exponential smoothing; 
C-method of Diggle and Fisher (1985). with contour 

interval of 10%. 

device coordinates. Nonstandard (non-ANSI) C pro- 
cedures are kept to a minimum, and are commented. 

DISCUSSION 

Although Kamb’s method does not necessarily 
provide optimal density estimates, it is a simple and 
useful graphical technique for the preliminary exam- 
ination of orientation data. With the ability to subjec- 
tively control the magnitude of smoothing using the 
methods described here, it should suffice for many 
studies. Methods for evaluating the statistical signifi- 
cance of contours are available (Jowett and Robin, 
1988). Other more complex techniques for estimating 
the probability density function of the population 
(Schaeben, 1982, 1986; Diggle and Fisher, 1985) also 
should be considered. 

From the examples given here, it is clear that a 
wide range of density diagrams can be generated from 
any given data set. As noted, many other techniques 
and contouring programs are available. Even a cur- 
sory examination of current geological literature re- 
veals that the methods used to produce density 
diagrams may be described inadequately. It thus is 
recommended strongly that the contouring pro- 
cedures, weighting methods, contour levels, and com- 
puter programs be stated clearly for all published 
diagrams. Whenever feasible, the contour lines 
should be superimposed upon a scatter plot of the 
original data, allowing the reader to evaluate visually 
their significance. To allow comparison of data sets 
with the results of other studies, contouring methods 
that are influenced strongly by sample size should be 
avoided. 

Acknowledgment-The author thanks Donal M. Ragan 
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Sphere Contour Program Listing 

Program : Sphere Contour 
File : sc0n.c 
Purpose : Contoured density diagrams of spherical orientation data 
Language : C 
Compiler : Borland Turbo C++ 1.00 
Author : F.W. Vollmer 
Update : 6/92, 7/93, 9/93. 5/94 

Portability Notes - Non-ANSI Code 
_____________________---____----_ 

cl rscr(> clears screen in text mode 
MAXPATH maximum characters in DOS filename 
ChangeFi 1 eExt() - changes extension of a DOS filename 
DoneCraphi cs() - shuts down graphics system 
Ini tCraphi cs() - initializes graphics system 
Li neOut() - draws line in mm units 

l / 

#include <conio.h> /* Turbo C++ Library: Console IO */ 
#include <di r . h> /* Turbo C++ Library: LXX directories */ 
#include <graphics. h> /* Turbo C++ Library: BGI graphics 
#include <ctype. h> /* ANSI C Libraries... 
+i ncl ude <math. h> 
#include <stdio.h> 
#include <stdlib.h> 
Ui ncl ude <string . h> 
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char szInfo[] = 
"SPHERE CONTOUR\n" 
"______________\n" 
"Creates contoured density diagrams of spherical orientation data.\n" 
"Output is to graphics screen or AutoCAD DXF file. Data must be entered\n" 
"into a text f!le in one of the following formats:\n" 
::\n" 

FORMAT COMPONENTS EXAMPLE\n" 
11 Strike strike, dip, dip octant 190 60 E\n" 
w Dip dip, dip azimuth 60 lOO\n" 
1: Line plunge, trend (inclination, declination) 30 280/n" 

Polar colatitude, longitude 120 170\n" 
"\n" 
"Angles are in degrees. Strike, dip azimuth and trend are measured\n" 
"clockwise from Y (north). Longitude is measured anticlockwise from X\n" 
"(east). Dip and plunge are measured downward from the XY plane. Colatitude\n" 
"is measured from 2 (up). Each data point must occupy one line, with\n" 
"components separated by spaces or commas. For automatic mode, save desired\n" 
"options, then enter the data file name on the command line.\n" 
"\n" 
"F.W. Vollmer, 1993-1994\n" 
"Department of Geological Sciences, SUNY New Paltz, New York 12561\n" 
"Internet: vollmerf@npvm.newpaltz.edu\n" 
"\n" 
"Press ENTER to continue..."; 

#define ENTER '\n' /* enter key */ 
#define DTOR 0.01745329252 /* degrees to radians 
#define RTOD 57.2957795131 /* radians to degrees 
#define MAXCRID 85 /* maximum number of grid nodes 

;; 

#define MAXSTR 
#define WIDTHSTR 

a0 /* maximum size of user input string */ 
48 /* format width for prompt strings */ 

#define round(x) (int)floor((x)+O.S) 
double sqrarg; 
#define sqr(x) ((sqrarg=(x)) == 0.0 ? 0.0 : sqrarg'sqrarg) 

enum boolean 
enum datatypes 
enum devices 
enum formats 
enum hemispheres 
enum methods 
enum projections 
enum plots 
enum symbols 
enum smoothing 

{FALSE, TRUE}: 
{AXES, VECTORS}; 
{BCI, DXF}; 
{STRIKE, DIP, LINE, POLAR]; 
{LOWER, UPPER]; 
(KAMB. SCHMIDT): 
IEQUALAREA, STER~XXAPHIC): 
{SCATTER, CONTOUR, BOTH}; 
{NOSYM, CROSS, TRIANGLE, SQUARE, HEXAGON]; 
{NOSMOOTH, INVAREA, INVAREASQR, EXPONENTIAL]; 

typedef struct { 
double ci; 
int device; 
int dataType; 
int format; 
int hemi; 
int maxdata; 
int method: 
double minimum; 
double netX; 
double netY; 
int nCrid; 
int nRot; 
int plot; 
int proj; 
double radius: 
double rot[lbj; 
int rotAxis[16]; 
double sigma; 
int smooth; 

int symbol; 

double symSize; 
) optiontype; 

typedef double point[3]; 

holds user options 
contour interval 
BCI or DXF 
AXES or VECTORS 

l i 

STRIKE or DIP or PLUNGE 
LOWER or UPPER 

;; 

maximum number of data points */ 
KAMB or SCHMIDT */ 
minimum contour 
x coordinate of center 
y coordinate of center 
number of grid nodes 
number of rotations 
SCATTER, CONTOUR or BOTH 
EQUALAREA or STEREOGRAPHIC 
radius 
rotation angles 
rotation axes, X=0, Y=l, Z=2 
binomial sigma value 
NOSMQOTH, INVAREA, INVAREASQR 
or EXPONENTIAL 
NOSYM, CROSS, TRIANGLE, 
SQUARE or HEXAGON 
symbol size in mm 
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/*** Global Variables *** / 

optiontype opt; 
point *data: 
int nData: 

/* holds user options 
/* data direction cosines :; 
/* number of data ooints */ 

double grid[MAXGRID][MAXCRID]; I* the grid ’ 
FILE 'dxf; /* DXF text file 

double dev_xRatio; /* X device/mm ratio, negative 
double dev_yRatio; /* Y device/mm ratio, negative 
double dev_xOrigin; /* left X device coordinate 
double dev_yDrigin; /* bottom Y device coordinate 

char data_file[MAXPATH]; /* data file name 
char out_file[MAXPATH]; /* DFX file name 

/*** User Input l **/ 

/* CetKey - gets a character from keyboard. */ 
in:hE;t:ey(void) { 

:;CricharO ; 
= '\n'> getchar( /* get linefeed */ 

return c; 
] 

/* CetInt - gets a prompted integer from user. */ 
void CetInt(char l pint, int l i) { 

char buf[MAXSTR]; 
int j; 

for right origin */ 
for top origin */ 

l / 
*/ 

printf("%-*s X12d: ",WIDTHSTR,pmt,*i); 
fgets(buf,MAXSTR,stdin); 
if (sscanf(buf,"%d",&j) =P I) *i = j; 
] 

/* CetDbl - gets a prompted double from user. */ 
void CetDbl(char *pmt, double *x) { 

char buf[MAXSTR]: 
double y; 
printf("%-•s %12g: ".WIDTHSTR,pmt,*x); 
fgets(buf,MAXSTR,stdin); 
if (sscanf(buf,"%lf",&y) == 1) *x = y; 
] 

/* CetStr - gets a prompted string from user. */ 
int CetStr(char *pmt. char *s) { 

char buf[MAXSTR]; 
char tCMAXSTR1; 
printf("%-*s X12s: ",WIDTHSTR,pmt,s); 
fgets(buf,MAXSTR,stdin); 
if (sscanf(buf,"%s",t) == 1) { strcpy(s,t); return TRUE; } 
return FALSE: 
1 

/* GetChoice - sets a promoted selection from user. Returns number of 
I* response in &ring,.0 is first choice. */ 
int CetChoice(char l pint, char *choices, int *i> ( 

char l r,c; 
printf("X-•s X12c: ",WIDTHSTR,pmt,choices[*i]); 
c = toupper(CetKey()); 
r = strchr(choices,c); 
if (r) l i = (int)(r-choices); 
return *i. 
I ’ 

points to first occurance */ 
offset into string */ 

/* Error&g - prints error message, with integer if i > 0. */ 
void ErrorMsg(char l s, int i) { 

if (i > 0) fprintf(stderr."%s %d. Press ENTER...",s.i); 
else fprintf(stderr."%s. Press ENTER...",s); 
CetKey(); /* wait */ 
1 

/* ChangeFileExt - changes a DOS file name extension. */ 
void ChangeFileExt(char *fnew, char *fold, char *fext) { 

char drive[MAXDRIVE],dir[MAXDIR],file[MAXFILE],ext[MAXEXT]; 
fnsplit(fold.drive,dir,file,ext); 
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fnmerge(fnew,drive,dir,file,fext); 
1 

/*** Rotations ***/ 

/* maxisrot3 - calculates 3D rotation matrix of theta radians about */ 
/* coordinate axis (0=X, l=Y, 2~2). l / 
void maxisrot3(int axis, double theta, double t[3][3]> { 

int al,a2,i,j; 
double c,s; 
for (i-0; i<3; i++) for (j=O; j<3; j++) t[i][j] = 0.0: 
t[axis][axis] = 1.0; 
al = (axis+l) % 3; 
a2 = (al+l> % 3; 
c = cos(theta); s = sin(theta); 
t{al][al] = c; t[a2][a2] = c; 
t[al][a2] = -s; t[a2][al] = s; 
3 

/* x=012 y=120 a=201 */ 

/* mmult - multiplies 3x3 matrix x 
void mmult3(double x[3][3], double 
int i,j,k; 

by Y. */ 
yC31C31, double 2[31[33) { 

for (i=O; i<3; i++) for (j=O; j<3; j+t) { 
z[i][j] = 0.0; 
f"r (k=O; k<3; k++) z[ilCjl += xCilCk1 * yCklCj1; 

3 

/* CetRotMat - builds the rotation matrix from user data. l / 
void CetRotMat(double r[3][3]) { 

int i.j,n; 
double s[31[33,t[33[31; 
for (i=O; i<3; i++) { for (j=O; j<3; j++) r[i][j] - 0.0; r[i][i] = 1.0; ) 
for (n-0; n<opt.nRot; n++> { 

for (i=O; i<3; i++) for (j=O; j<3; j++> t[i][j] = r[i][j]; /* copy l / 
maxisrot3(opt.rotAxis[n],opt.rot[n]*DTOR,s); 
mmult3(s,t,r); 
] 

/*** Conversions l **/ 

/* OctantVal - converts an octant string to degrees. l / 
int OctantVal(char l s, double *r) ( 

int i; 
for (ilo; s[i] != '\O'; i++) toupper(s[i]); 
if (strcmp(s,"N") == 0) l r = 0.0; 
else if (strcmp(s,"NE") -= 0) l r - 45.0; 
else if (strcmp(s."E" > == 0) l r = 90.0; 
else if (strcmp(s."SE") == 0) *r = 135.0: 
else if (strcmp(s,"S" j -= oj l r I 180.0; 
else if (strcmp(s,"SW") I= 0) *r = 225.0; 
else if (strcmp(s,"W" ) == 0) *r = 270.0; 
else if (strcmp(s,"NW") =I 0) *r I 315.0; 
else return FALSE; 
return TRUE: 
] 

/" PTTODC- converts plunge, trend in degrees to XYZ direction cosines. */ 
void PTToDC(double p, double t, double dc[3]) { 

double cp; 
p = p*DTOR; t = t*DTOR; cp = cos(p); 

;Iccol 
= cp*sin(t); dc[l] - cp*cos(t); dc[Z] = -sin(p): 

/* SphereProject - projects direction cosines to Cartesian coordinates of */ 
/* unit spherical projection. l / 
int SphereProject(double dc[3], double l x, double l y, 

int proj. int hemi, int datatype) { 
int i; 
double f,t[3]; 
for (i=O; i<3; i++) t[i] = dc[i]; 
if (hemi -= LOWER) t[2] - -t[2]; 
if (datatype =- AXES & t[2] c 0.0) for (i=O; i<3; i++) t[i] = -t[i]; 
if (t[2] < 0.0) return FALSE; 
if (proj == STEREDCRAPHIC) f = l.O/(l.O+t[2]); 
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else f - l.O/sqrt(l.O+t[2]); 
‘x - f.t[0]; l y = f't[ll; 
return TRUE; 
] 

/* SphcreBProject - back projects Cartesian coordinates of unit spherical l / 
/* projection to direction cosines. l / 
void SphereBProject(double x, double y, double dc[3], int proj, int hemi) { 

double r2,f; 
r2 - <x’x>+<Y’Y> : 

if (pioj i= 
-_ _- 
STEREOGRAPHIC) { dc[2] = (l.O-r2)/(1.O+r2); f - l.O+dc[2]; ) 

else { f = sqrt(fabs(2.0-r2)); dc[2] = l.O-r2; ] 

dcCO1 - f*x; dc[l] - f'y; 
if (hemi = LOWER) dc[Z] = -dc[2]; 
I 

/*** System Dependent Graphics l **/ 

/* InitCraphics - initializes graphics system. l / 
int InitCraphics(char 'exepath) { 

char path[MAXPATH].drive[MAXDRIVE],dir[HAXDIR].file[MAXFILE].ext[HAXEXT]; 
int grmode=O,grdriver=DETECT; 
if (opt.device -- DXF) { 

if ((dxf - fopen(out_file,"wt")) -= NULL) { 
ErrorMsg("Error opening DXF file",-1); 
return FALSE; 
] 

printf("Plotting to Xs...",out_file); 
fprintf(dxf," O\nSECTION\n 2\nENTITIES\n"): 
1 

l l;e { 
fnsplit(exepath,drive,dir,filc,ext); /* get exe path 
fnmerge(path,drive,dir."",""); /* driver is in exe directory :; 
initgraph(&grdriver,&grmode,path); /* load device driver _ l / 
if (graphresult !- gr0k) { 

ErrorMsg("Craphics error, required BCI driver file not found",-1); 
return FALSE; 
3 

setgraphmode(getmaxmodeO); 
setfillstyle(SOLID_FILL,getmaxcolor()); 
bar(O.O,getmaxx(),getmaxy()); 
setcolor(0); 
dev_xRatio = 2.5 l (getmaxx()+1.0)/640.0; /* use 14" VGA as model, l / 
dev_yRatio = -2.5 l 

dev_xOrigin = 0.0; 
(getmaxy()+1.0)/480.0; ;* ;tf:as 2.5 pixels/mm 

dev_yOrigin = getmaxyo; 1: bEttom 
) 

return TRUE; 
) 

/* DoneGraphics - close down graphics system. l / 
void DoneCraphics(void) { 

if (opt.device -- DXF)~{ 
fprintf(dxf," O\nENDSEC\n O\nEOF\n"); 
fclose(dxf); 
printf("done\n"); 
1 

elie { 
CetKey(); 
closebraph(); 

/* wait l / 

I 
I 

/* LineOut - output 
/* the layer output 
void LineOut(double 

line to graphics system. The string "layer" specifies l / 
to in a DXF file. l / 
xl, double yl, double x2, double y2, char *layer) { 
DXF) if (opt.device -- 

fprintf(dxf," O\nLINE\n 8\n%s\n lO\n%g\n 20\nXg\n ll\n%g\n 2l\n%9\n”, 
layer,xl,yl,x2,y2); 

else { /* SCREEN l / 
xl - xl*dev_xRatio+dev_xOrigin; yl - yl*dev_yRatio+dev_yDrigin; 
x2 - x2*dev_xRatio+dev_xOrigin: y2 = y2*dev_yRatio+dev_yOrigin; 
line(round(xl),round(yl).round(x2),round(y2)): 
3 

I 
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/*** Non-System Dependent Graphics l **/ 

/* LineCircleInt - determine intersection parameters for line segment and l / 

/* circle. Adopted from Rankin 1989, p.220. '/ 
int LineCircleInt(double xl, double yl, double x2. double y2, 

double xc, double yc, double r, double 'tl, double l t2) C 
double t,a,b,c,d,disc,dxc,dyc,dx,dy; 
et1 = l t2 = -1.0; 
dx = x2-x1; dy - y2-yl; dxc = xl-xc; dye - yl-yc; 
a - dx*dxc + dy*dyc; b I dx*dx + dy*dy; c = dxc*dxc + dyc*dyc - r'r; 
disc - a*a - b*c; 
if (disc > 0.0 8& fabs(b) > le-6) { 

d - sqrt(disc); 
l t1 = (-a + d)/b; l t2 = (-a - d)/b; 
if (*tl > l t2) { t = l tl; l tl - l t2; l t2 - t; ) 
return TRUE; 
1 

return FALSE; 
1 

/* ClipLineCircle - clip line segment to circle. l / 
int ClipLineCircle(double xc, double yc, double r, 

double *xl, double l yl, double *x2. double l y2) { 
double xO,yO,tl,t2; 
if ((*xl < xc-r &&I *x2 =z xc-r) II (*xl > xc+r MC *x2 > xc+r) II 

(*yl < yc-r &% l y2 < yc-r) II (*yl > yc+r ddr l y2 > yc+r)) return FALSE; 
if (!LineCircleInt(*xl,*yl,*x2,*y2,xc,yc,r,&tl,&t2)) return FALSE; 
if (t2 < 0.0 II tl > 1.0) return FALSE; 
x0 = 'x1; yo - l y1; 
if (tl B 0.0) { *xl = x0 + (*x2-x0) l tl; l yl = y0 + (*y2-y0) l tl; } 
if (t2 < 1.0) { *x2 = x0 + (*x2-x0) l t2; l y2 = y0 + (*y2-y0) l t2; ) 
return TRUE: 
1 

/* DrawCircle - output a circle. Adopted from Rodgers and Adams, 1976. p. 216. l / 
void DrawCircle(double x, double y, double radius, int n, char* layer) ( 

double ainc,cl,sl,xl.x2,yl,yZ; 
int i; 
ainc = 2.O*M_PI/n; 
Cl = cos(ainc); sl = sin(ainc); 
xl = x + radius: yl = y; 
for (i-0; i<n; i+) { 

x2 - x + (xl-x)*cl - (yl-y)*s1; y2 = y + (Xl-x)*sl + (yl-y)*c1; 
LineOut(xl.yl.x2,y2,layer); 
xl = x2; yl = y2; 
1 

1 

/* CLineOut - output a line segment clipped to current projection. l / 
void CLineOut(double xl, double yl, double x2, double y2, char *layer) { 

if (ClipLineCircle(opt.netX,opt.netY,opt.radius,&xl,&yl,&x2,&y2)) 
LineOut(xl,yl,x2,y2,layer); 

1 

/* DrawSymbol - output a symbol clipped to current projection. l / 
void DrawSymbol(double x, double y, int symbol, double size, char *layer) { 

double w.h,l; 
switch (symbol) { 

case CROSS: 
w = O.S*size; 
CLineOut(x,y-w,x,y+w,layer); CLineOut(x-w,y,x+w,y,layer); 
break; 

case TRIANGLE: 
w - O.S*size: h = w*O.S*sart(3.0): 
CLineQut(x-wiy-h,x+w,y-h.iayer); CLineOut(x+w,y-h,x,y+h,layer); 
CLineOut(x,y+h,x-w,y-h.layer): 
break; 

case SQUARE: 
h = O.S*size; 
CLineOut(x-h,y-h,x+h.y-h,layer): CLineOut(x+h,y-h,x+h,y+h.layer); 
CLineOut(x+h,y+h,x-h,y+h,layer); CLineOut(x-h,y+h,x-h,y-h,layer); 
break; 

case HEXACON: 
w I O.S*size; h I w*2.0/sqrt(3.0); 1 - O.S*h; 
CLineOut(x,y+h,x-w,y+l,layer); CLineOut(x-w,y+l,x-w,y-1,layer); 
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CLincDut(x-w,y-1 ,x,y-h,laycr); CLincOut(x,y-h,x+w,y-1 ,layer); 
;:l$Dut(x+w,y-1 ,x+w,y+l ,layer); CLineOut(x+w,y+l ,x,y+h.layer); 

/* OrawNetFrame - output projection frame. l / 
void OrawNetFrame(char ‘1 ayer) ( 

double tickSize - 3.O,x,y; 
DrawCircle(opt.netX,opt.netY,opt.radius,100,l,yer); 
x = opt.netX+opt.radius; y - opt.netY; 
LineDut(x,y,x+tickSire.y,layer); 
x - opt.netX-opt.radius; 
LineDut(x.y,x-tickSize,y,laycr); 
x - opt.netX; y = opt.netY+opt.radius; 
LineOut(x,y,x,y+tickSize.layer); 
y - opt.netY-opt.radius: 
LineOut(x,y,x,y-tickSize,layer); 
] 

/*** Cridding l **/ 

/* CridKamb - calculates grid of density estimates from direction cosine l / 
/* data. The grid is preprocessed for contouring by subtracting 0.5 
/* from each count, and normalizing to the contour units. :; 

void GridKamb( 
double x[][3], int nData, /* dir cos data matrix l / 
double sigma, /* sigma value ‘/ 
int datatype. int projection. int hemisphere, /* projection type 
double grid[MAXCRID] [MAXGRID], int nGrid, /* the grid :; 

double l zMin, double l zMax) 
c 

/* min and max of grid l / 

double y[33 ,a,alpha,d,dx,f ,xg,yg,zUnit; 
int i,j,k; 
switch (opt .nethod) { 

case SCHMIDT : 
a = 0.01; 
zUnit = nData’0.01; 
break; 

default /* K/WE */ : 

/* fractional area 
/* unit - l% 

a = (signa*signa)/(nData+sigma*sigma) ; /* fractional area 
zUnit = sqrt(nData*a*(l.O-a)); /* unit = 1 siama 
break: 

) 
if (datatype -- VECTORS) alpha - l.O-2.O.a; 
else /* AXES l / 

/* half apical angle 
alpha - 1.0-a; 

switch (opt. smooth) ( 
case INVAREA : 

f - 2.0/(1.0-alpha); 
break: 

/* weighting factor 

case INGAREASQR : 
f - 3.0/sqr(l.O-alpha): 
break; 

. . 

case EXPONENTIAL : 
if (datatype == VECTORS) ( 

f - 1.0 + nData/(sigma*sigma); 
zUni t 
] 

- sqrt(nData*(f-1.0>/(4.O*f*f)): /* unit I 1 sigma 

else /* AXES l / ( 
f - 2.0*(1.0 + nData/(sigma*sigma)); 
zUni t - sqrt(nData*(f*O.S-l.O)/(f*f)); 
) 

break; 
) 

- 2 .O/(nCrid-1) ; /* node spacing 
% (i-0. i<nCrid; i+t) for (j-0; j<nCrid; j++) grid[i][j] 

= -1.6. 
- 0.0; 

8 (i=O*‘i<nCrid; i++) { 

% 
I -i 0. 

(j-6: ‘j<nCrid; j++) ( 
SphereBProject(xg,yg.y.projection.hcmisphere); 
for (k=O; kenData; k++) { 

d I yCOl*xCk] [o]+yCll*x[kl [l]+y[23*xCkl C21; /* dot product 
if (datatype -- AXES) d - fab, (d) ; 
switch (opt. smooth) { 

case EXPONENTIAL: 

45 
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grid[i][j] += exp(f*(d-1.0)); 
break; 

case INVAREA: 
if (d >- alpha) grid[i][j] += f*(d-alpha); 
break; 

case INVAREASOR: 
if (d >= alpha) grid[i][j] += f*sqr(d-alpha); 
break; 

default: 
if (d >- alpha) grid[i][j] += 1.0; 

] 

xg-+= dx; 
] 

*zMin = le30; *zMax = le-30; 
f = l.O/zUnit; 
for (i=O; i<nCrid; i++) for (j=O; j<nGrid; j++) { 

gridCilCj1 = (grid[i][j]-O.S)*f; /* normalize */ 
if (grid[i][j] > l zMax) *zMax = gridCilCj1; /* find min/max */ 
If (grid[i][j] < *zMin) *zMin - grid[i][j]; 

/*** Contouring ***/ 

/* Interpolate - determine 
int Interpolate(double xl, 

double *x. 

linear interpolation point between two nodes. */ 
double yl, double zl. double x2. double ~2. double z2. 

double dz,dzl,dz2,t; 
double iy, double *z> { 

dzl = *z-zl; dz2 = *z-z2: 
if (dzl == 0.0) {*x = xl: *y = yl; return TRUE;] 
if (dz2 == 0.0) f'x = x2; *y = y2; return FALSE:} 
if ((dzl > 0.0 8& dz2 > 0.0) II (dzl < 0.0 &% dz2 < 0.0)) return FALSE; 
dz = z2-z1; 
t = dzl/dz; 
*x = xl + (x2-x1) * t; *y = yl + (y2-yl) * t; 
return TRUE; 
] 

/* ContourGrid - output one contour level by linear interpolation among */ 
/* grid nodes. */ 
void ContourCrid( 

double xl, double yl, double x2, double y2, /* bounding rectangle */ 
double grid[MAXCRID][MAXCRID], int ng, int mg, /* the grid 
double level, char *layer) /* contour level 
r 

double dl,d2,d3,d4,dnx,dny,nx,ny,nxp,nyp; 
double gyl,x3,x4,y3,y4,z,zl,zz,z3,z4; 
int i,j,found; 
dnx = (x2-xl)/(ng-1.0): dny = (y2-yl)/(mg-1.0); 
z = level; 
gyl = Yl; 

= xl; 
Fir (i=O; i<ng-1; i++> { 

ny = gyl; 
nxp = nx + dnx; 
for (j=O; j<mg-1; j++) { 

nyp = ny + dny; 
zl = grid[i][j]; z2 = grid[i+l][j]; 
z3 = gridCi+llCj+ll; z4 = grid[i][j+ll; 
found = 0; 
if (Interpolate( nx,ny,zl,nxp,ny, z2,&xl,&yl,&z)) found += 1; 
if (Interpolate(nxp,ny,z2,nxp,nyp,z3,&x2,&y2,&z)) found += 2; 
if (Interpolate(nxp,nyp,z3,nx,nyp,z4,&x3,&y3,&z)) found += 4; 
if (Interpolate( nx,nyp,zrl,nx,ny, zl,&x4,&y4,&z)) found += 8; 
switch (found) C 

case -3: tLin~Out(xl,yl,x2,y2,layer); 
case 5: CLineOut(xl.yl.x3.y3.layer); 
case 9: CLineOut(xl,vl.x4.v4.laver): 
case 6: CLineOut(x2;y2~~3;y3;layerji 
case 10: CLineOut(xZ,yZ,x4,y4,layer); 
case 12: CLineOut(x3,y3,x4,y4,layer); 
case 15: 

break: 
break: 
break; 
break; 
break; 
break: 

d1 = sqrt(sqr(xl-x2) + sqr(y1-y2)); d2 = sqrt(sqr(x2-x3) + sqr(y2-y3) 1; 
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d3 = sqrt(sqr(x3-x4) + sqr(y3-y4)); d4 = sqrt(sqr(xrl-xl) + sqr(y4-yl)); 
if ((dl+d3) < (dZ+d4)) { 

CLineOut(xl,yl,xZ,yZ,layer); CLineOut(x3.y3,x4,y4,layer); 
1 

else { 
CLineOut(xZ,yZ,x3,y3,layer); CLineOut(xl,yl,x4,y4,layer); 

_ 3 

ny = nyp; 
] /* for j */ 

nx = nxp; 
} /* for i */ 

/*** Main Procedures l **/ 

/* LoadDataFile - loads data from file converting to direction cosine */ 
/* matrix. Returns FALSE on format error. l / 
int LoadDataFile(double x[][3], int *n, FILE *f) { 

char buf[MAKSTR]; 
double ov,p,t,d[3] ,rC3lC31; 
char OS [MAKSTR]; 
*n = 0; 
CetRotMat(r); 
while (fgets(buf,MAXSTR,f)) { 

if (buf[O] == '\O') continue; 
if (opt.format == STRIKE) { 

if (sscanf(buf."%lf Xlf %s".&t,&p,os) != 3) 
if (sscanf(buf,"%lf, Xlf, %s",&t,&p,os) !- 3) 

if (sscanf(buf,"%lf, Xlf %s",&t,&p,os) !- 3) return FALSE: 
p - 90.0-p; t = t-90.0; 
if (t < 0.0) t +r 360.0; 
if (!OctantVal(os.&ov)) return FALSE; 
if (fabs(ov-t) < 90.0) t += 180.0: 
) 

else { 
if (sscanf(buf,"%lf %lf",&p,&t) != 2) 

if (sscanf(buf,"%lf, %lf",&p,&t) != 2) return FALSE: 
if (opt.format == DIP) {p = 90.0-p; t += 180.0;) 
if (opt.format == POLAR) {p -= 90.0; t = 90.0-t;) 
1 

&oDC(p,t,d); 
xC*nlCOl = dCO1 * r[O][O] + d[l] * r[O][l] + d[2] * rCOlC21; 
xC*nlCll = dCO1 * rCllCO1 + dC11 * r Cl1 Cl1 + dC21 * r Cl1 El ; 
x[*n][2] = d[O] * r[2][0] + d[l] l r[2][1] + d[2] * r[2][2]; 
(*n)++: 
if (*n.== opt.maxdata-1) { 

ErrorMsg("Data array full at",opt.maxdata); 
return TRUE; 
) 

) 
return TRUE; 
) 

/* LoadData - loads data array. */ 
int LoadData(void) { 

FILE *f; 
nData = 0: 
if (!(f = fopen(data_file. "rt"))) { 

ErrorMsg("File not found",-1); 
return FALSE; 
I 

if (!LoadDataFile(data,&nData,f)) { 
ErrorMsg("Format error in line",nData+l); 
nData = 0; 
] 

fclose(f); 
return (nData > 0); 

/* SaveInit l / 
void SaveInit(void) 

f 

;ILE l f; 
if (!!(f - fopen("scon.ini", "wb"))) { 

fwrite(&opt,sizeof(opt),l,f); 
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:close(f): 
else ErrorMsg("Error writing file",-1); 
] 

/* GetOptions - gets data from user filling the options record "opt", */ 
/* "dathfile" and "outfile". */ 
int CetOptions(void) { 

int b,n; 
do E 

clrscro; 
printf("\nSPHERE CONTOUR\n"); 
printf("- ---__-_---_--\n"); 
if (CetStr("Enter data file name, or X to exit program",dathfile)) { 

if (data_file[O] == 'x' 11 dathfile[D] == 'X') return FALSE; 
ChangeFileExt(out_file,dathfile,".dxf"); 
1 

CetInt("Maximum number of data points (up to 32DDD)",&opt.maxdata); 
CetChoice("Data format (Strike/Dip/Line/Polar)","SDLP",&opt.format); 
CetChoice("Data type (Axes/Vectors)","AV",&opt.dataType); 
b = FALSE; 
if (CetChoice("Change projection details? (Y/N)","NY",&b)) C 

CetChoice(" Projection (Equal area/Stereographic)","ES",&opt.proj); 
CetChoice(" Hemisphere (Lower/Upper)","LU",&opt.hemi); 
CetDbl(" X coordinate of center in millimeters",&opt.netX); 
CetDbl(" Y coordinate of center in millimeters",&opt.netY); 
GetDbl(" Radius in millimeters",&opt.radius); 
] 

b = FALSE; 
ifGiE;;F:fice("Change data rotation? (Y/N)","NY",&b)) E 

Number of rotations (0 to 16)",&opt.nRot); 
for (n=O; n<opt.nRot; n++> { 

CetChoice(" Rotation axis (X/Y/Z)","XYZ",&opt.rotAxis[n]); 
CetDbl(" Rotation angle in degrees",&opt.rot[n]); 
1 

] 
CetChoice("Plot type (Scatter/Contour/Both)","SCB",&opt.plot); 
if (opt.plot != SCATTER) { 

CetChoice("Contouring method (Kamb/Schmidt)","KS",&opt.method); 
if (opt.method == KAMB) 

CetDbl("Expected level for uniform dist (1, 2 or 3)",&opt.sigma); 
CetChoice("Smoothing (None/inv Area/inv area Sq/Exp)","NASE",&opt.smooth); 
CetDbl("Minimum contour (0, 1, 2 or 3 recommended)",&opt.minimum); 
CetDbl("Contour interval (1, 2, or 3 recommended)",&opt.ci); 
CetInt("Number of grid nodes (up to 85)",&opt.nCrid); 
1 

if (opt.plot !P CONTOUR) ( 
CetChoice("Symbols (None/Cross/Triangle/Square/Hexagon)","NCTSH",&opt.symbol); 
CetDbl("Symbo1 size in millimeters",&opt.symSize); 
I 

CetChoice("Output (Screen/Dxf file)","SD",&opt.device); 
if (opt.device =- DXF) 

CetStr("DXF file name",out_file); 
gp;nW;:n”) ; 

;f_(;;;:$ice("Save options? (Y/N)","NY",&b)) SaveInit(); 
: 

tetChoice("Begin plot? (Y/N)","NY",&b); 
) while (b -I FALSE): 

return TRUE: 
] 

/* PlotData - outputs scatter plot. */ 
void PlotData(char *layer) { 

int i; 
double xn.yn; 
if (opt.symbol m NOSYM) return; 
for (i-0; i<nData; i++> if (SphereProject(data[i], &xn, &yn, 
opt.proj, opt.hemi. opt.dataType)) ( 

xn = opt.netX+xn*opt.radius; yn =.opt.netY+yn*opt.radius; 
DrawSymbol(xn,yn,opt.symbol,opt.symSize,layer); 
] 

) 

/* Contour - grids data and outputs contours. */ 
void Contour(char *layer) { 
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double level,zl,z2,xl,yl,x2,yZ; 
if (nData == 0) return; 
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GridK~b(data,nData,opt.sigma,opt.dataType,opt.proj,opt.hemi,grid,opt.nCrid,&zl,&z2); 
XI = opt.netX-opt.radius; yl = opt.netY-opt.radius; 
x2 = opt.netX+opt.radius; y2 = opt.netY+opt.radius; 
level - opt.minimum; 
while (level < zZ+le-6) ( 

ContourCrid(xl,yl.x2,y2,grid.opt.nCrid.opt.nCrid,level,layer): 
level += opt.ci; 
I 

I 

/* Initialize - initializes file names and options. */ 
void Initialize(int argc, char *argv[]) ( 

FILE l f: 
opt.ci - 2.0; 
opt.maxdata = 1000; 
opt.minimum = 2.0; 
opt.netX = 120.0; 
opt.netY = 100.0; 
opt.nCrid = 30; 
opt.plot = BOTH; 
oot.radius = 75.0: 
opt.sigma - 3.0; 
oot.smooth p INVAREASQR; 
opt.symbol = HEXAGON; 
opt.symSize - 2.0; 
if (! !(f = fopen("scon.ini","rb"))) { 

fread(&opt,sizeof(opt),l,f); 
fclose(f); 
I 

if (argc > 1) { /* file name on command line */ 
strncpy(data_file,argv[l],MAXPATH-1); 
ChangeFileExt(out_file,dathfile,".dxf"); 

/* Run - runs main program. */ 
void Run(char *exepath) { 

if (nData -= 0) return; 
if <InitGraphics(exepath)) { 

DrawNetFrame("FRAME"); 
if (opt.plot != CONTOUR) PlotData("DATA"); 
if (opt.plot != SCATTER) Contour("CONTOUR"); 
DoneCraphicsO; 
, 

/* main - initializes options, gets user input, and outputs plots. */ 
int main(int argc, char *argv[]) { 

int bBatch = (argc f= 2); /* batch mode if one command line parameter */ 
Initialize(argc,argv); 
if (argc < 2) { /* display startup if no parameters */ 

clrscro; 
printf("%s", szInf0); 
if (GetKey !- ENTER) return 1; 

whjle (bBatch 11 GetOptions { 
if (!(data = malloc((size_t)opt.maxdata*sizeof(point)))) 

ErrorMsg("Not enough memory for data array",-1); 
else ( 

if (LoadData Run(argv[O]); 
free(data); 
I 

if (bBatch) break; 
1 

ii(!bBatch) clrscr(); 
printf("Sphere Contour terminated.\n"): 
return 0;‘ 
) 


