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ABSTRACT

The Grdvudal area of the northern Dnvrefjell lies
within the high—grade core of the Caledonian orogen in
western central Norway. The focus of this study is the
southern portion of a large infold of cover into basement
gneisses. Lithologic units are correlative with a thrust-
nappe sequence exposed along the front of the orogen in
Sweden, and were derived from the Precambrian continental
margin. Mesoscopic structures are dominated by a trans-—
position foliation, lineations, and subsimilar folds. Fold
axes parallel lineations, and sﬁeath folds are present.
Folds with finger—like outcrop patterns are also suggested
to be sheath fnlds. The folding history involves a minimum
of three coaxial fold phéses, formed during one continous
deformation, and a later refolding event. Microstructures
suggest pervasive ductile flow.

A computer—aided methodology devised for the structwral
analysis of the area used foliation eigenvectors to define
five NW trending cylindrical domains, and revealed the
large structure to be a near-recumbent nufth—fa:ing fold
refolded by an east-vetrging antiform. 0On a regional scale
this implies that‘the Grdvudal structure is a synformal
*sheath—nappe”, and that basement gneisses to the north and
south form major basement—cored sheath—-nappes.

Computer—generated passive fold models show that



sheath—folds can be generated by the grn@th of low ampli-
tude irregularities during progressive Qimple shear. Sec-—
tions through the models display interference patterns seen
in outcrop and map pattern. Kinematic models of active
fold generation show that ?old'axes formed in progressive
simple shear will occur in many orientations easily rotated
towards the direction bf ‘maximum elongation. In a rock
body Qndergning plastic flow small changes in applied
stresses or surfacé slope can lead to the rotation of slip
lines through a developing foliation, leading to buckle or
shear fold formation, and refolding of earlier struttures.
Field observations, fold geometry, computer simulation
of passive folding, and mechanical considerations are all
consistent with a continous deformation dominated by simple

shear with an easterly direction of transport.
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INTRODUCTION

In considering the Earth’s mountain belts one is struck
by their great diversity in form, lithologic character, and
internal structure. However, most of theée orogenic belts
share a number of common characteristics. Cross—sections
through the wnrldgs best studied mountain belts, for ex-—
ample the Appalachians, Canadian Rockies, and Alps, show a
typical change in structural style from fhe foreland to the
interior (e.g., Price, 19813 Hatcher, 19813 Trimpy, 1980).
This involves a change from thinlskinned thrust tectunics’
within platform and exogeoclinal sediments, through pro-
gressively increased thrusting of far-traveled allochthons
and involvement of basement rocks, to ductile fold—nappe
tectonics where basement and cover may be intricately
folded into immense recumbent structures. In general, the
tectonics of these high—grade, basement—involved +fold-
néppes are less well understood than the thrust—tectonics
found farther towards the foreland (e.qg., papers in McClay
and Price, 1981). In part this is due to economic factors,
such as the lack of oil and gas in high grade‘rncks, but
also to the extreme complexity of the highly deformed and
metamorphosed, multiply—folded orogenic interiors.

This study is an attempt to work out some of the geo-—
metric and kinematic aspects of basement—involved fold-

nappes in the interior of the Caledonian orogen in western
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Norway. The area chosen for study is in the Dovrefjell
Mountains within the eastern portion of the Basal Gneiss
Complex, also known as the Mdre Gneisses or simply the
Western ©Gneiss Region (Oftedahl, 19803 Cuthbert et al.,-
1783 and references therein). Fold—-nappes structures were
first recognised) in the Dovrefiell Mountains by Muret
{(19260). Recent compilation of work in this area has lead
to the recognition of regionally mappable teﬁtunic units
whose areal distribution is now fairly well constrained
(krill, 1980a; in‘presa), however the structural character-
istics and nappe geometries are not well understood. Thus,
the state of knowledge of the Dovrefijell’s geology makes it
a prime target for structural analysis. The Dovrefiell is
also ideaily situated between the relatively homogeneous
basement gneisses to the west where stratigraphic horizons
are limited, and the cover thrust-—nappes of the Trondheim
region to the east. The Dovrefjell therefore provides an
ideal laboratory for the study of basement—involved fold-
nappes. The main focus of the study is a large trumpet-
shaped infold of cover sequence rocks (Holtedahl and Dons,
19260) in the OGrdvudal area, refered to herein as the
Grévudal structure, or Grdvudal fold—-nappe.

The Dovrefiell Mountains of central western Morway expose
rocks frnm:snme of the deepest portions of the Caledonian-
Appalachian orogen. The rocks of this region are part of

the core zone of the orogen, where the deformation occurred
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under very high temperature and pressure conditions of
kyanite to eclogite grade metamorphism {(e.g., Cuthbert et
al., 1983). The style of deformation is thus dominated by
complex and very ductile fold-nappe tectonics. In general,
the rock exposure is excellent, due to the intense Pleisto-
cene glaciation that produced spectaculaf fiords and
glacial valle&s, often with local relief in excess of one
kilometer. The Dovrefjell therefore provides a nearly
unidue environment for the study of the tectonic processes
that >nperate at depth beneath the world’s major mountain
belts. The Grdvudal area of the northern Dovrefjell pro-
vides good exposures of sumé of the more highly deformed
rocks where the cover, mainly metasedimentary, nappe
sequence can be distinguished from the underlying felsic
basement gneisses. These cover nappes form a large fold
clusqre in this region (e.g., Holtedahl and Dons, 19260}
that is one of the principal foci of this study.

The general methodoiugy used here was to carry out
basic lithologic mapping and to collect abundant structural
data s=o that the structural geometry could be tightly con-
strained using methods of structural analysis {B.Quy
Ramsay,‘1967, p. 4561-933; Hobbs et al., 19746, p. 347-375).
The orientation data collecﬁed included over 1800 measure—
ments of the strikes and dips of various foliations and
fold axial planes, and the trends and plunges of lineations

and fold axes. This data was then analysed by various
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techniques including a computerized eigenvector method
devised for this study {(Chapter 6); A number of theor-
etical models were then developed to explain the observ-
ations including, a computer—generated passive folding
model (Section 8.1), models of active fold generation in
simple shear (Section 8.2), and a slip-line +old model
relating the plastic slip-line field in an idealized
flowing rock body to fold development (Chapter ?).

The area specifically chosen for study was a 12 by 15
kilometer area roughly centered at latitude N &29253°, long—
itude E 8°255° (Plate 1). The topography of this area is
dominated by the kilometer—-wide, north—-south trending glac-
ial Grdvudal valley, whose walls range from 400 to 700
meters in height. The highest peak within the area is the
1926 meter Grdﬁliskardtinden, which lies within the south-
ern portion of the area, giving a total relief of about
1300 meters. Tree liné is at approximately 1000 meters, so
that the landscape outside the main valley, Euughly P04 of
the area, is dominated by mountain tundra, bare rock ex-—
posure and boulder fields. The wild life includes pipits,
golden plovers, ptarmigan, reindeer and occasional stray
musk—ox from the Dovrefjell NMational Preserve. The unusal-
ly calcium—rich soil and relatively sheltered micro-climate
of the north—-south trending valley also make Grdvudalen one
of the richest areas of mountain flora in Norway. The

small blooms include an abundance of the rare yellow Grdvu—
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dalsvalmue (Grdvuedal poppy), named for the valley.

Access to the valley is about 20 km south by road from
the village of Gjdra in the Sunndal valley. This road endsh
as a dirt road at the mouth of the Grédvudal valley, where a
trail leads in six kilometers to a hiking cabin, Grdvudals-—
hytté, and several small sod-roofed 1log buildings of
Gammel setira. Gammelsatra is a small summer—farm where a
local family, the Suisdals, make butter and cheeses while
their sheep and cows are in summer pasture. dNo other roads
approach the area, although there are several cairne&
hiking trails (Plate 1).

Grévudalshytta, maintained by the Kristiansund Turist-
forening (Hiking Association), is centrally located in the
afea, and served as a base for the 2Z1 weeks of study during
the summers of 1983 and 1984. High caﬁps were used to
access higher and ﬁore remote portions of the field area,
but in general were not feasible for long periods of time
because of the frequent rain and high winds. Workers in
fhis area of Norway should be prepared to work under incle-
ment conditions; wool and pile clothing and Gore—tex rain-—
gear were found especially useful, along with a plexiglass
map case and waterproof cover. Approximately one day in
segven was lost to rain, plus an additional day for supply
trips.

NMorwegian topographic maps are subdivided into a metric

grid system which is especially useful for locating out-
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crops. The present map area lies within the Storskrymten
1:50,000 map sheet, and has a grid zone and 100 km sguare
designation 32 V MR (the easternmost portion of the map
falls within 32 V N2). The map coordinates are then given
as 0.1 km grid coordinates within the 100 km square. The
northwest corner of the map area is thus designated 089300,
and the éuutheast corner ©011150. Rock outcrops can be .
located to within a 100 meter sguare by designating a six
digit number. True north and grid north are essentially
parallel in this area.

The Dovrefiell and neighboring Trollheimen ranges have
been included within numerous geologic studies, including
those of Goldschmidt (19153), Wegmann (1935, 1959), Barth
{1935), Hnltedahl (1938), Rosenqgvist (1943), Holmson (1935,
192460), and Hansen (1971). A compilation map of the geology
of the Oppdal district, which includes the Trollheimen and
Dovrefjell, has been made by Krill (1980a; in press; per-
sonal communication, 1983). This includes the work of a
number of persons who have worked in the area, including
PhD dissertations by Hansen (1963), Scott (12467), Wheeler
{(1973), and Krill (1980b). The Grévudal area of the north-
ern Dovrefjell has been mapped in reconnaissance (Holtedal
and Dons, 1960; Muret, 194603 Krill, personal communication,
1983), so that the first-order lithologic outlines were

known, but no detailed structural analyses had been done

prior to this study.
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REGIONAL GEOLOGY AND TECTONOSTRATIGRAPHY

The regional geoclogy of the Fennoscandian Penninsula
can be broadly subdivided into three major provinces: the
Baltic Shield, the Caledonian nappes, aﬁd the\western
Gneiss Region (Figure 1). Pust—Silurian rocks are of minor
areal extent in Scandinavia {(Magnusson et al., 12403
Oftedahl, 1980), and in Norway include small fault-bounded
Devonian molasse basins, Permian igneous rocks of the Oslo
graben, and Mesozoic and Tertiary sedimentary rocks of the
continental shelf (Oftedahl, 1980). Precambrian rocks of
the Baltic Shield underlie most of Sweden and form the
basement rocks to the Calédonian nappés of Norway and west-
ernmost Sweden. The principal orogenic phase recorded by
these basement rocks is now referred to as the Sveco-
karelian phase, of approximately 1730 to 1950 Ma (Lund-
qvist, 1979). A 1late “post-orogenic’ phase (Gothian) of
mainly intrusive activity continued until «c. 1400 Ma or
somewhat vyounger. @A “Sveconorwegian®™ event of intrusion
and metamorphism is also identified in southern Norway and
Sweden at about 1000 Ma (Lundgvist, 1979).

Approximately along the Swedish—Norwegian border the

basement rocks of the Baltic Shield are tectonically over-

Figure 1. Regional geology of Scandinavia, after Oftedahl
(1980). Study area is indicated by small rectangle in the

Western Gneiss Region.
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lain by a series of Caledonian thrust sheets comprising a
variety of meta—sedimenfary and igneous rocks whose ages
range from Middle Proterozoic through Silurian. Dyrelius
et al. (1780) have described a traverse through the central
Scandinavian Caledonides at approximately &3°N latitude
{the Trondheim-@stersund area), and Gee (1975a, 1773hb,
1978) has described the distribution and stacking sequence
of the .princiﬁal nappe units in the Trondheim—B@stersund
area. Hossack (1983) has also Eedrawn a cross—section
thruugh' this region using branch-line maps (Figure 2). A
generalized nappe stratigraphy and correlation chart is
given in figure 3.

The lowermost nappes, emplaced over the crystalline
basement in western Sweden, are the Jamtland nappes
(Asklund, 19260). This group of nappes includes the Osen-—
Rda Mappe Complex, or sparagmite nappes, expnsed'mainly to
the south {(Roberts and Wolff, 1980). The Jamtland nappes
comprise Precambrian‘tn at least late Llandoverian sedi-
mentary rncks (Early Silurian) or possibly Ludlovian (Late

Silurian) age (Dyrelius et al., 1980), metamorphosed at the

Figure 2. Geology of the Trondheim region, with cross-
section. Geology from Hossack (1983%), after Roberts and
Wolff (1980); cross—-section from Hossack (1983). Rectangle

indicates area of study.

Figure 3. Correlation chart of nappe units of the Dovire—
fjell, +the Trondheim region, and Sweden. Correlations
after Roberts and Wolff (1980), Krill (1980a), and Dyrelius
et al. (1980). See text for discussion.
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thrust front. Locally this sequence laps on to Precambrian
basement, suggesting that these nappes represent the
imbrication of a éedimentary basin developed on the Baltic
Shield. The nappes have thus been termed parauvtochthonous
by Gee (1975a), although they have suffered considerable
translation. The basal thrust horizon is generally within
weak Cambrian shales; of particular importance is a black
uraniferous shale whose distinctive trace element geochem—
istry allows correlation with more internal metamorphosed
equivalents (Gee, 1980).

Dverlying the Jamtland nappes to the west are a series
of mylonitized granitic rocks, including the Offerdal (Ask-
lund, 1960) and Ténnds (Tornebohm, 18963 Rishoff, 1978)
nappes. Th; Offerdal nappe includes feldspathic sandstones
and local conglomerates, as well as granites, porphyries
and gabbro. The Tannds nappe is dominated by granitic
augen gneisses. To the west, structurally above these
granitic nappes lies the Sarv nappe (Gee, 1975b), largely
composed of sandstnﬁes intruded by a tholeiitic dike-swarm
(Ottfjdllet dolerites). The sandstones are feldspathic and
are probably of shailnw marine or fluviatile origin, énd on
the order of 4500-6000 m in thickness.

The Seve-Kiéli nappe complex overlies the Sarv Nappe
along a major tectonic discmntinuity, showing a sharp in-
crease in metamorphic grade. This discontinuity, exposed

at Areskutan in Sweden, lead T&rnebohm (1888, 18%96) to
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first apply the nappe theory fn the Scandinavian Cale—
donides. The lower Seve nappe is composed of schists,
gneisses and émphibnlites, with intercalations of lime-
stone, quartzite and ultramafic rocks. The Dverlying Kali
contains greenschist to lower amphibolite grade phyllites,
volcanic rocks, limestones, quartzite,v and conglomerates,
with ultramafic, gabbroic and minor felsic igneous rocks.
Ashgillian {(uppermost Drdovician) and Middle to lower Upper
Llandoverian (Lower Silurian) fossils have been recbvered
from part of the Kili nappe.

Higher tectonic units are restricted to the broad
Trundelag depression in central Norway. These upper units
are referred to as the Trondheim Mappe Complex (Roberts and
Wolff, 1980), and can be broadly subdivided into the lower
Gula Nappe and the upper Stdren—Meraker Nappe. The Bula
Mappe comprises mainly garnet to kyanite or sillimanite
grade schists, migmatites and amphibolites with minor mar—
bles, quartzites, cqngiumerates and ultramafic rocks. Ages
of éhese rucks.are not weil known, but are thought to be
Precambrian to Cambrian (Wolff and Roberts, 1280). The
Stdren Nappe (Gale and Roberts, 1974) is dominated by a low
metamorphic grade submarine sequence including basaltic
greenstone, jasper, chert conglomerates and phyllite. An
apparent ophiolitic sequence of pillowed greenstones,
sheeted dolerite dikes and gabbro also occurs within the

nappe. bGraptolitic shales overlying the volcanic sequence
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give a ﬁinimum age of Middle Arenig (Wolff and Roberts,
17980). |

The Western Gneiss Region or Basal Gneiss Complex
includes large areas of gneissic rocks exposed mainly in
western south NMorway (Holtedahl and Dons, 194603 - Carswell,
1973). The bulk of the Basal Gneiss Complex consists of
Svecolkarelian age - gneisses similar to those of the Baltic
Shield, but with varying degrees of Caledonian age deform—
ation (Sturt, 1978). These gneisses apparently form the
orogenic core region, showing the highest metamorphic
grades and strnng'ductile deformation, over which the major
Caledonian thrust nappes were emplaced (wegmann; 1935,
19573 Strand, 19613 Wolff, 19763 Krill, 1980; Cuthbert et
al., 1983). The origin and age of deformation and meta-
morphism of the rocks within this terrane have been the
subject .nf considerable debate, and in particular the age
and origin of the eclogitic lithologies often found as pods
within the gneisses have been the focus of attention
{(Cuthbert et al., 1783).

In the eastern portion of the Basal Gneiss Terrane a
series of nappes are exﬁosed that structuwrally overlie the
main basemenit gneisses. A regional tectunustratigraﬁhy has

{
been worked out by Krill (1980a, in press; Gee, 17803 Fig-

Fiqure 4. Geology of the Oppdal district, from kErill (in
press). Rectangle indicates area of study.
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ures 3 and 4), who has compiled the data of a number of
authors includings: Hansen {1971), Holmsen (19260), Krill
(1980b), Loset (1977), Scott (1967), Solheim (1980),
Wheeler (1973), and Dtﬁers. As this tectonostratigraphy
was used in the present study a brief summary of the lith-
plogies and known age relationships is'presented here.

The Ldnset gneiss complex is the lowést unit recogn-
ized. It consists of granitic, granodioritic and hetero-
geneous gneisses. Texturally these rocks vary from rel-
atively homogenecus unfoliated gneisses to well +foliated
or, in some western areas, migmatitic gneisses. Amphi-
bolitic and gabbroic components are common and locally
eclogitic pods are abundant. HRb-Sr geochronology studies
have yielded only Precambrian whole-rock ages (Krill, in
press), although mineral ages of 447-400 Ma have been re-
ported from eclogite pods collected over a wide area of the
lower gneisses {(Cuthbert et al., 1783).

N The Amotsdal unit is dominated by arkosic, or spar—
agmitic, psammites. Basal conglomerates have been found in
several localities, including a new locality described in
this study, suggesting deposition unconformably over the
basement gneisses. Cross—bedding can been found in less
deformed exposures east of the present +field area, and
faces upward from the gneisses. These rocks are similar to
sparagmites found to the southeast in the Midsa area, and

by correlation are suggested to be Late Precambrian to
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Early Paleﬁzoic in age (Krill, in press). In the Troll-
heimen area a thin black graphitic schist associated with
quartzite and marble (Midtre kam schists nfrHansen, 1963,
1971) overlies this unit. Gee (1980) has correlated this
unit on the basis of its unusual trace element geochemistry
with a similar unit exposed in the Tdmmeras basement window
northeast of Trondheim, and with the Upper Cambrian black
shales of the Jamtland supergroup in Sweden.

The Risberget Mappe is characteristically a coarse
augen gneiss, but also includes rapakivi granite, gabbro,
anorthosite, felsic granite and heterogensous gneiss with
some calc—-silicates (Krill, in press). HMNumerous Rb-Sr geo-
chronological studies have vielded only Precambrian (c.
1100-1700 Ma) whole—rock ages (Solheim, 1980; Krill,
1980a), including one age determination made on an ultra-—
mylonite (krill, 1983b). However, Soclheim (1980) obtained
a mineral-isochron D# c. 393 Ma on foliated basement and
augen gneiss samples, and Krill (1983b) similarly obtained
a %58 Ma dafe on unoriented biotites from rapakivi granite
of the Risberget nappe. These latter dates presumably
reflect a Caledonian overprint on a Precambrian granulite-—
facies metamorphism. This unit was correlated with the
Precambrian augen gneiss of the Caledonian front (Tinnis
Mappe) by Tiérnebohm (18%954) and this has been accepted by
most present workers (Eée, 19803 Krill and Rboshoff, in

press). The idea that the augen gneisses of the Basal
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Gneiss Complex formed by granitization through metasomatism
was advanced by Barth (1938), Holtedahl {(1938) and Rnse—\
gvist (1943), and this notion was accepted by many later
workers (e.g., Hnimsnn, 1955; Hansén, 1971). Hawever,
Rb-Sr initial ratios for the gneisses suggest a magmatic
origin, and igneous textures including rapakivi rims and
exsolved minerals are common in potassium feldspar augen of -
less deformed samples (Krill, 1980b, 1983b). These rel-
ationships and the confinement of the augen gneiss to a
continously mappable unit make a metasomatic origin
unlikely.

The Satra NMNappe consists of feldspathic psammite and
amphibolite. Commonly these 1lithologies are strongly
interlayered or laminated, however in less deformed areas
(e.g., Eiggen quarries; Krill and Riéshoff, in press) the
amphibolites can clearly be seen to have originated as
dolerite dikes cutting across sedimentary lavering in
cross—bedded fluvial' sandstones. Abundant dikes are con-
fined to the Satra Mappe and no amphibolite has been de-
scribed from the underlying Amgtsdal unit, demonstrating
that the Swtra Nappe must be allochthonous. A Rb-5r
whole—rock isochron for the dolerite dikes gives 745 t 37
Ma, interpreted as the intrusive age (kKrill, 1983a).
Identification of a boudin train of eclogite pods within
this unit during the pfesent study gives supporting evid-

ence for a Caledonian eclogite—grade metamorphic event, as



- the S=tra psammites are clearly younger than the basement

gneisses. Correlation of the Satra Mappe with the Sarv
Nappe of Sweden is strongly supported on a lithologic basis

(Gee, 1980; Krill and Rishoff, in press), and dating of the

- (ttfidllet dolerite dikes has yvielded a whole-rock Rb-Sr

isochron age of 720 * 223 Ma.

The Blahd Nappe (Hansen, 1?63, 1971) comprises mainly
garnet-mica gneisses with amphibolite and some serpentin-
ite, marble, psammite and mica 5chist5.‘ ;ts apparent eu-
geoclinal affinity suggests the Blahd is likely to have
been tectonically emplaced over the Setra (Krill, 1980a),
and the present study suggests tectonic truncation of units
along the basal Blahd contact. Age determinations on the
Bléhﬁ rocks have_been generally unsucceséful, but suggest a
maximum of c. 800 Ma (Krill, in press). The Blahdé Nappe
may be in part correlative with the Seve Mappes of Sweden
(Gee, 1980), although Krill (in press) suggests this is not
supported by existing lithologic evidence.

Above the Blahd Nappe Krill (in press) has defined a
litheologically similar nappe, the Swna Nappe, which is
delimited by the presence of abundant dikes and bodies of
trondhjemite. Poor isochrons on £hese rocks suggest a
possible Ordovician metamorphic age. In sharp contact
along syn— or post-metamorphic faults is the overlying
Tronget-Stdren Mappe, of much lower, greenschist facies

meta—-volcanic and meta-volcaniclastic rocks.



REGIONAL TECTONICS

From the preceeding discussion of the regianal‘tectunu—
Stratigraphy a number of important consequences become
apparent. The well established correlation of the nappes
and nappe tectonostratigraphy between the Western Gneiss
Region and the frontal nappe sequence of western Sweden
(Gee, 1977, 1980; Roberts and Wolff, 1980; Krill and Rosh-
off, in press; Figure 3) suggests a continuity of the nappe
pile for over 200 km across strike. As most of the nappes
can be demonstrated to be allochthonous with respect to
lower nappes, a simple unétacking of the pile from east-
southeast to west—northwest (the general transport dir-
ection is east—southeast; Ruberté and Wol+f, 1780) would
suggest total dishlacements aon the order of 600 to 1000 km.

Bee (1978), in fact, has attempted to do this and
suggests that displacements on the order of at least 1000
km are required. He emphasizes that a large amount of hor-
izontal stretching may account for perhaps hald of this
displacement. This stretching tumponent seems evident from
the extreme attenuétiun and apparent boudinage of the nappe
units (e.g., Roberts and Sturt, 1980), although Lisle
(1984) has suggested that observed strain patterns in the
Seve—-Kili Nappe complex are not compatible with pust¥
empl acement bdudinage of nappe units, and Hossack (1983)

has suggested that such "boudins" are more likely to be
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horses. Lisle (1984) also shows that flattening strains
are common in the Kiéli Nappe, which he suggests are diffi-
cult to reéuncila with simple nappe emplacement models. It
may be significant, however, that the most intense strains
reported by Lisle show west or northwesterly plunging
elongation directions. Other Finite strain measurements
are not abundant, however Hossack (1968) and Chapman et al.
{(1972) also report strong east-west elongations of up to
several hundred percent in other portions of the orogen.
Presumably these are related to a large component of simple
shear during the eastward directed emplacement of the
nappes over the Baltic Sheild.

Hossack {(1983) has drawn a balanced cross—-section (Fig-
ure 2) thfuugh the Trondheim region by constructing branch
line maps from existing geologic data. This section also
incorporates aeromagnetic and Bouger anomaly data for depth
to basement, and a model of the synorogenic surface from
metémnrphi: data. Geometrically, Hossack’s section seems
to better incorporate knowledge of the three—dimensional
shape of the nappes than previously published sections
{cf., Dfrelius et al., 1980, p. 263; FRoberts and Wolff,
1781).

Figure 5 schematically shows the inferred paleogeo-
graphic environments on the ancient continental margin from
which the nappes of the Oppdal District may have been der-—

ived. These are largely based on the interpretations of
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Gee (1975a, 1978) and correlations with eastern units (fig-
ure 3, Chapter 2). In the following section correlative
units are given in parentheses.

The Ldnset basement gneisses (Baltic Shield, in part)
represent the essentially autochthonous, although now
strongly folded, basement to the orogen. Amotsdal feld-
spathic psammites (Jamtland, in part) were fluvial sand-
stones deposited on, and presumably largely derived from,
these basement rocks. The Risberget nappe (Tannis) augen
gneisses also represent Precambrian basement gneisses,
possibly correlative with the typa rapakivi gneisses in
Finland {(Krill, 1283b). These gneisses are believed to be
a portion of the old contiental margin basement imbricated
into the developing nappe pile, perhaps along old listric
normal faults o as an uplitted block clipped off during
thrusting (Figure 35).

The Satra (Sarv) nappe may represent the western equi-

valent of the Amotsdal where intruded by basic dikes (Ott-

Figure 5. Schematic paleogeographic cross—section through
the BRaltic Shield continental margin prior to the Caledon-
ian collision with Greenland. B = Blah#é nappe, 8 = Satra
nappe, R = Risberget nappe, A = Amotsdal psammite, and L =
Lédnset basal gneisses. In this model the Blahd nappe
represents orogenic sediments shed from the approaching
orogen, the S=tra nappe represents continental sandstones
or rift facies intruded by basic dikes during initial
continental breakup c. 740 Ma, the Risberget nappe repre-—
sents continental basement {(either a horst or block thrust
along old listric normal faults). The Ldnset gneisses and
- Amotsdal psammite represent Baltic 5Shield continental
basement and cover respectively.
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fjallet dikes of the Sarv nappe) during the initial con-
tinental breakup approximately 746 Ma ago (Roberts and
Gale, 1978; KkKrill, 1983a). Garnet-mica éneisses‘uf the
Blahd (Seve?) nappe were probably derived from a eugeo-
clinal graywacke sequence (Scott, 1967) including carbonate
and mafic volcanic components now preserved as eclogite and
talc—carbonate bodies. These may have been orogenic de-
posits associated with the approach of a convergent margin
in the early Paleozoic, possibly Drduvician; times.

Higher nappes, not represented in figure 5, including
-the Seve-Kili, Stdren—-Meraker and Gula nappes contain di-
verse lithologies including metamorphosed Ordovician and
Silurian sedimentary rocks, and volcanic and intrusive
rocks. Greenstones within the S5tdren nappe have been in-
ferred to be remnants of ophiolite. These higher nappes
fave been carried in from areas west of the ancient
continental margin (Gee, 1978).

The present boundary between the Western Gneiss Region
and these higher nappes of the Trondheim Nappe Complex
{Roberts and Wolff, 1280) in the Oppdal District occurs
along sharp syn— or post—metamorphic +au1t$ (Krill, 1980a).
It is suggested here that this faulting may be due to iso-
static uplift of the Gneiss Region fDlluwing’crustal thick-
ening due to the emplacement of basement-cored nappes.

This is consistent with the observed strain gradient across

the area (Chapter 7).
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The development of this large nappe pile i% a con—
sequence of the collision of two continental masses:
present day Greenland and Scandinavia (Dewey, 19&47; ‘Gee,
1975a, 1975b; Roberts and Gale, 1978; HMykkeltveit et al.,
1980; FRoberts and Sturf, 19803 Hurst and McKerrow, 1981;
Bartley, 19823 Cuthbert et al., 1983). The present con-
figuration of the orogen is due to the Cenozoic opening of
the MNorwegian Sea, which split the mountain belt long-
itudinally along its axis (e.g., Talwani and Eldholm, 1977)
The Caledonian mountain belt of eastern Greenland shows
preduminantly' west—diracted thrusting of at least 100 km
displacement (Haller, 1971, p. 132; Henriksen and Higgins,
1976 Henriksen, 1978; Roberts and Sturt, 1980; Hurst and
McKerrow, 1981). The present trace of the suture zone be-
tween cantrasting basement terranes apparently lies west of
the present Norwegian coastline (Gee, 1970a). Westward
‘directed subduction of the former oceanic crust beneath
Greenland is suggested by abundant Caledonian granitic
bodies intruding basement rocks of East Greenland (e.g.,
Steiger et al., 1979), and their corresponding absence in
the Scandinavian Caledonides (Bartley, 1982).

High pressure ‘kyanite and eclogite metamorphism is
regionally developed in the Western Gneiss Region of
Norway, and eclogite mineral ages fall mainly within the
420-400 Ma range (Cuthbert et al., 19283, and references

therein). This high-pressure metamorphism is therefore
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consistent with a Silurian collisional event. Geobaro-
metric studies of the eclogites suggest maximum pressures
of about 20 kbar, or burial depths of 65 km (Cuthbert et
al., 1983), MHMykkeltveit et al. (1980) have modeled the
crustal structure across the Basal Gneiss Complex based on
a seismic reflection profile line, and find a 4 km thick
low velocity layer at 14 km. They suggest that this may
best be explained by the presence of low grade eugeoclinal
sedimentary rocks, indicating crustal imbrication. This
may explain the observed low-pressure reequilibrium of some
eclogites (Cuthbert et al., 1983), as well as the fact thét
they are presently observed at the surface. If crustal
imbrication ;f the Baltic Shield occurred during the final
stages of collision the Western Gneiss Region could have
been rapidly uplifted. Cuthbert et al. (1983) have modeled
this scenarioc and suggest crustal thicknesses at this time
could have reached 80 km, with suwrface topography locally

reaching 8 kiloheters, similar to the present Himalaya.



LITHOLOGIC UNITS

The nappe units mapped in the Grdvudal area are litho-
laogically correlative with the regional tectonostrati-
graphic units outlined in chapter 2, and in most cases are
continously mappable on a regional scale (Figure 33 Krill,
1980a). In this chapter the local variations and char-
acteristics of these units are briefly described. Figuwre &
is a simplified geologic map of the Grdvudal area, the
complete version is given as Flate 1. Map coordinates of
some outcrops are given in parentheses.

The lowermost unit is the basal gneiss, or Ldnset, unit
exposed mainly in the southwestern portion of the map area,
and reappearing 1in Jthe nor-theast corner. The basal
gneisses are mainly medium—grained biotite-bearing felsic
gneisses. Amphibole and epidote are common minor phases,

and locally occur as clots or stringers (B93217, 911162,

Figure 6. Geologic map of the Grdvudal area in the north-
ern Dovirefiell HMountains of central Norway, with cross-
sections. Structural symbols indicate foliation and linea-—
tion orientations. Triangles (summits) and circles in-
dicate selected elevations in meters. Random dash (L) =
Ldnset basal gneisses. Random stipple (A) = Amotsdal
psammite. Outer white (R) = Risberget nappe. FPatterned
stiple (8) = Setra nappe, with eclogite pods indicated as
2. Inner white (B} = Blahd nappe. Zones marked 1-3 are
the structural domains described in Chapter 6.

Section lines are indicated on map border. Symbols on
the sections are the the same as on the map, except the
" Risberget nappe is shown with a parallel-dash pattern.
Intersections of cross—section lines are shown as vertical

lines.
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994155). Outcrops are communly massive, poorly or irreg-
ularly. foliated gneisses (21314679, 069286), although many
are compositionally layéred with complex folding in felsic
layering (916153, 892220). No eclogite pods were found
within these gneisses.

The Amotsdal psammite occurs in its regional tectonic
position above the basal gneisses (Chapter 2) only in the
northeastern portion of the area. Here the psammite forms
a stripe narrowing to the south. A horizaon of defnrmed
conglomerate, comprising guartzose and felsic cobbles, out-—
crops here (003265), and is apparently correlative with
similar outcrops near Lénset (Figure 3). Three other out-—
crop aréas of Amotsdal psammite occur as slender fingers
within the tectonically higher Risberget nappe (Figure 3j
Plate 1). In the northeast one of these fingers terminates
in a series of fine interlayers within the Risberget augen
gneisses (792231). The most accessible expnsurés of the
Amotsdal psammite are those at the south end of Grdvadal
(?446215), which can be reached in late summer by fording
Litlgrdvu. The psammite is typically a fine—grained
quartz—rich feldspathic gneiss with muscovite and hematite;
hiotite and epidote occur as minor accessory minerals.
Dutcrops are generally flaggy and light gray to off-white
in color. Flaggy lithologies in the Risberget can appear
similar, but the high quartz content, muscovite and

characteristic hematite grains of the Amotsdal psammite
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make the unit quite distinctive.

The Risberget nappe forms an extensive band wrapping
around the area from southwest to northeast, outlining the
major structure. The lower face of Hégtunga, the prominent
700 meter face at the énuth end of Grdvudal, is formed of
this unit; Bood accessible exposures occur along the
waterfalls on the lower Litlgrdvu (235220). The character-—
istic lithology in this unit is a distinctive pink augen
gneiss with coarse potassium—feldspar phenocrysts. The
rock is normally well foliated and lineated. Rather undis-—
tinctive grey epidote-biotite gneisses are also common, al-
though subordinate, making a distinction from the basal
gneisses difficult locally. In general, the contact of the
Risberget nappe with the basal gneisses was mapped as the
last occurrence of coarse potassium—feldspar phenocrysts
within the gneisses. It is possible that interfingers of
the basal gneisses occur within the Risberget nappe that
could not be delimited. Other lithologies within the Ris-
berget nappe include light grey to pinkish aplite (922148,
B2212), a white cataclastic-appearing felsite or fine-
grained énnrthasite (275216, 9812535, and amphibolite
{(981280). Additionally, a small body of talc-carbonate
occurs in one locality (230171), and at the upper contact
with the Setra nappe (780261) a small‘peridutite body is
preserved. This latter rock is exposed precisely along the

contact, suggesting it is a far traveled horse.
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Structurally above the Risberget nappe ié the Sstra
nappe. This unit forms a narrow band along the eastern
limb of the major structwre, pinching out to the south.
Some outcrops of this unit occur along the foot-trail into
Grdvudalen (974281), and well exposed fqlds in this unit
outcrop along the Raudbekken access route to the eastern
summits (262210). A second area of outcrop occurs along -
the western edge of the Grdvudal valley, where the Satra
nappe is interlayered within the higher Blahd nappe. Rocks
of the Setra nappe are distinctively banded and consist of
duartznse and amphibolite laminations typically 0.5 to 2
centimeters thick. The felsic layers are quartz-rich with
mainly potassium—feldspar and minor amphibole. The amphi-
bolite consists dominantly of a dark green hurnblendé.
Dutcrops of the Satra lithologies ére typically flaggy and
at the northeast end of Grédvudalen a number of small
flagstone quarries have been dug in amphibolite—free
outcrops of the Sztra unit (e.g. 978291). In one locality,
just south of Nonsfiellkollen (976232), the Satra contains
apparent meta—-gabbro. An eclogite boudin train occurs near
the top of the nappe, stretching out over five kilometers
(75271, L7224) . Some calcium carbonate occurs in
association with the boudins, suggesting a possible
sedimentary derivation.

The final, and structurally highest, wunit is the Blah#

nappe. The rocks of this unit are typically rather homo-
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genepus grey garnet—muscovite-biotite gneisses. Staurolite
and kyanite are found as accessory minerals. This unit is
the principal one exposed in the walls of Grdvudalen; the
steep cliffs nearbthe south end of Grdvudalen (955216)
expose a thick section, and the contéct with the underlying
Risberget nappe /is well exposed in the opposing southern
wall (2?45207). Good outcrops are ﬁare accessibly exposed in
the vicinity of Litle Aurhda (928262). Variations within
the Blahd lithologies include more quartzose rock types
cnmﬁon at the base of the nappe (973273, 9&44218), rusty-
weathering schistose biotite gneisses (957275, 209240), and
amphibolite (892271, 9282468). Talc—carbonate pods are
fairly common within the Blahd nappe (262231, 220297, Plate
1), and outcrops of dolomite locally occur in association
with the pods (209267, 914265, 8972468) .

It should be noted here that reference to these 1lith-
ologic uwunits as "nappes" is largely based on correlation
with units outside the field area (e.g., Krill, 1980a;
Ehaptek 2). The lower contact of the Amotsdal with the
Ldnset gneisses is thought to be an unconformity on the
basis of local conglomerates;i thrusting along this contact
is suggested if correlations with the sparagmite or Jamt-
landian nappes are made. The Setra unit is assumed to be
alluch£h0n0u5 on the_basis of the correlation with the
SmtraA nappe east  of the field area; the abundant mafic

dikes in this nappe {(amphibolites in the Grdvudal area) are
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not found within luwet units, suggesting they were intruded
before the nappe was emplaced. The S=tra nappe can also
be convincingly correlated with the Sérv‘Nappe {(Chapter 2).
Similarly, .the augen gneisses found within the Risberget
unit are not fnund_within lower units, and can be :Drfelat—
ed with the augen gneisses of the Tannds Nappe. The lower
contact of the Blahd unit could possibly be an unconform-—
ity, however the justiposition of the apparent eugeoclinal
lithologies with fluvial sandstones of the Setra Nappe
suggests tectonic emplacement. It is felt that the best
interpretation of the lithologic contacts in the Grdvudal
area is that theyﬂ are tectonic. This interpretation,
however, does not‘ effect the main focus of this thesis,
which deals with the later ductile behavior of these rocks

(Sections 5.2, 5.3, and Chapters 6-%).



STRUCTURAL STYLE

The structural style of the Grdvudal area, and of the
Western Gneiss Region in general, is similar to that of
other orogenic core zones, such as the Pennine zone of the
Alps (e.g., Huber et. al, 1980) or the ductile nappe area
of the central New England Appalachians {(e.g9., Thompson et
al., 1948).  Ductile structures such as complex flow fold-
‘ing, gneissic and transposed layéring, stretchihg linea—
tions, boudinage andvshear zones clearly predominate over
faulting or other brittle phenomena.

Major brittle structures within the region appear to be
late stage post—metamorphic faults that have little effect
on the regional map pattern. The principal exception is
the contact with the Tronget nappe, here the structurally
highest nappe correlative with portions of the Trondheim
Mappe Complex. This contact bhas been described by Krill
{(17980b) as occurring along low aﬁd high angle Ffaults with
cataclastic textures‘and local pseudotachylite, in contrast

to the contacts between lower nappes that show no evidence

of cataclasis.

5.1 Mappes

The occurence of Pennine style nappes in the eastern
portion of the Western Gneiss Region was Ffirst recognised

by Muwret (192460). Subsequent mapping up through 1980 has
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been compiled by Krill (1980a; in press), resulting in
clarification of the regional nappe distribution (Figure
4). ‘The characteristic gtfle is that of a complexly inter-
folded sequence of thrust—-nappe sheets. Thus two stages of
evolution can be usefully defined, an early thrust — nappe
phase and a later fold-nappe phase.

The general continuity of the individual nappe Shéets
fhruugh the Oppdal District is remarkable, and even more
so if correlations with the nappes of the Caledonian front
in Sweden are valid. Locally individual nappe sheets are
less than one kilometer thick, vyet may be traced for over
200 km across the regional strike. Additionally, there
remainsg a continuity of the sequence order; the tectono-
stratigraphic order at the Caledonian front is the same as
that in the Oppdal District (Krill and Rishoff, in press;
Figure 3).

These observations suggest thinning of the nappes
after, or during, their emplacement. Gee (1977) cited the
pinch—and-swell and “"mega-boudin® geometry of saveral
nappes as evidence for late structural thinning. However,
as pointed out by Hossack (1983), such pinch-and-swell
geometries could appear in cross—sections taken across
obligue ramps on a basal thrust, while "mega—boudins" may
actually be horses produced during thrusting. Addition-—
ally, Lisle (1984) has suggested that measured strain

patterns within one such "mega-boudin" are not compatible
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with a boudinage origin. Despite these criticisims, there
does seem to be a regional pattern of strnngiESE—wNW
stretching through much of the orogen, presumably reflect—
ing a large component of simple shear associated with
allochthon emplacement (Rubertsrénd Sturt, 1980).

In the Grdvudal area textural evidence for the initial
brittle thrust-—stacking event has been obliterated. That
is, the nappe contacts presently show no evidence of local-
ized cataclasis, and appear welded with no textural con-
trast with rocks internal to the nappes. The ruﬁks in
general show a penetrative protomylonitic to mylonitic
texture (Sibson, 1277), and the nappe contacts show show a
similar texture. This is particularly well displayed at
the Satra—Risherget contact exposed 2 km north of Nons-
fiellkollen (981253). Herg the ﬁsammita—augen gneiss
contact is a knife sharp discontinuity, with no apparent
textural gradation away from the contact. Similar rela-
tionships can be observed +for the Blahd—Swtra contact
(949251, 9956269, IF7332467), and the Risberget—-Amotsdal
contact (9472i4, 933204). This can also be observed in the
Trollheimen mountains, Ffor example on Blahd (1585793); and
in the Oppdal District in general (Krill, 1980a).

As the nappe sheets are allochthonous with respect to
each other, with relative displacements of 10°s to 100°s of
kilometers (Chapters 2 and 3), this suggests recrystall-—

ization of the nappe contacts during the development of a



-328-
pervasive protumyionitic fabric. Presumably then, during
the initial emplacement of the sheets the contacts .were
characterized by a high strain or high étrain—raté induced
fabrics either_cataclastic or mylonitic in natwe. With
increasing strain, temperature or strain—-rate (White et
al., 1980) the zones DfAshear progressively widened, and
new zones may have been initiated internal to the nappes,
until a pervasive flow fabric developed. This would then
represent a transition from localized brittle behavior
characteristic of thrust—nappe tectonics, to pervasive
ductile flow characteristic of fold—-nappe tectonics.

Although the small—séale structures associated with an
early phase of thrusting may have been obliterated, the
larger scale geometfy of the nappe contacts may retain more
information about the eafly thrust—nappe geometries.
Throughout the ﬁppdal District there are many examples of
tectonostratigraphic excision, or lnssxnf one nappe unit
along a contact (Figure 4). In the district as a whole,
this may be locally explained by lack of map control in
difficult terrain with complex geblugy, however, these
relationships may be observed near Kongsvoll and in
Grdvudalen where the control is good (Figures 4 and 6&;
Plates 1 and 2).

The significance of this is as follows. In thrust
belts certain geometric rules have been cbserved to hola.

These include that thrusts always cut up section in the
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direcﬁinn of transport, and that younger thrusts nccuf be—
neath older thrusts (Dahlstrom, 19703 Boyer and Elliott,
1982). These rules may be understood mechanically'in_terms
of a "snowplow model". The thrust belt forms a wedge of
material thickened until it reaches a critical taper, after
which it slides stably. The critical taper is reached when
the wedge is on the verge of failure everywhere. 6#s the
wedge thickens it maintains its taper by constantly break-
ing out new thrusts in front of, and beneath, the wedge
(Davis et al., 1983). According to these geometric rules
it is not possible to tﬁin a stratigraphic section, as has
apparently happened in the Grdvudal area. If thrusting
follows a progression from higher to lower levels, with
thrusts emplaced in piggy-back fashion, sections may be
repeated or thickened but never thinned.

TD see how this might apply to the Grdvudal area
consider the basic geometry of the thrust-nappes taken
"priur to folding, schematically shown in figure 7a. As
already demonstrated (Chapter 3) the stacking order Blahd-—
Setra—-Risbherget—-Amotsdal /Ldnset (B-5-R-L) may be inter-
preted to represent a sequence of nappes stacked from west
to east, with the highest being the furthest traveled (FigF

ure 5. Thus the Blahd nappe must bhave been initially

Fiqure 7. Geometric models for thrust excision. A -~
present geometry of thrust nappes. B - out of sequence
thrusting. C - boudinage. D - extensional faulting.
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emplaced ' onto the Setra nappe, and the two then emplaced
ensemble onto the Risberget nappe. Finally theée three
nappes were emplaced as a package on to the Amotsdal and
underlying Ldnset basement. The thrust sequence would then
be: B on S, B+S on R, and B+5+R on L.

Possible origins of the DbséFQEd geometric relationship
of figure 7a include: out of sequence thrusting, thrusting
a folded thrust, houdinage,‘ extensional faulting, or as a
thirust sheet boundary {(branch line). Severél of the. more
plausible possibilities are schematically shown in figure
7. Figure 7a shows the general téctnnnstratigraphic seq-
uence of the Oppdal District with inferred emplacement
order, and the observed excised seﬁuence of the Grdvudal
area. Figure 7b shows a possible history where ramping
along the basal thrust results in 'fulding of the higher
nappes, and is then followed by out of sequence reactiv-—
ation of the higher Blahdé thruét. This results in the
correct structural order, however this explanation is
mechanically unlikely as it disobeys the geometric rules of
thrust sequence. A similar senario, however, has been
suggested For a portion of the Moine thrust belt by McClay
and Coward (1981). There reactivation of older thrusts is
believed to have resulted in such a reversal of the
stacking segquence.

Figures 7c and 7d represent boudinage and extensional

faulting hypotheses. Gee (1278) has attributed lens-shaped
t



C 42—
and pinch—-and-swell type géumetries to late stage stretch-
ing of the nappe pile during gravitational collapse. 6n
alternative explanation is th;t stretching is a normal
component of extensional flow associated with the nappe
enplacement process (section 8.3).

The finai possibility is simply that the excision
point, or line, is a branch line defining the limit of the
nappe volume. In this case the branch line wnulq represent
the westernmost limit of the Satra nappe. 0Of the poss-
ibile alternatives this is perhaps the most plausible.
While an extensional origin could be argued for by the
presence of abundant stretching lineations and by the
boudinaged eclogite pnds, there is no additional evidence
of boudinage or pinch: and swell of the nappe itself as
might be expected. Also, there are présently no mapped
occurrences of S=tra lithologies west of this point.

The presence.nf large—scale ductile fold-nappes in the
Oppdal District was first described by Muret (1960), and
Krill (in press) has published some schematic sections
through the Oppdal District showing the major east-verging
recumbent structures. While the internal geometries of the
nappes are not yet completely understood, the vergence and
general style seem clear. Primary facing indicators
{cross—bedding) are well preserved in the Lédnset and Kongs-—
voll areas (Figure 4) indicating an upward facing struct-

ures. Similar relationships are observed for the synformal
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structure near Graho (Krill, 1980a). To the west are over-—
printing fold relationships, with later steeply inclined
folds refolding the>ear1y isoclines. The significance of
the Grévudal structure and implications Ffor the regional

nappe geometries will be discussed in Chapter 7.

5.2 Foliations, Lineations and Folds

The rock units of the Dovrefiell are all well layered,
generally showing a compositional banding and a linear
fabric. To the sast of the area, for example along the
main road E-& at Eiggén gquarry {krill, 1980b), layering
within the S=tra nappe can be demonstrated to be primary,
with cross-bedded arkosic sandstones crués—cut at high
angles by basic dikes. In the Grdvudal area, however, the
same map unit consists of centimeter-scale banded psammite -
and amphibolite. In most outcrops it is possible to find
isoclines, suggesting the banding is due to high strains
and transposition of primary layering. The other litho-
laogic units similarly show evidénce of transposition and
high strain, including isoclines in most outcrops and a
flattened conglomerate section in the Amatsdal unit
{(003265). The main foliation (8,) in the Grdvudal area is
clearly a transposition fabric, and is the result of high
strains.

The identification of later (8z2) foliations is somewhat

problematic, as locally (e.g., 265243 area and 23353265 area)
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"S=" foliations intensify and become dominant in outcrop,
while obscuring older foliations. Aalso, where the rela-
tinﬁship to folds can be observed, an 5z foliation is
typically subparallel to thé long limbs of folds, and hence
to S:, s0 that it is well defined‘unly near Ffold hinges.
In general, a strict correlation of foliation ages was not
possible. In part this is due to the‘paucity ot micaé in
most of the units so that foliation generations are not
well defined. Also, as primary layering is not well de-
fined in the area the age of the oldest foliation with
respect to bedding is not known. As all foliation orient-
ations can vary stongly from outcrop to outcrop, becauée'of
intense folding, no correlation can be made on tﬁe basis of
orientation.

The procedure adopted here was tﬁ designate the oldest
foliation observed in a given outcrop as 5., and a later
cross—cutting foliation as S8z. In most cases 5. was the
dnminant compositional banding, and 5= was a later foli-
ation. In the following analysis of foliation data (sect-—
ion 6.3) it will be shown that there is no significant
statistical difference between the two populations
{(including Ffold axial planes), suggesting a continous
sequence of foliation formation and folding.

The designation Ss was used for kink bands and cren-—
ulations that post—date other foliations. This data set,

including the kink axes, was relatively small, quite vari-
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able, and difficult to analyse (section 6.3).

Linear features within the rocks include intersection
lineations, mineral lineations, elongation lineations and
fold axes. Typically, lineations measured were some com—
bination of the above. Hinéral and elongation lineations
appear the most common, including gquartz segregations,
tailed feldspar augen, and aligned amphibole needles. In
some cases the origin of the lineations was not always
clear, for example whether quartz rods initiated as
stretched clasts, fold hinges or intersection lineations.
Lineations clearly originating as fold hinges, however,
were included within the fold axes data set. Infersectinn
lineations were both measuredv in outcrop and calculated
from outcrop measurements of foliations. In general, line—
ations are subparallel to Ffold axes in outcrop. Their
variations afe analysed in section 6.4.

Folds aré common within the Doverfijell, varying from
isoclines to open folds and kink folds. Typically, folds
are similar or subsimilar. Fold axes and axial planes were
measured when possible, and style and symmetry noted. In
general no orientation differences could be detected on the
basis of style or symmetry, although isoclinal fqld axnes
apparently tend to be more closely parallel to lineations
(sectiqn 6.4)Y. Coaxiality of folds of various styles and
generations appears typical of the Trollheimen—Dovrefiell

area (Hansen, 192463, 1971; Scott, 1967; UWheeler, 1973;
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Krill, 1980b). As is shown in section 6.3, folds in fold
axial planes and secondary foliations have the same orient-
ations as earlier folds, suggesting at least three phases
of coaxial folding: initial isoclinal folding to form the
transposition fabric, followed by folding of the trans-
position fabric, and finally folding of these fold axial
planesf Bell and Hammond (1984} found sihilar relation-
ships in a study of folded mylonitic rocks, and used the
designation Fu™ for folds in the mylonitic foliation with
the mylonitic foliation as an axiallplane, suggesting that
the folds and foliations had been produced in one continous
defnrmatiun. The folds in the Dovrefiell region may have
formed 1in a similar fashion. A passible exception here is
that of kink folds, whose urienfatiuns tended tq be more
erratic. These were analysed separately.

Locally, fold-interference patterns can be observed in
outcrop. Type 3 interference patterns (Ramsay, 1967, p.
531) appear common, as refolded isoclines (Figure Ba). In
fact, their general presence can be inferred in that all

refolded layering is a transposition fabric, and that the

Figure 8. Fold interference patterns from the Grévudal
area, traced from photographs. A — type 3  interference
pattern in banded amphibolite and metapsammite (962211). B
~ type 3 interference pattern in tightly folded quartz vein
shortened to approximately 10% of its original length. C -
type 1 interference pattern, a sheath fold in banded amphi-—
bolite and metapsammite. All fold axes plunge steeply into

the page.
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fold axes are typically parallel. A refolded quartz vein
{(98921%9) is shown in figure 8b. This vein has been short
ened to approximately 10% of its original length. |

0f particular interest is the presence of closed, type
1, interference patterns (Figure'Bc). The one pictured is
from a particularly gbnd exposure where ice—polished out-
crops of the banded Setra nappe are exposed with linea-
tions  and fdld axes plunging into the mountain side

(?462211). These folds plunge steeply inte the outcrop,  and

are of the type known as sheath folds {Cobbold and Guin-

quis, 1980). Similar tubular folds exist elsewhere in the
Dovrefiell (e.g., Krill and Rishoff, in press), and a spec—
tacular outcrop on Bléh& in the Trollheimen has been des-
cribed by Hansen (1963, 1967). While not well displayed
elsewhere in the Grdvudal area (e.g., 976267), their pre-
sence may be inferred by parallel-plunging folds of oppos-
ite symmetry, which are common. The general parallelism of
lineations and fold axes, in fact, suggests a sheath fold
envirnnmeht, although this is perhaps not sufficient evi-
dence alone. The significance of this is further explored
in chapter 8, but it is noted here that sheath folds typic—
ally occur in association with shear zones {(@.g., Minnigh,

1979; Bell and Hammond, 1984, and references therein).

S.3 Microstructures

Microstructwes of the rocks of the Grdvudal area give
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additional evidence for the highly plastic nature of the
deformation. In general, the quartzo~-feldspathic com—
ponents are fine—grained, typically less than 0.3 mm, with
coarser porphyroblasts or porphyroclasts of garnet; amphi-
bole, feldspar, and lesser staurolite and kyanite. The
groundmass in many samples is largely equigranul ar,
suggesting. annealing, however nearly all samples display
extremely elongate dumaiﬁs of recrystallized ribbon guartz.
Most of the samples also display textures within the guartz
grains that are indicative of dynamic recrystallization,
including mortar textures, deformation lamelli, undulose
extinction, and subgrain development.

Porphyrablasts of amphibole in some cases are granulated
or recrystallized at their boundaries, forming extensive
tails trailing away from the host grains. Garnets typical-
ly show quart:z pressure.shaduws, and are generally rotated.
Kyanite and mica grainé are kinked in some cases.

The textures within all thin sections (43 examined) thus
suggest large ductile strains. The general textures are
largely mylonitic, and many rocks appear equivalent to
protamylnniteé of Higgins (1971) and Sibson (19773 but not
of Wise et al., 1984), gradational into mylonitic gneisses.

Twenty—nine oriented samples were collected to determine
the sense of shear parallel to the fnliaﬁinn, and hence the
sense of nappe displacement. Eighteen of these samples

were collected From the garnet—-mica gneisses of the Blahd
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nappe from which rotated garnets had been reported by Krill
{(personal communication, 1983). In preparation of the
samples it was assumed that the plane perpendicular to thé
foliation and containing the iineatian also contained the
displacement direction. Samples were accordingly cut
perpendicular to the foliation and parallel to the line-
ation. Although most garnets appear rotated, it is not
always clear in what sense, as sigmoidal inclusion trails
are not always well preserved. In some cases the asymmetry
of pressure shadows on the garnets could be used as a
supplementary method. The garnets, however, are not always
well preserved and are commonly anhedral with irregular
boundaries. |

Several other sense of shear indicators were found to be
useful, however, and all samples were checked for inter-—
pretable asymmetric structures (e.g., Simpson and Schmid,
1i983). Asymmetric pressure shadows aided in the inter-—
pretation of some rotated garnets, although these were
often equivocal. Asymmetfic paorphyroclast trails were also
difficult +to reliably interpret. Several samples showed
shear bands (White et al., 1980) inclined at angles of 10
to 30° from the fnliatiun, and some samples of felsic
gneiss showed recrystallized subgrains flattened oblique to
the main foliation.

Eighteen of the oriented samples could be interpreted

for the sense of shear with a reasonable degree of confid-
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ence. Ten of these samples are from the mainly gently to
moderately east-dipping rocks of domains 1 and 23 ‘seven of
these indicated a west-over-east sense of displacement, and
three suggested the reverse. Two samples from domain 3
similarly indicate a narthwest—uver—southeasi displacement
sense, although layering is inclined steeply to the east
giving a down—to-the-east sense. Finally, in the verticél
to overturned rocks of domain 4 two samples give down—-to~-
the—east senses, while four éamples indicate the oﬁpusite
SEense.

Thus, within domains 1 through 3 nine out of tuelve
samples (794) indicate west-over—east displacements, while
in domain 4 four out of six indicate the reverse sense of
displacement. Although the data set is not large, it does
suggest that the displacement direction of the nappes was
to the east. The possible reversal in domain 4 may or may

not be significant (see chapter 7).
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ANALYSIS OF ORIENTATION DATA

The orientation data collected in this area comprises
over 1800 measurements of the strikes and dips of composi-
tional layering (mainly transposition foliation), cleavage,
fold axial planes and kink bands; and trends and plunges of
mineral, stretching and intersection lineations, and fold
and kink axes. These orientation measurements have been
plotted on equal—areav sterengfaphs to give a visual
representation of their angular variations (Appendix A).

Plotting of orientation data was done using the FORTRAN
ﬁrugram STGRAPH {(Appendix B). Strike and dip data, stored
in computer files, were transformed into trends and plunges
of the plane normals. The ambiguity of the trend direction
which results from using the strike and dip values alone is
resolved by assigning the dip direction (a string input as
N, NE, etc.) its azimuthal value, and comparing this number
with one of the two possible trend directions. The program
STGRAFH then plots lineations or poles to foliations using
the equation for an eqgual-area stereographic projection

{2.9., Hobbs et al., 1976, p.501), where in polar coord-

inatess
r = RJI2 sin (w/4 — &72)

where R is the radius of the net, r is the radial coord-

inate and § is the plunge. In Cartesian coordinates:



% = r cos (W/2 — 9)
y = ¢ sin {(w/2 - 9)

where 8 is the trend.

b.1 Eigenvalue fAnalysis

In order to quantify the data distributions eigenvalues
and eigenvectors were calculated for each plot using a For-
tran program, EIGEN (Appendix B). After converting foli-

ation data to foliation pole plunges and trends, direction

N

cosines +Jor each lineation or pole to foliation were calc-

ulated for a coordinate system with % north, y east, and =z

i down =

l = cos @ cos &
m=sin & cos 4§
n = sin &

where @ is the trend and § is the plunge.

A matrix of the sum of the products of the direction

cosines was then calculated:

E 1,2 E lim,, x lin,l
M= E mal, L my2 I ming i = 1.,n

Enals X nNama E ng2

where the summation is over n, the number of measurements.

The eigenvectors [ Vi, V=, V= 1 and eigenvalues [ s,, sa,
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ss 1 are then calculated, where s, 2 s> * sx. The weigen—

values have the property that:
S + Sz + 85x = n

and, for comparative purposes are more usefully given in

normalized forms S, = s./n (Woodcock, 1977), so that:
i1 + 82 + 53 =1

If the individual measurements are considered as point
masses on the surface of a unit sphere, then V., the eigen-
vector associated with the maximum eigenvalue, may be con-
sidered as the axis about which the moment of inertia of
the distribution is minimized. Similarly, V= represents
the axis about which the moment of inertia is maximized
{Watson, 19663 Mardia, 1972, p. 224). It can also be shown
that the eigenvectors effectively give a best fit line or
plane to the data by minimizing the sum of the squares of
the cosines of the angular residuals (Mancktelow, 1781).

The eigenvalues can then be used to represent the type
of distribution. Woodcock (1977} suggested a graphical
technigue in which 1n(8,/5z) is plotted against In{5z/8%).
On this graph random distributions will plot near the

origin, while stronger fabrics plot further out. The

parameter, C, where:

C = In(5./8x%)



can thus be used to quantify the fabric strength. A second

parameter K (c.f., Flinn plot in Ramsay, 1967, p. 137):

ln(51/92)

In(S52/8x=)

can be used to quantify.‘the type of fabric. Girdle
distributions plot below the K = 1 line, while clustered
distributions plot above the K = 1 line. This plot is par-
ticularly useful for visual comparison of a number of dis-

tributions (Section 6.3, Figure 14, Appendix A).

6.2 Confidence Regions

More rignruuslstatistical methods are available for the
\characterizatiun and comparison of orientation data dis-
tributions; these are alsoc mainly based on eigenvalues
(Mardié, 1972). The most generally useful is based on the
Bingham distribution {(Bingham, 1974; Mardia and Zemroch,
19773 Ela, 1984, personal communication). Briefly, we can
calculate the estimated confidence intervals about the
eigenvectors as follows. Let Ty be the normalized

eigenvalues such that 7, < 72 < v=. Then let:
13 = (T, - Ta){ky - ki)

where k, are maximum likelihood estimates for the Bingham
distribution. ki wvalues have been tabulated by Mardia and

iemroch (1977). A standard deviation is then given by:
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Tay = (2n Fa4)%
and confidence regions may be calculated as:
Rig = day [XZ5 o (2) 1%

where the X2 {(chi squared) term is taken from standard
statistical tables for two degrees of freedom, and 1-x as
the confidence interval (8.Q., Ffor 1-o = 9IF54L, X=2(2) =
S5.79147). Rais will then be the semiaxes of approxiﬁately
elliptical confidence regions about the eigenvectors.
Confidence regions have been determined for the eigen-
vectors of orientation data within each domain using this
method (Figure 146, Appendix A). This allows a simple,
easily visualized summary of the data distribﬁtiun showing

the degree of confidence about each eigenvector.

&.3 Determination of Domain Boundaries

In areas of complex or polyphase {folding the standard
method for geometric analysis is to subdivide the map area
into smaller dumains. In general, these domains are defined
as areas in which the folding can be described as approx-—
imately cylindrical; i.e., all surfaces within that domain
share a common line, the fold or mwaxis (Turner and Weiss,
12633 Whitten, 1724663 Ramsay, 1967; Habbs et al., 1976). The
terms "n-axis" and "A-axis" are nearly synonomous, however

a distinction is usually made on the basis of how they are
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found. A w-axis represents the pole to a great circle of
 poles to foliations (w diagram), while a ffi—-axis represents
the intersection of foliation planes (# diagram). The
latter method can be shown to be statistically invalid, and
as the term "f-axis" has this connotation it will nut‘ be
used here {(see Ramsay, 1967, p.7-14).

Subdivision into domains is generally accomplished by
an iterative process where initial domain boundaries are
chosen by visual inspection of the strike and dip vari-
ations over the mapped area (e.g., Ramsay, 1967, p. 532).
The data +From each domain is then plotted on stereographs
to determine the degree of cylindricity; ideally poles to
blanes will 1lie on a great circle, and fold axes will
cluster near the pole fo the great .circle. The domain
boundaries can then be adjusted until.a satisfactory fit is
obtained.

This process, apart +from being rather suﬁje:tive,
becomes especially difficult when domain boundaries are
gradational or where a constant gradient exists. Addition-—
ally, if the scale of folding is larger than an average
outcrop, but small with respect to the map area then the
definition of domains by visual inspectiun becomes much
harder. To illustrate this point figure 9 shows a plot of
a portion of the foliation data collected for the area.
Each data type was stored in a computer file wjth its grid

reference coordinates, and a simple graphics plotting
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routine, LINEPL, was used to prepare maps of the data
(Appendix B). Figure 10 is a similar plot of the lineation
measurements. The data in stereographic form is shown in
Appendix A. Note the near complete variation in the foli-
ation data and the wide distribution of lineation orient-
ations on the stereoplots, indicating 1little preferred
orientation of tﬁese eléments at this scale. The areal
distribution of elements éhnwn in the two maps indicate
tr;nds within the data, but it is not apparent where, or
if, one could define domains of cylindrical +folding.

In this case, then, it is apparent that a manual search
for domain boundaries would involve é large degree of sub-—
jectivity, and an inordinate amount of iterative plotting
and replntting of data. This approach was initially
attempted, hawever, it soon became clear that a more ob-
jective search procedure would be required. Charlesworth
et al. {1975) and Langenberg et al. (1977) have suggested a
statistical test based on work by Watson (19465) to deter—

mine domain boundaries. For this test the null hypothesis

Figure 2. HMap of selected foliation data from the Grédvudal
area. Dip tick marks are proportional to the cosine of the
dip, giving their projection onto the map surface. The
distance between tick marks on the map border is 10
kilometers.

Figure 10. HMap of selected lineation data from the Grédvu—
dal area. Lineation arrows are proportional to the cosine
of the plunge, giving their projection onto the map sur-
face. The distance between tick marks on the map border is

10 kilometers.
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of coplanarity of S—poles is rejected with confidence 1-«

if:
k sx > X2(n—-2)

where k 1is an empirical constant dependent on measurement

and roughness errors. As k is difficult to determine where

- the features producing roughness occur at a scale larger

than individual outcrops, a second test for coaxiality is
generally required. For this test a fold is divided into
two segments and the null hypothesis for coaxiality is

rejected with confidence 1—oa if:

in—4) {(gx - S=a — Sxb)

¥ Fa, n—4{(x)

2(sxa + s=b)
where sxa and s=b are the minimum eiggnvalues for the two
subareas and Faz, n-4(x) is the upper 100 percentile point
of the F distribution with 2 and n-4 degrees of freedom.
Two Ffurther tests are then required to determine whether
the two segments have eqgual scatter, and whefher each
seqgment has coplanar S5-—poles.

Several problems with this method make i£ difficult to
apply in the present case. First, the apparent scatter in
the data at a scale larger than singlé outcrops precludes a
straightfufward determination of k. Also, the variation in
lithologies +from interlayered schists and gneisses of the

Bl ahé néppe to more homogeneous gneisses of the Amotsdal
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nappe suggests that k will not be a constant. Secondly,
the coaxiality test requires initial definition of a major
fold, thus precluding a general search. In the present
field area it is not clear how to initially define the fold
limbs. If, for example, a late large scale fold is super-—
imposed on early folds, the major lithologic contacts will
show a more caomplex pattern than the actual kinematic
pattern of the late +folding event alone (e.g., Ramszay,
1967, p. S531). |

In view of these problems a more generally applicable
search procedure was developed. The +first step was to
divide the area into square kilometer areas. Eigenvectors
were then calculated for the foliation and lineation data
from each sguare kilometer. This provides a method of
reducing scatter, including folding at the outcrop écale,
to better delimit large scale trends in the data. This
also provides a more easily manipulated data set. Figures
11, 12, and 13 are maps of the average foliations {(plane
‘"whose normal is V. for S—-plane data), w—axes (Vx for §-
plane data), and average lineations (V, for L data) re-
spectively. The lineation and nwn-axis plots clearly show a
marked variation across the field area, presumably assoc—
iated with the major fold structure. However, note that the
area of the strongest gradient in lineation orientations
does not correspond with any structure obvious +from the

outcrop pattern of lithologic units {(cf. Figure 6, Plate
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1). The mwm—axis plot is the least well defined of the three
plots, as the axes are not always well defined +for each
square kilometer, however they clearly indicate the same
trends as do the lineation data. The significance of this
and an analysis of their deviations will be discussed
further in section 3.4. |

The plot of average foliations (Figure 11) was analyzed
to locate cylindrical domains using a FORTRAN program
DSEARCH (Appendix B). Initial domains were arbitrarily de-
fined as sguares 3 kilometers on a side. w-axes were then
calculated for these 20 domains, and several of them were
immediately combined if their eigenvectors differed by less
than 10°. The data Ffor such domains were combined and
their w—axes recalculated. The w—axes of the resulting 15
domains were then used in the search for the final domains.

The list of average foliations in each square kilometer

Figure 11. Map of eigen—foliations calculated +for each
square kilometer of the Grdvudal area. Dip tick marks are
proportional to the cosine of the dip, giving their pro-
jection onto the map surface. The distance between tick
marks on the map border is 10 kilometers.

Fiqure 12. Map of eigen—w—axes calculated for each square
kilometer of the Grdvudal area. Lineation arrows are pro-—
portional to the cosine of the plunge, giving their pro-
jection ontao the map surface. The distance between tick
marks on the map border is 10 kilometers.

Figuwre 13. Map of eigen—lineations calculated for each
square kilometer of the Grdvudal area. Lineation arrows
are proportional to the cosine of the plunge, giving their
projection onto the map surface. The distance between tick
marks on the map border is 10 kilometers.
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was then compared to each of these 15 w—axes in turn, to
determine which foliations were within 10? of perpendicular
to a given domain wm—axis. Thus 15 lists of all average
foliations compatible with each respective domain (i.e.,
within 10®* of perpendiculﬁr to the domain axis) were comn—-
piled. These 15 lists were plotted on grid paper by out-
lining each square kilometer on the 1list. Ten of these
plots produced irregular, scattered and discontinuous
domains, indicating that the w—axes used to produce them
were unsuitable for defining domains.

The remaining five plots which produced ﬁore continuous
polygons were then used by outlining the continuous portion
of the plot, while ignoring scafteredluutlying areas. w—
axes wereAthen calculated for these new domains, and a new
plot of compatible average foliations was prepafed.
Additional square kilometer areas could then be added if
they were continuous with the old domain and appeared on
the plot, or subtracted if they did not appear on sub-
sequent iterations. In this fashion the nm—axes defining
the cylindrical domains were modified until they included
continuous polygonal areas. To test for uniqueness fhe
process was repeated using different initial domainsg it
was found that the solution converged on the same polygonal
domains. These final polygonal domains were finally alter-—
ed slightly so no overlap occurred, and so all of the area

was covered. This produced five eslongate domains trending
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NMW across the area.

The final step was to apply the process to the entire
foliation data set. This data set was similarly compared
to the five domain w-axes and five plots of foliations were
made wsing the program LIMEPL showing all the data which
were compatible with each domain axis. These plots were
superimposed on a light table and boundaries were drawn
between the domains. This process required some degree of
subjectivity, but genérally only at a local scale. Thé
eigenvectors for these final domains were then calculated.

The results of the domain - boundary analysis can be
evaluated in two ways; by considering the type and strength
of the resulting fabrics, and by considering the orient-
ations of the eigenvectors. The resulting fabric intensit-—
ies can be qualitatively seen in the domain stereograms
shown in Appendix A. Clearly the strong girdle patterns of
the domainal foliation plots contrast strongly with the
near random fabric of the whole area plot. Similarly, fhe
lineation and fold axes plots show strong point maxima
within each domain. It should be emphasized here that the
domains were defined using the foliation data only; cor-
relation of Ffold and lineation data is thus taken as
confirming evidence for the wvalidity of the search
procedure.

Fabric intensities and type can be more guantitatively

compared on a eigenvalue plot, as shown in figure 14. Here



distance from the origin as measured by the parameter C =
In(S5:/8x) is a measure of fabric intensity. In this case C
for the foliation data has increased fruﬁ 0.67 in the whole
area to a range of 1.97 to 2.921 within the domains, or 2.9
to 4.3 orders of magnitude. The second quantity represent-—
ed on the graph is the fabric type. For example, total
lineations plot just within the girdle field, while line-
ation data for domains 2 to 4 plot as strong clusters. In
general, there is a good clustering of linear data within

the domains and strong girdle patterns within the foliation

. data.

Several deviations from this behavior are worth noting
however. A traverse across the domains from 1 to 5 reveals
an apparent change in fabric type, with little change in
fabric intensity. Lineation clustering is strongest in the
central three domains, falling off to either side. Sim—
ilarly, the strongest foliation girdle patterns are found
in domains 2 and 3. The pattern in fold axes is less well
defined, but still present (the fold axis eigenvalue for
domain 5 is based on only 4 measurements). The signific-—

ance of these patterns is discussed in chapter 7. A

Fiqure 14. Eigenvalue plot for foliation, lineation and
fold axis data from the Grpvudal area. 5., 8=, and S are
respectively the maximum, intermediate, and minimum normal-
ized eigenvalues. The total data eigenvalues (T) and the
eigenvalues of data for each domain (1 to 3) are plotted by

their eigenvalue ratios.
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similar plot for the other orientation data sets is given
in Appendix A.

Finally, the eigénvectnrs for foliation, lineation and
fold axis data have been plotted in figure 15, and their
QE4 confidence regiﬁns are shown in figure 16. Withiﬁ each
domain there is a close correspondence between the foli-
ation v—axis, and the lineation and fold axes eigenvectors.
At the 254 cnnfidence level they are indistinguishable.
Most significantly, however, there is a clear progressive
change in these orientations across the area. This strong-
ly suggests. a reorientation of an early fabric across the
area. Note also the change in foliation maxima, and that
S2 and Sz foliation maxima are indistinguishable at the 954
level of confidence. The significance of these patterns
will be discussed further, the main point here is that a
strong and statistically valid pattern has emerged from the
data.

The domain search procedure analysed the orientations
and locations of foliation data with no inital assumptions

about the domain boundaries. This was deemed essential as

Figure 15. Equal-area stereogram of the maximum eigen-
vectors for lineation and fold data, and the minimum eigen-—
vectors for foliation data in each domain. The best—fit
small circle to the plotted points has an axis of 06-146.

Figure 16. Equal-area stereograms of the 954 confidence
regions for eigenvectors of data distributions within each

domain, based on a Bingham distribution.
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there were no c}ear initial choices for such boundaries.
Clearly, lithologic contacts were of little aid (Figure 6);
and while in retrospect the lineation pattern shnwé a trend
parallel to the domain boundaries, the largest and most
significant data set is that of foliation orientations.
The major aésumption made was that the domains were cylind-
rical; while this is the standard type of domain encounter-—
ed in the literature, there are other possibilities such as
conical domains. In the Grdvudal area however ‘it appears
that the regional fabric can be approximated by cylindrical

domains at a mappable scale.

6.4 Fold and‘Lineatiun Data

In section 6.3 it was demonstrated that within each
domain fold axes and lineations are statistically parallel.
This includes w—axes derived from both foliation data sets,
81 and S=. The only indication of any deviation from stat-
istical parallelism islthat lineation maxima are consist-
ently about 8° closer to the apparent small circle axis
(0&6—-146) than the foliation minima (Figuwre 15). This is,
however, statistically significant at the 95%Z level only in
domain 3, and is not regarded as a resolvable difference.
The only other deviation from this trend is the inter-—
section data (5./5=, Appendix B). In general, these inter-—
sections would be expected to parallel fold axes. Their

deviation here may be aftributed, perhaps, to the small
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data set and errors inherent in calculating them from field
data.

In any event, there is clearly a strong parallelism of
fold axes with lineations, and no clearly resolvable devi-
ations occur at the scale qf the domains. An additional,
and somewhat remarkable, result is that there appears to be
no resolvable difference between the 5. and S= foliation
data sets; their 954 confidence regions overlap in all
domains for both maximum and minimum eigenvectors. This
suggests that both sets were operated on by the same de-
formation, and that bﬁth foliation and fold development may
have been a continous process with early foliations and
ispoclines folded to form new folds and foliations, and sub-—
sequently refolded in a similar fashion.

In order to further analyze the deviation of fold axes
from lineations, a number of attempts were made to identify
any possible correlation of style or symmetry with orient-
ation. This is of particular interest because, in general,
the lineations are largely stretching lineations that re-
present the maximum finite elongation direction, while fold
axes are presumed to have been rotated towards the maximum
elongation direction (Chapter 8). Tighter folds, for
example, might be expected to lie closer to the lineations
than more open folds (e.g., Grocott and Watterson, 1980).
Also, Hansen (1963, 1967) was able to relate the symmetry

of folds to a movement direction by considering asymmetric
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folds to have rotated towards a movement direction.

Figure 17 is a histogram of the angular deviation of
fold axes From lineations measured in the same outcrop.
These calculations were made on a Sharp EL-S512 programable
calculator using the relationship:

cos o = COs &3 cos €3 cos dz CcOos Oz +

c0s &1 sin ©, cos §= sin 62 +

sin & sin §=
where © and & are the trend and plunge respectively. The
histugram shows a clear tendency for parallelism of fold
axes and lineations in outcrop, and further suggests a
tendency for isoclines to be more closely parallel to line-
ations than other folds.

To test for any trend in areal distribution of such
deviations, the foliation minima eigenvector set (Figure
12) was compared to the lineation maxima eigenvector set
(Figure 13)  for each square kilometer of the area. After
discarding clearly spurious data points, the angular devi-
ations were hand contouwred (Figure 18). The resulting map
does not give any clearly defined pattern, although there

is a general tendency for the lowest angular deviations to

Figure 17. Histogram of the angular deviation of fold axes
from lineations as measured in outcrop.

Figure 18. Map of Grédvudal area contoured for the angular
deviation of eigen-lineations (Figure 13) from eigen w—axes
(Figure 12) calculated for each kilometer of the area.
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occur 'apprnximately in domain 3. There may be a cor-
relation here with the eigenvalue analysis, ‘which suggests
a stronger linear fabric in domain 3 (Fighre 14).

Finally, a number of attempts were made to see if a
correlation existed between fold tightness or symmetry énd
orientation within each domain. The data from each domain
were plotted on stereonets by fold symmetry, as § or Z, and
isoclines were plotted as separate symbols. No genéral
correlation was found. This may in part be attributed to
the presence of well developed sheath folds, sueh that
folds of opposite symmetry have been rotated into parallel-
ism.v

To summarize these relationships, all fold axes and
lineations are essentially parallel, and at least three
early fold phases folded and refolded layering under
apparently identical circumstances, interpreted to re-
present a continous deformation sequence. The first fold
phase is associated with isoclinal folding and trans-—
position of primary layering. The second is open to iso-
clinal folding df the secondary layering. The third is
associated with refolding of the later foliations and fold
axial planes. These are not presumed to be regionally
distinct phases, and probably represent continous Fm™ fold
development in response to local flow heterogeneities.

Thus far, we have not considered kink folds or the

later major refolding event which lead to the present re-



oriented distribution of structural Ffabric across the
domain boundaries, these are considered in section 6.3 and

chaptet- 7 respectively.

6.3 Kink Folds

A relatively small population of the folds in the
Grdvudal area (30 measured axes) have pronounced angular
kink-like geometries, suggesting they may have formed in a
different environment than the more common, typically
rounded subsimilar folds found thruughout the area. The
distributions and orientations of these folds are shown in
Appendix A as maps and stereograms of kink fold {(crenul-
atiun)»axes, axial planes (5x), and their domainal eigen—
vectors.

It is difficult to draw any convincing conclusions from
these data. The map of kink axes suggests the kink fufd
population is similar to that of all fold axes, however,
the confidence regions for the kink fold data set suggest
that this correlation may not be statistically valid.

An attempt was made to see if a consistent stress
orientation, or trajectory, could account for the kink fold
orientations by using an empirical relationship derived by
Weiss and Gay (1974). From experimental data the approx-—

imate relationship:

B = 60° + 0.57 o
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was obtained where o is the angle between the folded sur-—
face and o1, and § is the angle between the folded surface
and the kink band boundary, both measured in the same dir-
ection. This equation was used to find the ¢: orientations
for 23 +olds +for which § was known. OFf these, six had
angles of significantly less than 50°%, suggesting their
origin was unrelated to processes observed under the exper-—
imental conditions. Six others were regarded as question;
able, 1lying outside or marginal to the expefimental data
field. These and the remaining eleven points sﬁuwed no
significant correlation or +trend across the area. This

would seem to rule out an origin due to the imposition of a

late stress field.



SYNTHESIS AND STRUCTURAL HISTORY

It has been shown in Chapter &6 that the Grévudal area
can be divided into five north—northwest trending elongate
domains (Figure 6). Within each of these domains the poles
to foliations form a great circle whose axis is parallel to
the lineation and fold axes maxima. Poles tal fold axial
planes and secondary cleavages also form a great circle
with a similarly Driented axis. It was further shown that
the orientations of these domainal axes change from domain
to domain in a regular fashion, Fforming a well defined
small circle pattern. This chapter attempts to interpret
these patterns, in particular the pattern of the domainal
axis variations. Cross—sections through the area (Figure
6) are heavily based on these interpretations.

The implications of the orientation data within eaﬁh
domain for the folding history have been discussed in sect-—
ion &6.4. Following, or transitional to, an early thrust-
nappe history (Section 5.1), primary layering was trans-—
posed into a new layering defined by isoclines, this layer—
ing has been folded to form the girdle pattern of poles to
foliations, and refolded to form the girdle pattern of
poles to fold axial planes. Rather than three distinct
episodes, however, the general parallelism of all axes and
foliations suggest a continous process of folding énd foli-

ation formation. Similar histories have been suggested for
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mylonite zones (Bell and Hammond, 1984, and ‘references
Vtherein). The parallelism of fold axes with the stretching
lineation is believed to be due to a number of processes
discussed in Chapter 8, and is commonly observed in high
strain zones and areas of sheath folding (Bell and Hammond,
1984, and references therein).

- The well ordered change in axis orientation across the
domain boundaries suggests large scale folding or re-
orientation of the fabric. The five poles to the domain
eigen—foliations form a rather pnorly"defined girdle
pattern, but clearly show a progressive steepening of the
average layering from west to east (Figure 16). The
simplest explanation +for tﬁis is an antiformal structure
overturned to the east; with a shallow east—dipping western
limb defined by domain 1, aﬁd a Steep overturned eastern
limb defined by domain 5. This clearly requires some
elaboration, however, as the tectonostratigraphic order
sugdests a synformal structure (e.g., .Krill, in press).
Furthermore, the  domains do not correspond with the
apparent limbs of the observed major structure (Figure 6),
s0 that a simple antiformal structure can not be a valid
solution.

The second pattern that requires explanation is the
small circlg pattern of the axes (Figure 15). This pattern
is very well defined, and is unlikely to be fortuitous. A

small circle drawn Ffor the w—axis eigenvectors about the
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pole 0&46—-146 has a standard deviation of less than 3%, and
including lineaton and fold axis eigenvectors the standard
deviation is about 60;

Geometrically, the simplest way to generate a small
circle pattern is .by rotation. In figure 19 the eigen-—
lineations have been rotated to horizontal by first rotat-
ing the cone axis &' to horizontal, and then rotating the
eigen—lineations progressively to horizontal about the
axis. The eigen—lineations then lie within a 147 range,
trending almost due east (Rotation of the eigen w—axes
instead of the lineations would produce an even tighter
clustering). The poles to the eigen—foliations were un—
ralled along with the lineations; that is the data within
each domain was rotated as a whole about the cone axis
until the lineations were horizontal. When this is done
the poles to eigen—foliations lie on a vertical great
circle striking abuﬁt 163%, with two maxima (Figure 1%).

This wunrolling sequence can be explained by the‘model

shown in figure 19B. The early sequence of transposition

Figure 19. Refolding model for the Grédvudal fold-nappe. A
—~ +foliation and lineation data unrolled about 06—-146. B -
refolding of early east-trending north—facing fold with
elongation lineations (Li) parallel to fold axes (Fy).
During refolding the upper, - south—-dipping 1limb (5,7)
follows the path from 5.7, forming the present foliation
maxima in domains 4, 9, and part of 3. The lower, gently
north-dipping limb (5.°7) follows the path from G.°7,
forming the present distribution of foliation maxima in
damains 1, 2, and part of 3. BSee text for further explan—

ation.
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and folding produced an average horizontal foliation with
east—trending lineations and fold axes, while the entire
locus of foliations forms a vertical great circle. During,
or possibly following, this deformation a large nearly re-—
cumbent north-facing fold developed with an upper limb
dipping 40? south and a lower limb dipping about 15° north
to produce the pattern of foliation data seeﬁ in +igure
19A. This large fold presently closes to the south, and
forms the major obvious closure pattern.

Refolding of this major east—-trending fold then lead to
the present distribution of orientation data. In figure 19
this is simulated by successive rotations in the 3 domains
of 15, 45, 80, 115 and 145° respectively, giving a fold
with a tighter hinge curvature than limb curvatuwe. Thus
the +Five domains represent successive po;itions on the
large late east—verging antiform. The lower 1limb of the
early Ffold now lies mainly within dnmajns 1 and 2, while
the upper limb of the early fold lies mainly within domains
4 and 5. Domain 3 contains about egual portions of both
limbs.

This +olding sequence can be visualised by folding a
piece of paper lengthﬁise to simulate the Ffirst fold.
Holding the folded paper horizontal with the crease towards
oneself, fold the right side down along a crease angling
off about 45° to the left (MW if east is to the right).

This model explains a number of peculiarities in the
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data set. First, compare the foliation data set from
figure & with figuwre 19. The foliations in the central
portion of domain 2 are largely dipping moderately north-—
eést. To the suuth the foliations become moderately south—
east dipping. These are the orientations predicted for the
orientations of foliations by refolding the two iimbs of
the early fold, and a change occurs in crossing the early
fold axial plane. To the north another, more open, early
fold exists (e.g., Figure &, section D-D’). Second, the
orientations of the domain eigen—foliations become clear,
as they 1lie on two small circles rather than one great
circle. That is, the foliation maxima of Ffigure I16E
correspond closely with the foliation maxima predicted in
the model of figure 19B {(larqge filled cirEIES). Third, the
pattern of the foliation eigenvalues (Figure 14) can be
explained, as the domains cut across the early fold axial
plane. Thus, domain 3 shows the strongest girdle pattern
because it contains both limbs of the majnr early fold.
Finally, the peculiar outcrop pattern can be explained as a
result of a folded axial plane that dips steeply in the
gast, and dips shallowly in the west (Figures 4 and 6).

One possible problem with the model, however, is that
it may be too simple. The distribution of data has been
explained by pure rotation with no attendant strain. In
rock bodies of a Ffinite thickness this creates a com—

patibility problem. One solution to this is by flexural
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flow folding, in which the space problem is alleviated by
simple shear tangential to the folded surface f(as in bend-
ing a telephone book). This shear will result in strains
that will effect the orientations of all fabric elements
not parallel to the folded surface, but not of fabric
elements parallel to the surface (e.g., Ramsay, 1967, ﬁ.
492). In the present case the folded surfaces carrespoﬁd
to iméginary horizontal planes, with respect to the early
near—-recumbent fold.

The amount of simple shear required to maintain con-
stant length of these planes is simply related to the

amount of rotation (Ramsay, 19467, p. 393):
g = tan p = &

where g is the shear strain, p is the angular shear, and ©
is the rotation in radians. This shear strain could be
distributed in many possible ways around the fold. For
example, one limb could be held fixed while the other
accommodates the strain, or the shear strain could be
distributed equally, but with opposite senses, on both
limbs.

The total rotation within the Grédvudal structure, as
recorded by the lineations, is about 130°. Distributed
equally on both limbs this would give maximum shear strains
of g = 1.1 in domains 1 and 5. These shear strains would

have opposite senses on either limb, possibly explaining
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the reversed sense of shear indicated by microstructures of
domain 4 (Section 5.3). A simple shear of g = 1.1 gives a
gtrain ellipsoid ratio of about 1.7:1.9:0.6. Theée strains
are presumably quite small compared to the total cumulative
strain.

The effect of the Ffold-induced shear strains on the
orientations of the fabric would be quite s=small in this
case, because tHe lineations are assumed to have been
originally horizontal, and the foliations strike at low
angles to the shear direction. Using the above model the
amount of rotation of inclined planes due to the requifed
simple shear can easily be calculéted (e.g., Section B.2,
Figure 27). In this case, the model shown in figure 19B
would only have to be modified slightly by taking the upper
limb of the early fold to dip about 30° south rather than
40° gputh. The orientation of the lower limb would nnly'be
changed by a few degrees. While this is not a unique sol-
ution, it does show that a flexural flow mechanism is
compatible with the data.

To summarize, then, following the initial thrust-
stacking event, early folding produced a'sequeﬁce of east-
dirécted sheath folds and a large scale north—facing near-—
recumbent synform. This synform was then refolded about a
south—-southeast trending axis, possibly by a flexuwral flow
mechanism, to Fform an east-verging antiform. This late

antiform can only be recognised by its effect on the older
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structures, as brought out by the domain analysis.

A Ffew further points are worth making here concerning,
first, the significance of the fold mechanics, and second,
the regional implications. The mechanics of the first
folding event can be explained in terms vaa west—over—east
shear or sheath—fold regime; this topic is discussed in
some detail. in Chapters 8 and 2. The late phase of fold-
ing, however, appears to be the result of quite a different
process, although the vergence of the structure is con-
sistent with the earlier folding.

While +the kinematic interpretation of this late fold
structure required an elaborate analysis of the data, it is
difficult to envision an alternative folding mechanism. In
particular, the conical pattern of lineations strongly
suggests a rigid rotation, and can not easily be explained
b? other processes {e.g., Ramsay, 19673 Lisle, 1974).
Flexural +flow or flexural slip folding, however, is
typically associated with well layered sequences that have
well defined slip planes. In this case, while the folded
surface may have been parallel to earlier flow planes (Fig-—
ure 19), there is no apparent layering parallel to these
surfaces.

One possible way of gengrating the late fold might be
thruugh heterogeneous simple shear. That is, if the rock
were flowing from west to éast under horizontal simple

shear and strain-—-rates became lower to the east, perhaps
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because of dehydration, then folding might occur as the
strain compatibility conditions are met by rotation. This
explanation, however, still requires the layering to retain
a preferred shear plane, whether a fabric or crystallo-
graphic anisotropy. |

The recognition of the Brdvudal structure as an anti-
formally refolded north—facing near-recumbent synform has a
number of important implications for the regional geology
and tectonics. First, the deformation sequence can clearly
be explained as an orderly consequence of the west to east
emplacement of the Caledonian nappes. No complex dis-
placement history is required to explain the deformation
éequence {(cf. Scott, 1947; Wheeler, 1773). Secondly, the
peculiar trumpet-shaped outcrop pattern of the entire
Grévudal structure (Holtedahl and Dons, 1960; Krill, ‘in
pressy Figure 4) can be explained as a large, nearly
recumbent sheafh fold, ‘generally plunging to the east,
which has been folded into an east-verging asymmetric
antiform. The present form of the Grdvudal fold-nappe is
thus due to the interference Df. the two fold phases,
resulting in a type 2 interference pattern of Ramsay
(19467). The interference pattern is particularly difficult
to see in map pattern because the axial plane traces of the
two fold phases are atvluw angies.

The southern fold closwre in the Grdvudal area now

plunges to the south-southeast beneath the basement
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gneisses (Figure 4), so that the present structure is anti-
formal rather than synformal. While it is difficult to
accurately extrapolate in such noncylindrically folded
rocks, this suggests a below-surface connection with Blahd
exposures to the south. In this interpretation, then, the
entire Lﬂnset dome area of basement gneissés must be
allochthonous, forming an extensive sheath-like fold—-nappe
overlying the Blahd and other cover nappes. Thus, the
autcfup areas of cover nappes are unlikely tﬁ be simple
infolded synclines (c.f., Krill, in press), and are more
likely to represent early recumbent structures exposed by
later folding.

This also explains the extreme strain gradient observed
between outcrops exposed east of the Ldnset area and those
of the Grdvudal area. That is, outcrops of the Satra nappe
showing primary layering, cross—bedding and cross—cutting
dikes occur east of the Ldénset nappe (Chapter 2); cor-
relative amphibolite-banded psammites of the Grdvudal area
lie structurally below the nappe, and have been completely
transposed by high shear strains (Section 5.2).

This sheath—-nappe interpretation may be extended to the
north, implying that the basement gneisses of the
Trollheimen range form an extensive fold-nappe carried to
the east over cover nappes. This can be visualized by
viewing figure 4 down—plunge from west to east. Two major

antiformal sheath.fuld—nappes then become apparent: the
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Trollheimen and Lénset Ffold-nappes (see figure 21 in
Chapter 8 for the geometry of a sheath fold-nappe). These
are separated by three major synformal sheath fuld—nappes,
from north to south: the Surnadal, Grdvudal and Lesja
fold-nappes. Later refolding on steeper axial planes has
resulted in combined type 2 and 3 fold interference
patterns. Further detailed structural analyses will be
required to work out the details of these nappes. Such
large “sheath—nappes® have not been generally recognised
elsewhere, although they have been suggested to occur in
the Canadian Rockies (Mattauer et al., 1983) and the
Pennine zone of the Alps (Cobbold, 1979). One final
suggestion offered here is that the low velocity zone of
Mykkeltveit et al. (1980) represents an extension of these

isoclinally infolded cover nappes.



FOLDING IN STEADY FLOW

The structural style of the Western Gneiss Region
indicates that the nappe structures are associated with
large scale eastward transport of matérial,‘ and that this
movement involved large strains and very ductile behavior.
The large scale Pennine—-style nappe structures (Muret,
19603 Krill, 1980a), nearly ubigquitous isoclinal folding
and transposition are cleér evidence for this. In par-
ticular, the centimeter-scale interlamination of originally
arkosic sandstones and cross—cutting bésic dikes in the
Saetra Nappe is impressive evidence Ffor large ductile
strains. Large strains are also suggested by the strong
linear fabric, and by the parallelism of this fabric with
fold axes (section 6.4). The apparent annealing of nappe
contacts, protomylonitic textures, and high temperatures
(Chapter 5 and section 8.3) argue for very ductile behavior
of the rnckslduring deformation. OFf particular interest,
in terms of folding behavior, is the presence of sheath
folds (Figure 8; Hansen,l1967, p. 78-80; Krill, 1980b).
This style of fold is common in zones of high shear
(Minnigh, 1979 and references therein), and Cobbold and
Quinquis (1980) have experimentally produced sheath folds
in a layered silicon putty subjected to simple shears of

about 10 to 30.

Simple shear is probably a reasonable, if oversimpli-



fied, model Ffor a deformation history of the Dovrefiell
nappes. This is the simplest type of qefnrmatian that
could explain the large horizontal displacements and the
strong lineation. A largé component of simple shear would
also be expected in an orogeny involving large horizontal
displacements as is suggested by the regibnal geology

(Chapter 3).

8.1 Passive Folding in Simple Shear

In order to test whether the first-order geometric
characteristics of the fulded nappes in the Dovrefjell
could have been produced by a deformation history épprnx—
imating simple shear, a series of deformation experiments
were done by computer simulation. The folding simulated in
these experiments was purely passive, the layering acting
only to mark relative positions. The material itsélf is
assumed to be homogenous and isotropic. To produce folding
an initially pertgrbed, or non—planar, surface was defiqed
and subjected to varying amounts of rotation and strain.
These transformations were accomplished by defining the
coordinates of 2048 to 8192 points on the initial surface,
and subjecting these to displacemenfs described by trans-—
formation equations. The results were displayed as a
distorted grid using a three—dimensional plotting package,
MNCORE, on a CYBER 845, and a Varian Statos 42 electro-

static paper plotter. The MNCORE graphics package is a
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University of Minnesota Computer Center library routine
that is designed +to be largely machine independent. The
fortran program used for this, SHEATH, is given in Appendix
B.

Most of the plots for the experiments wére orthographic
projections. However, a number of perspective projections
were done of several plots using di{ferenf view points,
allowing stereoscopic viewing with a standard stereoscope.
Several of these are shown in Plate 3. Cross—-sections in
various orientations were obtained by specifying extremely
narrow clipping planes, so that only an essentially two-
dimensional plane within the figure would be viewed. For
these plots the grid lines were more closely spaced (twice
as many in the x direction and four times as many in the =z
direction); and three or five parallel surfaces were de-—
fined to simulate layering. This gives a figure defined by
closely spaced dashes that represent the intersection of
the grids with the cross—section plane. These plots were
then traced and alternating layers colored.

The initial surface was defined as a double sine sur-—

face, giving an undulose dome and basin topography. The

equation:

y = 0.06283 (cos x + cos z)

was used for this with z ranging from —w to w. The range

of x depended on the experiment, for most cases t2n or *8w
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was sufficient, althnqgh larger values were used when
generating crass—sections. This choice of coordinate
scaling gives a surface topography symmetric about the
origin, thus simplifying the equations for ensuing rot-
ations and shear (Figure 20). The coefficient used here
gives a maximum amplitude to wavelength ratio of 1:50, or a
maximum surface dip of about 3.6°.

Before discussing the experiments some justification
for the choice of‘ the initial state is required. The
initial form of the perturbations was chosen to simulate an
unspecified irregularity in the surface. This irregularity
could be a relict sedimentary structure, such as a ripple
or channel, a largef feature due to topographic relief on
an erosional surface, or a deformational feature such as a
boudin or buckle fold. Such perturbations are assumed to
die out in all directinns, that is, it is assumed that all
irregularities have finite dimensions. The idealization of
such features as sine waves will increase the symmetry of
the resulting forms, but should not alter their basic
chafacter.

The amplitude to wavelength ratio of 1:50 is considered

to be sufficiently low to represent a wide variety of such

Figure 20. Surface contours of the initial irregularity,
or perturbation, in the passive fold model. In the model
the surface is scaled so the maximum amplitude/wavelength
ratio is 1/50. Dashed 1line outlines ¥ waveform used for

calculation of orientation data.






—100~

perturbations; primary and secondary structures of this
amplitude appear common in most geologic formations. Dis-
cussion of the impnseq rotations is left to the following
section where it is shown that the imposed sequence can be
explained as a progressive change in boundary cdnditinns.
1t should be noted, however, that the sense of rotation
causes the original foliation plane to move into the short-
ening field; thus any viscosity contrasts between layers
should lead to buckling. This then would cause active
amplification of irregularities fe.g. Smith, 1273) in
addition to the purely passive amplifiﬁatinn described
here.

This initial surface was then rotated about the z axis

using the transformation:

' = coso s5ind X
vy -sind cosd V'

A rotation of 29 was used for most of the experiments. A

simple shear was then applied using the transformation:

where g, the shear strain, was varied from 1 to 1000.
A final heterogeneous simple shear was added in some of

the experiments to simulate a late phase of folding. This
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involved a rotation of 209, fnilowed by the superposition
of a half-wavelength sine curve and a corresponding con—
stant_ y value at values greater than or less than the peak

sine wave values:

in(2x) w/4d > u > -u/ld

y’ =y + s
y’:y+1 ® > w/d
y’ =y — 1 X < -w/4

This gives a heterogeneous shear at 20° to the plane of
simple shear, simulating an asymmetic fold (Figure 21D).
The +inal geometric forms of these deformed surfaces
were further analyzed by calculating the surface normals at
spécified intervals using the FORTRAMN program SHEAROR
{(Appendix B) .and plotting these on stereographic nets.
This allows the plots to be visualized in a fnrh equivalent
to stereographs of S—-surface normals, as used in standard
structural analysis. For this purpose 8192 grid inter-—
section points on the range % = %Zw/2, z = tw/2 (one quarter
waveform; Ffigure 20) were used. These points wére mor e
closely spaced in the x direction, as the surface form
changes most rapidly in this direction.
" For each grid point the components of two vectors were
calcﬁlated. The veﬁturs were defined by the grid point and
two closest neighboring points. The cross product of these

two vectors then gives a surface normal:
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This was then converted to direction cosines:

1 = (yaza — y221)/ N
m = (ZaXz — ZaMa)/ N
n = {(May= — ¥a2y1}/ N

converted to plunges, &, and trends, €, where:

= sin™* n
8 = tan—* (1/m)
and plotted on stereonets using the STGRAFPH program
(Appendix B).

Figure 21 shows the results of applying progressive
simple shears of g = 10 énd 20 on an initial surface with a
maximum amplitude/wavelength ration of 1:30, and an initial
rotation of 2°. At g = 10 asymmetric folds with strongly
curved hinge lines are well developed. At g = 20 the folds
are stfangly overturned and form pocket-like projections.
The final state in this sequence results from a rotation of
20° followed by a heterogeneous simple shear in a sense
conjugate to that of the simple shear plane. Figure 22
shows the effects of increased shear on the initial per-
turbation. These results are also given in FPlate 3 as
stereoc—-pairs for three—-dimensional viewing.

From these experiments it is clear that sheath folds
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are readily generated from small amplitude perturbations
subjected to large shear strains. Under these conditions
any small undulation in the surface subjected teo shear
becomes strongly amplified. Additionally, the lines of
maximum curvature on the surface, 1i.e., the Ffold hinge
lines, progressively rotate into the shear direction.
Passive rotation of hinge lines under conditions of simple
shear has been sﬁggested by a number of authors to account
for the apparent parallelism of fold axes with stretching
lineations (e.g9., Escher and Watterson, 1974; Williams,
1978; Bell, 1978), and a similar effect is shown here. It
should be noted, however, that fold hinge lines here are
not passive markers or matefial lines, as they are defined
by the locus of points of maximum curvature on a passively
deforming surface. Initially the fold hinge lines are de-
fined ‘ﬁnly as points at the sine wave maxima. With in-
creasing strain anticlinal hinge lines migrate slightly
forward in the surface (toward the shear direction), and
then back toward the fold crest.

Cobbold and GQuinguis (1980) have done similar shear

Figqure 21. Passive fold model for a simple shear of 0, 10,
20, and a refolding in heterogeneous simple shear. The
initial perterbed surface (Figure 20) is rotated 2% into
the shear direction before the simple shear is imposed.

Fiqure 22. Passive fold model for a simple shear of 30,
49, 40, and 100. The initial state is the same as that for

figure 22.
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experiments on models composed of layered silicon putty and
Plasticine. Initial irregularities were imposed on the
layering, and shear strains up to 30 were applied parallel
to the layering. This resulted in strong sheath-like fnrmé
similar to those of the present experiments.

Once the folds form they become more strongly flattened
and stretched, with the hinge lines moving closely towards
parallelism with the shear direction as the strain is in-
creased. If a secondary perturbation were then introduced
into the new foliation plane defined by the strongly flat-
tened isoclines, a second set of falds would overprint the
first. If perturbations can be successively introduced,
this gives a mechanism for repeated refolding, flattening
and transposition. Such a process could well explain, for
example, the finely interlaminated dikes aﬁd arkose of the
Swtra Mappe.

This additionally suggests that the folds may show
overprinting and style characteristics that are only
indicative of local fold development, rather than regional
phases. That is, the tightness or style of a particular
fold may reflect only the strain since its initiation.
Since such initial perturbations may be small, they are.
likely to be initiated by relatiﬁely random fluctuations in
the deformation history. Therefore regional correlation of
folds by tightness or height to width ratios (e.g., Hansen,

1971) is unlikely to be successful (see also Williams,
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1970).

Figures‘23 and 24 are a series of vertical cross—
sections through the shear experiments. Five parallel
layers were deformed in the experiment to simulate layer-
ing. The geometrical resemblence of figure 24 to sheath
folds abserved in dutcrup (figure 8) is striking, and ‘the
orientation of hinge lines is similarly steeply into the
page. Figure 235 éhuws sub—horizontal sectiﬁns, or map
views, through the refolded (back-shear) model. The
section dips 15° in a direction perpendicular to the shear,
to simulate a map view of a north plunging fold paif.

The most notable features of figure 25 are the narrow,

elongate fingers and discontinuous bands of lithologies.

Figqure 23. Vertical cross—sections through the passive
fold model parallel to the shear direction for simple
shears of 0, 10, 20, and 30. Five parallel surfaces were
simultaneously deformed to simulate layering. Length of
the sections is 14 units.

Figure 24. Vertical cross—sections through the passive
fold model perpendicular to the shear direction for a
simple shear of 20. Five parallel surfaces were simult—
aneously deformed to simulate layering. Compare to +Figure
8c. The width of the sections is 2w units; the spacing of

the sections is 0.5 units.

Figure 25. Sub-horizontal section through the refolded
passive fold model of figure 21. Three parallel surfaces
were simultaneously deformed to simulate layering. The
cross—section plane dips 15° to the south {(down),
effectively making the late fold plunge north 15°. The
narrow isolated fingers are believed to be analogous to
those observed in the Grévudal area (Figure &). Length of
the sections is 14 units, and spacing of the sections is
0.5 units. Sense of shear is above page to right.
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These bands are isoclines plunging into the section at
their terminations. Narrow bands like these are character-
istic of the Dovrefiell map patterns. Four major ones
occuwr in the GBrédvudal area (Figure &4, Plate 1), and they
appear common 1in the district asla whole (Figure 4). In
the Amotsdal arkose finger of the northeast portion of the
Grévudal area (Figure 6, Flate 1) the termination of one
such finger can be observed. Here there is complex inter-
layering and +folding, suggestive of an isoclinal hinge
region. Similarly, in the Trollheimen area at the summit
of Bléhﬁ‘there is an excellent exposure of the termination
of an arkosic "thumb.” Here again the folding is iﬁtense
and spectacular {(Hansen, 1971) suggesting strong folding in
the hinge region of an isocline.

The Z-like outcrop of Amotsdal psammite in the central
portion of the Grédvudal map area (Figuwre 6) gives confirm—
ation of the sheath-like form of these infolds, as this
forms a tongue plunging to the east-northeast. The Z shape.
is due to the topographic effect as the psammite cuts

through the mountain-side of Hdgtunga (Plate 1). This sug-—
gests that these'nérrow fingers are isoclines, rather than
thrust slivers, and that their origin can be accounted for
by this model.

Figure 26 shows sterebgraphs of 8192 poles to foli-
ations at various stages of shear, calculated using the

SHEAROR program (Appendix B). 0On these plots the shear
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plane is horizontal and the shear direction is to the
right. The plots clearly show the progression towards a
girdle pattern with higher shear strains, corresponding to
a progressive reorientation of hinge lines towaras the
shear direction. A strong girdle pattern, however, does
not develop until shear strains of approximately 60 are
reached. Therefore, if this model is an appropriate one to
explain the early +folding phase in the Dovretijell, very
large strains would seem to be required to get the observed
strong girdle patterns (Appendix A). A shear strain of 60,
for example, wuuld'require &0 kilometers of displacement
over a one kilometer thickness of rock. While local
strains of this magnitude may not be unreasonable, it seems
unlikely that the entire thickness of the nappe pile could
have been subjected to this magnitude of strain.

Two possible explanations for this discrepancy are that
the vinitial amplitudes of the model are too low, and that
active folding of layers has not been considered. The max—
imum initial amplitude to wavelength ratio was chosen as
1:90, which corresponds to a maximum surface dip of about
3.4%. This was chosen és a reasonably low value for common
primary structures. While it might be reasonable to use

maximum dips as high as 10%, the probability of such larger

Fiqure 24. Equal—area stereocgram of poles to layering for
the passive fold model, shown for simple shears of 20, 40,

60, and 100.
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pekturbatians becomes somewhat more questionable. Although
the angle of repose for loose sediments is about 30°, the
most common structures with such large surface dips are
folds. If such folds exist, they will be amplified, how—
ever we are then ¥a¢ed with the problem of their gener-
ation. We therefure become concerned with the active
generation of folds, which is the subject of the next
section. |

In summary, the passive folding model demonstrates that
relatively small amplitude irregularities, which should be
common as primary structuwres in rocks, will be strongly

amplified under large shear strains. At a larger scale

such irregularities might be present as tupographi:i vari—

ations along depositional suffaces or unconformities, such
as the Amotsdal-Ldnset contact. New pérturbatiuns can alsb
be intruduced during deformation by common structural pro-
cesses, although these can not be generated in a purely
passive model. The form of the final faid shapes after a
simple shear deformation is strongly sheath-like. With the
superimposition of secondary folding, maps and cross—
sections through the models display geometric features
similar to those observed in map and outcrop patterns.u¥
the Dovrefjell. The common eslongate "fingers" observed in
map pattern are thus believed to be sheath-like isoclines,
rather than thrust slices. fAs only small perturbations are

reguired to initiate folding, it is argued that fold gener-
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ation will occur in response to local conditions. This
implies that folds of different tightness or amplitude
would be expected in association with a single deformation.
Additiunally, if perturbations are introduced during the
deformation overprinting and multiple fold generations
should be common.

Style groups based on tightness, height to width
ratios, refolding, or presence of an axial plane foliation
are‘likely to represent local histories and are therefore
unlikély to be regionally correlative. This would also
explain the general coaxiality of the style groups defined
in fhe Trollheimen—-Dovrefjell area by other warkers
{Hansen, 1943, 1971§ Scott, 19673 Wheeler, 1973§ see also

Krill, 1980b).

8.2 Active Folding in Simple Shear

The previous section considered only the effects of
ﬁassive amplificatinn of irregularities to form folds
during simple shear. The main problem that arises from
thisiapprnach is that a strong parallelism of fold axes
with the shear direction is not reached until very high
shear strains, on the order of 640. While this may not be a
problem if larger initial perturbations are allowed, there
is still some point at which folds seem to be required to
produce folds, a rather unsatisfactory explanation. Per-—

haps a more critical point is that, while the passive model
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can generate folds from initial primary irregularities,
there is no provision for the introduction of secondary
perturbations. -

Hudleston (1976) has shown how passive folds may
-develop in flowing ice due to a change in boundary con-
ditinns. I+ flow is initially non—-planar, for example in
ice flowing over a bédruck irregularity, then a change in
flow lines will cause folding of laYEring formed parallel
tn_the original flow lines. Ablation or accumulation rate
changes will cause a change in the flow lines; a similar
condition might be found in flowing rock with the addition
or loss of overlying. material. This is a simple way of
forming passive folds, and may be quite important in high
grade rocks such as those of the Dovrefiell. Cobbold and
Buinquis (1980) and Flatt (1983) have discussed several
other ways of initiating folds in flowing rocks, including
the development of perturbations during boudinage. In this
section we will consider only the formation of folds by
active buckling in ideal simple shear. In particular, the
Dbjective is to demonstrate that fold axes will tend to
form in orientations such that they easily rotate into the
shear direction.

Throughout this section the standard convention (e.g.,
Skjernaa, 1980) For simple shear axes will be used. The
shear plane is the ab plane, a is the shear direction and c

is the normal to the shear plane. All diagrams are con-—
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structed su. that planes above the page are sheared to the
right with respect to planes below the page. X, Y and Z
are respectively the maximum, intermediate and least princ-
ipal strain or strain-rate axes.

A number of authors have approached the problem of the
parallelism of fold hinge lines with a stretching lineation
or shear direction by assuming passive rotation in simple
shear (Escher and Watterson, 19743 Williams, 1978;
Skiernaa, -1980). The general assumption is that buckle
folds initiate with hinge lines near the b = Y direction,
and progressively rotate towards a = X. Figure 27 shows
this relationship for two passive fold hinges plunging 10
and 20? towards Y, the intermediate strain axis. After .a
simple shear of g = 10 the axes have been strongly re-
priented, and at g = 20 the axes are within 16° of the a
direction. An important point to also note here is that
the priﬁcipal strain axis, X, becomes within a few degrees
of the shear direction, a, at shear strains greater than
10. Williams (1978) and Vollmer and Bosworth (1984) have
good +Ffield evidence suggesting that a similar pfncess
ooccurs in nature, showing the reorientation of fold hinge

lines through approximately 20% with increasing strain near

Figure 27. Passive rotation of two linear features with
inital plunges of 10 and 20° towards Y after simple shears
of 5, 10, and 20. The orientations of the X and Z finite

strain axes are also shown.
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Passive . rotation in simple shear

¥ = 0 to 20
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major overthrusts.

In ideal simple shear, however, fold axes forming
exactly parallel to the Y axis would not be expected to
rotate at all, and considerable variation of initial fold
axes would be required to produce a strong reorientation at'
reasnnabie»strains, of perhaps 10 to 20. Sanderson (1973)
approached this problem in the pure shear case by consider-—
ing an initial normal freguency distribution of fold axes
about the Y strain axis, in the XY plane. For a pure shear
of X/Y > 35 the distribution becomes strongly clustered
about the X axis. For example, a normal distribution with
a standard deviation of 10¢ about thé Y axis will have a
frequency distribution with two strong maxima at about 10°
.tu X after a strain of X/Y = ED; This distribution in-
cludes a sampling factor calculated by Sanderson (1973) to
take into account the variable elongation of lines of
different orientations. Although not directly applicable
to simple shear strain paths, it is clear that in shearing
a normal-type distribution of axes, outlying orientations
would rotate quickly into the shear direction (e.g., figure
27) forming maxima neér X (for comparison, g = 20 gives X/Y
= 20.05).

| What has not been considered in these treatments, how-
ever, are the prubablg orientations of developing buckle
folds in simple shear. The rotation model of Escher and

Watterson (1974), for example, assumes fold formation with
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axes near the b = Y direction without further analysis. In
general we can assume that buckle folds will develop per-—
pendicular to the maximum shortening ﬁirecfiun in a given’
layer at the instant of formation (e.g., Treagus and
Treagus, 1?81), and that fold amplification will depend on
the two-dimensional state of strain perpendicular to the
fald axis (e.g., Hudleston, 1273). The main problem en-—
countered here is that while Ffairly good theoretical
relationships exist for the buckling of layers oriented
parallel to principal strains (e.g., Biot, 19613 Sherwin
and Chapple, 12483 Smith, 1977), none have been derived for
the mor-e complex case of layers inélined to strain axes -
(although, see Treagus, 1773, and criticism of Smith,
1975). We will, then, here consider two qualititative
models that predict the orientations of developing folds in
simple shear; one where the strain-rate or state of in—
finitesemal strain controls the orientation of fold axes,
and one in which the orientations of fold axes are
functions of the cumulative state of strain. |

For a state of infinitesimal strain we can write (e.q.,

Jasger, 1247, p. 48):
e = 111_-]91_1
or for principal strains:

e = 12g, + miez + nitex
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where e, are principal elongations and 1, m, and n are the
direction cosines of the line with the X, Y and Z strain
axes respectively. By differentiating with respect to time

we may writes:
£ = ]12€,;, + M€y + niEy

where £; are the principal strain-rates, and 1, m and n now
"refer the line to strain-rate axes. For conditions of
plane strain and constant volume we impose the conditions:

€2=0
€y + €2 + €

0

so that:

there%ere:

£ = €, (12 — n2)
or, if we normalize to €i.:

€/€4 = (12 - n2)

Figure 28 is a contoured stereograph illustrating this
relationship for simple shear {or any other plane strain).
In this case the line of maximum elnngatidn rate, where
€/€, = 1, is at X; and the line of minimum elongation rate

or maximum shortening rate is at Z, where €/€, = -1. Lines
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of zero strain-rate lie within the horizontal ab plane, and
within the vertical bec plane. Any plane, plotted as a
great circle on this net, will contain one line of maximum
elongation rate perpendicular to a 1ine af maximum shuften—
ing rate (see Flinn, 1962, fof related calculations).

We now make two assumptions. First, that if buckling
occurs, it will occur in a direction perpendicular to the
maximum shortening rate in that layer; and second, that the
probability of buckling is related to the ratio of the max-
imum layer shAFtening rate to the shortening rate normal to
the 1layer. That is, if buckling is to occur, extension
perpendicuiar to the layer must be sufficient to accommo-
date buckling; if a layer is flattened faster than it is
shortened no buckling will occuwr. The first assumption
seems reasonable, as buckling is a direct response to laver
shortening. The second assumption here is based on in-
finitesemal buckling theory, which suggests the growth rate
of buckle folds is dependent on the two-dimensional state
of strain perpendicular to the fold hinge line rather than
on the layervshnrtening alone (e.g., Hudleston, 1973). We

are thus implicitly assuming that the strain-rate parallel

Figure 28. Equal-area stereogram of strain—rate contours
for simple shear (or any similarly oriented plane strain
such as pure shear). Contours are normalized to the max-—
imum principal strain rate. The two directions of princ-
ipal strain-rate for any plane may rapidly be found by
plotting the plane (as a great circle) and locating the
maximum and minimum values indicated by the contours.
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- extension shortening

Normalized strain rate, €/€;
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to the fold hinge does not strongly effect buckling
behavior.

Perhaps the main weakness in the second assumption is
that the direction of strain-rate normal to the layer is
not a principal one in the plane perpendicular to the fold
axisy in general there will be a cumpunent‘uf shear strain
as well. The effect of layer parallel shear on buckling
theory has not been adequately treated, despite the work of
Treagus (1973, see criticism by Smith,\ 1975)). It is
suggested that the following results derived from kinematic
arguments qualitatively represent the probable orientations
of developing fold axes.

#igure 29 is a stereograph giving the orientations of
39 planes dipping at 10, 20 and 30“ with variable strikes,
and the orientations of the probable fold axes within those
planes. The fold axes are calculated as the directions of
maximum elongation rate within each layer, perpendicular to
the direction of maximum shortening raté. These directions
can be found by plotting the planes as great circles; the

principal directions within the planes must bisect the

Figure 29. Equal-area stereogram of potential fold axis
orientations and normalized differential strain-rate, £g,
calculated Ffor 39 planes dipping at 10, 20, and 30° from
the simple shear plane, ab. The normalized differential
strain—rate varies +from -1 to +i, where negative values
have potential for folding. €min is the minimum layer
strain-rate, and €. is the strain-rate perpendicular to the
layer. Values of €y are given for only half of the axes as
the figure is symmetrical about the ac plane.
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Normalized differential strain rate,

€min = €y
é1 'é‘s
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lines of no infinitesemal strain-rate, contained within the
vertical bc plane and the horizontal ab plane.

For each fold axis an indication of the probability of
fold formation, the *normalized differential strain rate,”’
€my Was calculated as:

Cmin — €,

EN=
£y, — £x

ar:

Em:l.c--n E.—.
GN = 9{ -
€a €21

where £mnin is the minimum layer elongation rate, and €. is
the elongation rate perpendicularrta the layver. This gives
a range of €n from +1 to -1. The layer with €y = -1, then,
is the one containing the Y and I axes (€2 and €x), in the
best position Ffor fold development. The layer containing
the X and Y axes (£, and €2) would correspondingly be in
the worst position fnf folding, with €y = +1. The cése of
€n = O corresponds to the cross—over between layer buckling
and layer flattening.

It is apparent from Figure 29 that although fnids may
most easily form parallel to b =Y, these can only formlin
planes initially containing the b axis. All planes of

other orientations wiil‘develnp fold axes in orientations
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closer to the a axis, and with continued shear these will
be rotated towards the a direction (e.g., Figure 27). This
suggests that during a progressive simple shear active fold
development will occur forming axes in many orientations
away from the b direction, and therefore that these folds
are easily rotated towards the shear direction.

The second case considered here is where +fold
orientations are related to the state of Ffinite strain
within a layer. This is the argument used by Treagus and
Treagus (1981), i.e., that a fold hinge will remain per-—
pendicular to the direction of maximum finite shortening
within a layer. This assumes that a fold migrates through
a layer, rather than acting as a passive marker. This
assumption necessarily leads to the conclusion that folding
is path independent, as the state of finite strain is; and
that the fold reflects the total finite strain rather than
the strain increments. Presumably this can only be true in
the case of a perfectly elastic layer where stress is pro-
portional to the total strain, and therefore the layer can
respond to the stress at ahy given stage in the deform—
ation. In all other cases the fold becomes at least parti-
ally a passive material marker. 6As deforming material
lines, in general, rotate at different rates than finite
strain axes, a material line will not remain parallel to
any given axis of finite strain. Thus, here we are con-—

cerned with the hypothetical opposite end-member from
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passive folding, i.e. purely active folding.
In this éase we will assume that the maximum shortening
withiﬁ a plane represents a measure of the prnbability of
folding within that _layer. A standard measure of finite

strain, s, the stretch, is used here:
5 = 1-6/11

where l¢ and 1, are respectively the final and initial
lengths of a given line.

Figure 36 is a contouwred stereonet of s after a simple
shear of 3. This is a graphic solution to the equation for
the elongation of lines in simple shear, as given by Skijer—

naa (1980):
1/s2 = g2 gin?2 &§° + 2g sin §° cos §° sin 67 + 1

where §° and @° are the plunge and trend of a line as
measured in the deformed state. The stereonet is simply a
projection of a strain ellipsoid, and therefore all  great
rircles are elliptical sections representing the two di-
mensional strain in a plane. All planes, then, have
maximum and minimum values of s at 0% apart.

Figure 31 illustrates the effect of this strain on 39

planes, again initially making angles of 10, 20 and 307

Figure 30. Equal—-area stereogram of finite strain (str-
etch) contours for a simple shear of 5 (or any plane strain
with similar values of X and Z.
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Finite strain (VA ), ¥=5
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with the shear plane. The normal to each plane after de-—
_furmatiun is shown. Also shown is the line perpendicular
to the maximum shortening direction in the plane, i.e., the
maxiﬁum elongation direction, which wilI be the fold axis.
The stretch representing the maximum layer shortening is
given for each fold axis.

The orientation of planes after simple shear was Ffound

using the equation given by Skjerﬁaa (1980) =
p° = tan—* (tan (p-90) + glcos v|) + 90

where p and p° are the angles between the giveh plane and
the horizontal shear plane, in the undeformed and deformed
states respectively. This is analogous to the dip, but is
measured from the positive a direction uniy, giving a range

of 0 to 180%, V is strike of the plane, measured clockwise

from b.

- The location of the principal axes in these planes was
found by +First calculating the orientations of the planes

of no finite strain. In simple shear one plane of no

Fiqure 31. Equal-area stereogram of fold axes and finite
layer strain in 32 layers initially dipping 10, 20, and 30
degrees from the simple shear plane, ab (see figure 29).
The fold axes shown are perpendicular to the directions of
maximum shortening within a given layer. The values of
maximum layer shortening are given as the stretch perpend-
icular to the fold axes. The final positions of poles to
layering are shown as x"s. Values of stretch are only
given for half of the diagram because of symmetry about the

ac plane.
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finite strain is the aﬁ plane, the shear plane. The second
plane of no finite strain must contain the b axis, and fhe
two planes afe bisected by the X and .Y strain axes. The
inclinations of the X and Y axes may be found using eqg-
uwations 3.67 and 3.70 of Ramsay (19467):

v g2 + 2 % g(g2 + 4 )%
522, 512 =

2

tan © = g/¢(1 + g2 — 1/5,2)

The second plane of no fiﬁite strain can then be located.

Similarly, Ffor each plane the principal axes must
bisect the lines of no finite elongation. The axes, then,
can be found by plotting each plane in the deformed state
and finding the bisectors of the lines of no finite
elongation. The elongations of these lines can then be
calculated using the eguation previously given.

In this example there is a clear tendency for fold axes
to be oriented approximately mid-way between the X and Y
axesy actually somewhat closer to the X axis. HMany of
these have stretches significantly less than 0.5, indicat-
ing that they have been shortened to less than half.nf
their original length. While other factors, such as the
complete three-dimensional state of strain, have not been
taken into account, these shortening values should give a
reasonable indication of the folding magnitudes.

These two approaches differ in that the strain—rate
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model predicts the likelihood of buckle fold initiation at
any instant of time, while the finite strain model predicts
tﬁe orientations of folds after a given amount of strain
(active rotation). Both approaches, however, suggest that
folds developing in planes inclined at low angles to the
shear plane will plunge gently into the -ab-c and -a-b-c
quadrants. Thus fold initiation (Figure 29), active rot-
ation (Figure 31) and passive rotation (Figure 27) all
contribute towards the formation and movement of fold axes
towards the X = a direction. Presumably an individual fold
will form and rotate at a rate, and in a path, dependent on
its material contrast with the surrounding rock, in some
compromise between active and passive behavior.

ne Final model for folding should be mentioned here,
involving differential shear. Coward and Kim (1981) have
suggested a model of strain +for the rocks of the Moine
thrust area involving horizontal simple shear. That is,
differential displacement along strike leads to a component
of simple shear in & horizontal plane parallel to layering
{(Figure 32). This leads to a two dimensional finite strain

within the layering with a maximum elongation direction at

Figurg 3Z. Two—dimensional layer strain in planes parallel
to the bulk simple shear plane, ab. If layering parallel
to the shear plane is subjected to shear as a result of
variable amounts of displacement parallel to a, laver
strains and folding may result with fold axes at less than

45°% to a.
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less than 45° to the displacement direction. In this case
then, if the differential movement is large enough folds
will be initiated at 45° or less to the displacement dir-
ection. This offers an additional mechanism for fold
fqrmatinn in areas where the deformatinﬁ may be more

cumpléx than simple shear alone.
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FOLDING IN UNSTEADY FLOW

The preceding chapter on fold development has shown how
folds may form in simple shear, and how rotation of fold
hinge lines occurs leading to the formation of sheath
fdlds, and to general parallelism of fold axes with the
elongation and shear directions. The basic requirements
for this type of folding are sufficient ductility, and some
deviation of layering from the shear plane. Initial devi-
ation of primary layering from an imposed shear is prubably
unavoidable, given the heterogeneous nature of sedimentary
rocks. In high grade metamorphic rocks, however, there is
likely to be a mechanistic relationship between the foli-
ation and the state of finite strain. Under conditions of
high strain planar elements are rotated towards the plane
-of maximum flattening, leading to the formation of a fnli—
ation. This process may be aided by chemical diffusion,
recrystallization and growth of minerals in the foliation
plane.

The generally observed relationship between cleavage
and finite strain is that, at least to within the limits of
observation, cleavage lies parallel to the principal flat-—
tening plane (e.g. Tullis and 'Noud, 19735, aithough» see
Hobbs et al., 1976, p.233-246, and Ghosh, 1982). As the
mechanisms of formation are thought to be similar (E.ﬁ.,

Hobbs et al., 19764, p. 252), this relationship is likely to
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hold as well for other foliations, such as schistosity and
gneissic banding. In transpnsitiuﬁ foliation the layering
is defined by isoclines; again suggesting that it lies
parallel to the principal +flattening plane. In the
northern Dovrefjell this relationship is born out by the
presence of flattened augen and pebbles (003265) parallel
to the foliation plane.

In simple deformation paths, where strain—-rate axes are
constant and the vorticity is less than or equal to that of
5imple éhear {Ramsay and Pfiffner, 19Bi), the finite strain
axes are either constant in orientation (coaxial deform—
ation path) or asymtotically approach some constant orient-—
ation (noncoaxial deformation path). This implies that a
foliation is a stable feature, and will not become folded.
Such a foliation méy develop under conditions of steady-
state flnﬁ, even though strain-rate axes may vary spatial-
ly. This has been demonstrated for flowing glacier ice by
Hudleston and Hooke {(1980). If strain-rate axes are allow—
ed to vary through time, however, an old foliation may be
placed in a shortening field and become folded.

The Ffollowing is a simple two-dimensional model of a
rock mass flowing under gravity‘ and an induced tectonic
stress to demonstrate the general instability of strain—
rate axes, and thus the inherent tendency for fold develop-
ment. The material is assumed to be isotropic and homo-

geneous. The principal equations used are those of Nye
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{1937). A complete derivation is given here, as they are
not fully derived in Nye's paper. The equations are not
restricted to a specific type of flow law, and the flow law
may vary with depth, so that-temperature and pressure de-—
pendent changes can be accommodated. In the example given
here the equations are first solved for a single depth, and
strain-rates for equivalent conditions are calculated using
experimentally derived flow laws ¥ur quartzite and granite.
A second calculation is then made to determine the strain-
rate axes throughout a rock body assuming fuwther boundary
conditions, a temperature gradient, and a specified

longitudinal strain-rate.

2.1 Slip-line Orientations

The Cunrdinate reference frame is shown in Figure 33.
The rock mass is considered to be semi-infinite with a
surface slope «. This allows the calculation of the
orientation of the principal strain—raté axes. A more
complete soliution including the strain—rate distribution
requires a complete specification of the boundary con—

ditions. As appropriate boundary conditions are highly

Figure 33. Coordinate system for the plastic flow model,
showing positive stress and velocity (u and v) components
parallel to axes inclined at « degrees to the horizontal.
The block is an infinite half-space with no velocity
components in the z direction. Additional assumptions are
that the shear stress, T.,, and the effective stress, T,
are functions of y only; see text.
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speculative only the orientations of the principal strain-
rate axes will initially be.calculated.

For the orientations of strain-rate axes a sihgle set
of slip-lines will be found. Slip-lines are lines of max-
imum shear strain rate as defined in plastisity theory
(e.g.y Jager and Cook, 1979, p.233). A second set of slip—
lines exists perpeﬁdicular to the one chosen, and both are
vat 450 tb the principal strain—rate axes. The set of slip-
lines chosen here corresponds closely to a shear plane in
simple shear, although the deformation path also contains a
component of pure shear. That is, the set chosen is that
with the lowest rate of rntatidﬁ with respect to parallel
material 1lines. This set of slip-lines will be here re-
ferred to as the “primary slip-lines”. These planes of
maximum shear strain-rate are those along which shear zones
would be most likely to develop. As shear zones constitute
one of the major modes of deformation in rock {(e.g., Ram-
say, 19803 White et al., 1980), the primary slip-line
orientations are considered to be of importance.

Following Nye (19537, eqs. 6-8) a general flow law may

be written:
€ = f(T)
where € is the effective strain-rate:

282 = €£,4 K44
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T is the effective stress, similarly written:
2"!‘2 = g7, A

where ¢’ ,, are the deviatoric stresses. For conditions of
plane strain this simplifies to (Nye, 1957, eq. 163 Jaeger,

19649, p. 143):
472 = (0% — 0,02 + 472,

The stress equilibrium equations, with a term for grav-
itational body forces, may be written for the two-

dimensional case as (Nye, 1937, eqs. 13, 14):

F0, FTay
+ + pg sin o =0
.33 5y :
é-'rxy SFY
+ + pg cos o« = O
&x &y A

where p is the density. For simplicity in the +following
calculations p is assumed constant, although they could
easily be modified so that p varies with depth. These
equations must be satisfied fpr any internally consistent
stress solution. Taking the partial dérivétives aof the
equilibrium equations gives:

&2y, 2T,y

+ =
Sudy Jy2
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SZTNY &2 Ty,
+ = 0
Fu2 dudy

Setting these equal and rearranging:

— —
=

dxn2 dy2 andy

Or, by rearranging the effective stress equation, we may
write:
27, d27,., &2

- = 22(712 — 72,,)%
Fxd 6y2 dFxudy

Now the simplifying assumption is made that the shear
stress T., and the effective stress v are functions of Y
only. The principal effect of this assumption is that
longitudinal strain—-rate variations are neglected. IThese
variations are probabiy important structurally as, for
example, Nye (1952) predicts a change from thrusting to
crevasse formation in glaciers due to a corresponding
change in ldngitudinal strain-rates. We will consider
here, however, only the structural effects in a localized
area, and will neglect longitudinal variations. Budd
{1970) gives a complete solution including longitudinal
strain-rate variations.

Using this simplifying assumption it follows Ffrom the

abhove equation that:
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&2 1,
=

Sy2
dependence of T., only is required:

Ty = k.y

The equilibrium equations may now be rewritten as:

Fye

e+ k + pg sin ® = O
&

&a,,

— 4+ pg cos & = 0

&y

Integrating these gives:

Tae
a-Y
To determine f(y)
into the effective

146):

= —ky — pgx sin o + fFy)
= —-pgy cos o« + gix)

and g(x) these equations are substituted

stress equation (see Jaegef, 19467, p.

412 = {—~kx — pg« sin o + pgy cos x + f{y) — gi{x))2

+ 4(ky)2

fily) — gix} — kx — pgx sin o + pgy cos «

=% 2 [v2

therefore:

- kaZ =
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fly)
gi{x).

-pgy cos o * 2012 k2y2z )=
—kx — pgx sin «

Replacing these functions back into the stress eguations
gives the stress solution:
O = —kx — pgx 8in o — pgy cos o + 2012 — k2yz]'*
Ty = —pgy cOs & — kyx — pg¥ sin o
Ty = ky
Applying the boundary condition that there is no stress

applied to the upper surface, or 7y, = 0 at y = 0, then:
k = —pg sin «

The complete stress solution may now be written (Nye, 1957,
eq. 17):

¥ = —pgy cos o Lt 2072 — (pgy sin w)21%

ry, = —pgy COS o

Tuy = —pgy sin o

To determine the orientation of slip-lines we use the
standard assumption of plasticity theory that strain-rate
axes are parallel to stress axes. The orientation of the
principal stress axes is given by (e.g9., Jager, 1969, p.
7ys
2Ty

tan 2o =
“‘N - u.y

or, in this case:
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—2pgy sin o
tan 20 =

+20v2 — (pgy sin w)2 1=

For the orientations of the slip-lines, then:
g =86 — 45°

Figure 34 is a plot of @ - o, or the true dip of the
primary slip—lines, versus the effective stress for aldepth
of 20 km and with various surface slopes. The depth of 20
km is chosen as an approximate minimum for the stable
assemblage kyanite + staurolite (e.qg., Winkler, 1247, p.
242y, observed in the mica gneisses of the Grdvudal area.
Depths of up to 65 km have been inferred qur eclugite¥
bearing gneisses west of the area (Cuthbert et al., 1983).
A denéity of 2900 kg/m~ is used as an average value for
high grade gneisses (e.g., Daly et al., 1%266). The range
in surface slopes is chosen as representative of the range
of average regional slopes of modern mountain belts (Davis
et al., 1?83).

This graph (Figure 34) shows steep slopes'at low values
of effective streés, indicating large changes in the dip of

slip-lines with small changes in effective stress. The

Figure 34. Slip-line dip versus effective stress for var-—
ious surface slopes, at a depth of 20 km. J.e indicates
the amount of simple shear versus pure shear, assuming that

dv/8&% = 0.
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dashed 1lines indicate wvalues of I.e, an index of simple
shear explained further below. The index assumes no change
in velocity parallel to the x direction, and varies from
Juw = 1 for simple shear to Ilee = 0 for pure shear.

In figure 35 this variation has been expressed in terms
of the effect of an increasing deviatoric stress in the x
direction on the orientation of the primary set of slip-
lines. The graph is a plot of @ - a versus the deviatoric
stress ¢’,., where:

07 5

I
q
X
i
LN}

or:
' = [T72 ~ {(pgy sin x)21'*%

The graph is also plotted for different surface slopes, o,
using a depth of vy = 20 km.

The principal features of note in this graph are, sim—
ilarly, the steep- slopes at low deviatoric stresses.
Therefore relatively small fluctuwations of horizontal devi-
atoric stress on the order of 10 MPa (100 bars), can lead

to changes in the dip angles of slip-lines of from 6 to 21

Figure 35. Slip-line dip versus deviatoric stess in the x
direction for various surface slopes, at a depth of 20 km.
Iaw indicates the amount of simple shear versus pure shear,
assuming that &v/&x = 0.
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degrees. The graph is symmetric about its vertical axis,
so that tensile deviatoric stresses will have a similar
effect, although in the opposite sense. Such variations in
stress are probably common in active orogenic zones and
represent relatively small fluctuations in the stress
field; estimates of the maximum differential stress in deep
crustal (20 to 30 km) shear zones are on the order of 100
to 200 MPa (Kohlstedt and Weathers, 1980; Zoback, 1983), or
maximum shear stresses of 30 to 100 MPa (cf. Ffigure 3I4).
Fur' the above model this would correspond to approximately
40 to 95 MPa of horizontal deviatoric stress for a 3° sur-—
face slnpe;. the ranges of stress on the graphs were chosen
as reasonable estimates for the deformation of deep crustal
rocks.

To determine the feasibility of fold formation at these
stress levels flow laws for granite (Carter et al., 1981)
and quartzite (Koch et al., 1780) have been plotted in fig-
ure 34. Temperature estimates in the Grdvudal area from
garnet—-biotite pairs range from about 500 to &60° C (Krill,
in press), and about 750° C for the majority of the Basal
Bneiss Region (Cuthbert et al., 1983). To flow at a geo-
logically realistic strain-rate of 107*= g1 granite at

500° € requires only a flow shear stress of about 3 MPa (30

Figure 346. Strain-rate versus shear stress curves for
granite (after Carter et al., 1981) and quarzite (after
Koch et al., 1780).
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bars).

2.2 S8lip-line Field

Before discussing the implications of  these calcul-
ations (section 9.1) for folding, a final set of calcul-
ations is made to determine a vertical profile of the slip-
line orientations given the granite flow law, a geothermal
gradient, and assumed longitudinal strain-rates.

To incorporate a Fflow law into the model assume a
Levi-Mises type plasticity relationship of the +form (Nye,

1957, eq. S5):
13 = kovay
and a flow law of the form:
£ = Brn

from the definitions of effective stress and strain-rate

then:
22 = kzo',i_jﬂ"i_’
= Pg2y2’
€ = kv
k = Byn—12

By again assuming plane strain, and that &v/éx = 0 , these
equations can be solved to give the relationship (Nye,

1957, eq. 24):
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T

{72 — (pgy sin x)2)'*

where r = du/dx , the longitudinal strain—-rate (see figure
33). This equation, the flow law for granite (Carter et

al., 1981):
€ = 1.4 x 10~ exp(~-25.3/RT x 10-S) (27)=-%

(R is the Universal Gas Constant and T is the temperature
in degrees Kelvin), a temperature gradient of 15 C/km, and
the equations previously given for slip-line orientations
were then solved using a BASIC program on an IBM-PC to give
the slip-line orientations as a function of depth.

Figures 37 and 38 show the primary slip-line orient—
ations, #, as a function of depth for surface slopes of 29
and 1° respectively, at various longitudinal strain-rates.
The orientation of slip-lines increases with longitudinal
strain rate, and a comparison of figwe 37 with figure 38

shows that a change in the surface slope of 1% produces an

Figuwre 37. Slip-line field assuming a Westerly granite
flow—-law, a 15%km™* thermal gradient and a 2° surface
slope, shown for various longitudinal strain-rates. Ias
indicates the amount of simple shear versus pure shear,
assuming that dv/8x = 0. :

Figure 38. Slip—-line field assuming a Westerly granite
flow-law, a 15°km—* thermal gradient and a 1* surface
slope, shown for various longitudinal strain-rates. I
indicates the amount of simple shear versus pure shear,
assuming that &v/&x = 0.
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approximately S° change in the orientation of slip-lines.
These models also predict the proportion of simple sheér;
for example with a 2% surface slope and a longitudinal
strain-rate of 10-1> g-1 simple shear will occur at a depth
of approximately 27 km. Alsa, under these conditions pure
shear deformation paths wnuid be dominant to depths of
about 20 kilometers, where lae = 0.5, with a narrower zone
of simple shear dominated deformation below. It should be
noted however that Jae varies smoothly with depth (see
below) and no sharp break occurs between pure and simple

shear dominated regimes.

9.3 SHimple Shear Index
A simple shear index, laa, was defined by Hudleston and

Hooke (1?805 as:b
Tam = 20y /(£3-52)
where w,., is the component of the vorticity tensor:
Wiy = H{SW/Fx — Sv/8y)

To relate this to the present problem, the matrix for a
plane stirain rate of deformation (or stretching) tensor can

be witten (e.g. Mase, 1970, p. 112):
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[ Su/Ex ¥ (Su/dy + Sv/&%) ]
€a4 =
Y(sdus/dy + Sv/Ex) dv/&y
€ TI'

Using eguations for a general Mohr construction (e.g.,

Jaeger, 1269, p. 10):
%(E1—§z) = BWL{€,—€,,)2 + 4ra]J=
For a constant vqlﬁme defurmat;nn € = —€, , S0 thét:
(€1-€2) = 2(£,2472)%
and:

ny

Taw =

(£, 2412)

Mow the equation for lae can be rewritten by using the

plastic stress—strain rate relationship assumed earlier.

In plane strain (Nye, 1957, eq. 13):

€ = —€y, = Yk (0 —0,)
r = ka,,
= Whey {if Av/8x = O)

so that:



Means et al. {(1980) have used a similar guantity called

the kinematical vorticity number:

W
Wi = ——e
(2I1In)%

where w is the vorticity magnitude:
w = (Su/dy — SV/EX) = Zwh,

and I, is an invariant quantity called the second moment
of the stretching tensor (Means et al., 1980, eq. 20 con—

tains an error):
IIm = I2 + 2I1 = tr(€s4€.,7)
which in this case is:
Il = €,.2 + éyz + 2rz
s0 that=-

W

Nk =
[2(,2 + £,2 + r2)]s

and for constant volume:
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W
Wk=

2(€,2 + p2)%

Wiey

{€,,2 + p2)%

Therefore in a plane-strain constant-volume deformation
path the index of simple shear, las, is equivalent to the

kinematical vorticity number, W..

2.4 Folding

The principal implications of the above calculations in
terms of fold generation are that the orientations of slip-
lines are dependent on a number of variables, and are
therefore unlikely to remain constant through time. Figure
35 shows thizs variation as a function of deviatoric stress,
r’x. The effect of increasing stress is to increase the
dip of slip-lines. Other variables will also effect the
slip-line orientations. Decreasing the surface slope, as
has been mentioned, causes a strong increase in slip-line
dips. Similarly, a decrease in depth or temperature, or an
increase in horizontal strain—-rate (largely a function of
stress), will result in slip-line dip increases.

In considering the effect of increased slip-line dip on
folding assume that an initial transposition foliation has
developed under conditions of local steady-state flow, thus

establishing an initial isoclinal and intrafolial stage of
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folds (Chaptef 8). In figure 32 this is shown as occurring
in a flow approximating simple shear. With an increase in
dip of slip-lines of several degrees, two important folding
mechanisms may operate. Both mechanisms depend on the
slip~lines rotating through the layering. The easiest way
for slip—-lines to rotate through the layering is if the
initial deformation path approximates simple shear. In
this case the initial transposition layerihg will form
close to the primary slip-lines, and the slip-line orient-
ations are the most unstable (Figures 34, 35, 37, and 38).

The Ffirst mechanism is passive folding, which will
occuwr if shear zones are generated parallel to the new
primary slip-line orientation (Figure 3%9). As shear zones
are caommonly initiated in rocks due to their inherently
heterogeneous nature, this is a likely mechanism. The
second mechanism is active folding, or initiation of buckle
+uids followed by +Flattening. By passing through the

slip—lines the layering, which was previously in an

Figure 3%9. Folding model +From slip-line theory. An
initial foliation forms through transposition, rotation,
and chemical processes in a deformation close to simple
shear. The orientation of this foliation will lie approx-—
imately parallel to the principal flattening plane, which
asymtotically approaches some orientation close to the
principal slip-lines. #After a change in the flow boundary
conditions, increasing the horizontal deviatoric stress or
decreasing the surface slope, the strain-rate axes and
slip-lines change orientations (Figure 33). If the slip
lines move through the layering Ffolds will form either
through heterogenegus shear, ‘or by buckling as the
fpliation is placed in a shortening field.
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instantaneous elongation field parallel to the maximum
finite shortening plane (c.f., Ramsay, 194647, p. 114-120),
has been placed in a position of instantaneous shortening.
In this +field the layers will begin to buckle and form
folds. In this way then, relatively small changes in the
conditions of flow can result in refolding, and multiple
phases of fﬁlding are easily accommodated within a . single

deformation event.
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CONCLUSION

The conclusions derived from this study fall into three
main categories: the local geology and regional tectonic
implications, data analysis, and fold modeling. This sect-—
ion briefly summarizes the principal conclusions.

The geolagy of the Grdvudal area can be described in
terms of five lithotectonic, dr tectonostratigraphic, units
correlative with those of the Oppdal district in general as
described by Krill (IQBQa), and with similar units at_the
Caledonian front in Sweden. These tectonic units origin-
ated as stacked thrust—sheets derived +From the ancient
continental margin, and were carried in from west to east
during & Silurian cnntinéntal collision involving the
A-type (Bally, 1981; Hodges et al., 1982) subductiun of the
Norwegian continental margin beneath Greenl and. This
initial thrust-nappe phase of tectonics was transitional
into a ductile fold-nappe phase in which progressive
mylonitization of the nappes occurred until a pervasive
ductile flow fabric developed. |

The ductile fold-nappe phase of deformation involved
the Fformation of large sheath-like basement cored fold-
nappes during the general eastward flow of rock in é
deformation appraximating simple shear. Components of
‘ compressive and extending flnw; hnﬁever, are required as

simple shear requires special boundary conditions unlikely
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to be met over large areas. The deformation involved the
progressive development of transposition foliations and
fold phasés. A minimum of three coaxial fold phases
occuwrred forming sheath Ffolds whose axes dominantly
parallel a strong stretching lineation. Larger sheath
folds commonly form elongate closed outcrop patterns, with
complex interfingering at their terminations. This
sequence of Ffolding was the result of a continous pro-—
gressive deformation, with folding and refolding of the
transposition foliation as it developed.

During this phase of deformation a large north—-facing
near—recumbent‘fnld—nappe developed with an east-west axis
"parallel to the shear direction. This fold is the southern
portion of the sheath-like Grdvudal fold-nappe in which the
cover thrust—nappe sequence forms a major recumbent infold
beneath the basement gneisses of the Ldnset gneiss “dome”.
This interpretation fufther suggests that the two 15rge
regions of basement gneisses in the Lénset and Trollheimen
areas are major recumbent basement—cored sheath-nappes
carried in from the west. The rocks of the Grdvudal area
thus lie structurally beneath the basement—cored Ldnset
nappe, and have undergone extreme deformation in comparison
with correlative units east of the basement nappes (e;g.,
the Swetra MNMappe). This sheath-like geometry of fold-
nappes has not been widely recognised in other mountain

belts, although such nappes have been suggested to occur in
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the Canadian Rockies (Mattauer et al., 1983) and the
Pennine zone of the Alps (Cobbold, 1979).

Following this phase of fold and nappe development the
early nappe was refolded by a major east-verging asymmetric
fold with a north-northeast striking axial plane. The
overall symmetry of this late fold is consistent with the
earlier deformation, but there is some difference in style.
The refolding resulted in a redistribution of structural
elements, giving the present complex. geometry of the area.
The present form of the Grédvudal fold-nappe is due to the
resulting interference pattern, a type 2 interference of
Ramsay (19467). The regional pattern of fold interference
is probably characterised by recumbent sheath folding (type
1), overprinted by steeper asymmetric folds, resulting in
combined type. 2 and type 3 interference patterns. The
mechanics of the late folding event appear more Cactive®
than the earlier folding, in that structural elements have
been rotated about a well defined axis forming a small
circle pattern, thus suggesting a large component of ex—
ternal rotation. This rotation requires additional
internal deformation for strain compatibility; one compat-—
ible solution is a flexural flow mechanism.

The present boundary between the Western Gneiss Region
and the Trondheim Nappe Complex occurs as sharp syn— or
post-metamorphic faults. It is suggested that these may be

related to isostatic uplift of the Gneiss Region following
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crustal thickening causéd by fold—-nappe emplacement.

Analysis of the orientation data was of primary import-—
ance in establishing the structurél geometry and history
outlined above. In particular, the interpretation of the
late refolding event and interference ﬁatterns became clear
only through this analysis, and analysis of the first phase
of ductile deformation could only proceed after the domains
were established. The goal of the data analysis was to
locate spatial domains of cuaxial‘foliatiuns. In order to
perform an objective search on the large amount of data, a
cnmputerizeﬂ methodology was developed. Because the data
cansist of a complex field with large variations in data
density, the initial step was to create a simplified field
consisting of eigen—foliations for sub-domains chosen as
one kilometer squares.

The resulting field was then analysed by compiling maps
of all sub—-domains compatible with a given axial vector, or
m—axis. The iterative sear&h proceeded by defining a
domain from connected sub-domains, calculating a new axial
vector from the domain data set, and compiling a new map of
compatible sudeamaing. This was repeated until self-
consistent solutions emerged. The final step involved the
same process using all data points. The domains that
emerged from the analysis showed a systematic change across
the area indicating a NNE trending antiform as a late phase

structuré; an entirely unanticipated result. The existence
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of the fold is further verified by an eigenvalue analysis
that indicates the relative position of the domains on the
early fold limbs. Further analysis of.the data within each
domain, including calculation of confidence regions based
on a Bingham distribution, revealed information about the
initial phase of progressive ductile deformation as out-
lined above.

A number of models were developed to explain the
characteristics of the +folds and nappes in the area, in
particular the extensive early phase of recumbent sheath
folding. A computer—-generated passive fold model was used
to explain some of the geometric featuwres, including the
type 2 interference patterns found in outcrop and the
&ummun elongate finger—-like patterns. This model shows
that thése geometric features may form by the passive
amplification D# small amplitude irregularities on an
interface deformed in simple shear. The qguestion of active
fold qgeneration and rotation of fold axes in simple shear
was then explored with several kinematic models involving
layer buckling in relation to maximum strain—raté axes, and
rotation of fold axes in response to finite strains. These
models show that Ffold axes may form in many orientations
during simple shear, and that, although the b direction is
statistically preferred for fold generation, it is an
unstable one from which fold axes will migrate. Thus, the

parallelism of fold axes and stretching lineations may be
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explained by the combined effects of both passive and
active initiation and rotation.

The Ffinal type of fold moodeling done invalves the
calculation of stress axes, strain-rate axes, and slip-line
orientations for an idealized flowing rock body. These
calculations sﬁnw that small changes in the magnitudes of
stress, strain-rate or swuface slope can Ccause large
changes in the orientations of the strain-rate axes or
slip-lines. This is éignificant in that during a pro-
gressive deformation a foliation will develop with an
orientation approximately parallel to the maximum Finite
flattening plane, whose orientation asymmtotically
approaches an orientation defined by the orientation of the
strain-rate axes and the vorticity of the deformation. In
an area of compressive flow with a large component of
simple shear (i.e., Iae approaches 1) the foliation will
develop in an orientation close to the primary slip-lines,
analogous to the shear plane in simple shear. With an
increase in horizontal stress (5-10 MFa) or decrease in
surface slope (12 or less), the slip-lines may rotate
through the foliation. Two folding mechanisms may then
operate: heterogeneous simple shear parallel to the new
primary slip-lines, or buckling and flattening as the new
foliation is placed in a shortening field. Thus, multiple
generations of folding and transposition are easily gener-

ated by small fluctuations in the boundary conditions, or
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by local perturbations.
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APPENDIX A - ORIENTATION DATA

The orientation data collected for the Grdvudal
analysis comprise over 1800 measurements of planaf and
linear fabric elements. These are presented here in
summary stereonets of the domain eigenvector orientations,
és maps and stereograms of all eigenvector orientations,
and as maps and stereograms of the complete data set. The
foliation (5.) and lineation data sets have been edited ort
the maps only, so that overlapping data points are largely
eliminated. These data are also displayed in part on plate
i. The data set is retained by the authdr in the form of
punched card, and SH‘incH magnetic disk format.

The map data are presented graphically in projection,
so that the length of arrows and dip tick marks is pro-
portional to the cosine of the plunge or dip. This gives
an accurate visualization of the three—dimensional attitude
variations. The distance between the tick marks on the map
borders is 10 kilbmeters.

Larger crosses on all stereonets are the eigenvector
orientations, which are also given at the lower right
corners. The normalized eigenvalues are given at the lower
left.

S- foliation data are the combined 5> foliation and Fz
fold axial plane measurements. They are distinguished on

the stereograms as: o = pole to fold axial plane, + = pole
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to foliation.
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Eigenvectors of Gregvudalen
Orientation Data

N

x -‘foliation minima (957)
o - fold axes (199)
e - linecations (439)
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APFENDIX B — COMPUTER PROGRAMS

The following programs were written in FORTRAN 77, and
run on the University u% Minnesota Cyber system. The main
system—dependent functions that might require modification
for other systems are as follows. Programs EIGEN and
EIGLIST require an eigenvalue function, the one used here
is the International Mathematic and Scientific Library
function EIGRS. Programs STGRAPH and LINEPL require a
simple twd—dimensinnal graphics plotting package, the
University of Minnesota Computer Center MMCORE package was
used here. Program SHEATH requires a three—dimensianal‘
plotting package, also provided in the MNCORE package.

EIGEM c#lculates the eigenvectors and eigenvalues for
any given set of linear or planar orientation data.
EIGLIST creates a list of eigenvectors, with factors for
their analysis, for each square kilometer of the map area.
DSEARCH creates a list of of all Ffoliations, or eigen—
foliations, compatible with a given w axis for a domain
boundary search. STGRAPH and LINEPL plot orientation data
in the form of equal-area stereograms and maps respect-
ively.

SHEATH deforms a specified surface and displays the
result in the form of a three—dimensinnal object, or as
variously oriented cross-sections. SHEARDR calculates

simul ated drientatinn data for the given deformed surface.
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The final page is a sample of a short data file.

EIGEN =exsesen-

EIGLIST N M E RN TS ESNEREASNERNEER S NS SSEENNRRREREN SRS RN ER

DSEARCH ==sscceccesssansncannnnnnsessssranannnnns R
STEGROPH ~2ssvescrcsassnsannanannacan . -
LINEPL sscceacscsnusncnssnasanunsnonasnannananannunns
SHEATH =ecesc=-= cavasnes RemesemsmEzsmmnnn .. cenenannes

SHEARDR "L R EEWE S NS ER RSN NN SENRENNENNRENARNNDNE AR SN NS e

Data file format

page
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- 220

222
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FROGRAM: EIGEN(INFUTyOUTFUT » TAFES=INFUT» TAFE4=0UTFUT)

"THIS FROGRAM IS FOR CALCULATION OF EIGENVALUES AN
EIGENVECTORS OF STRUCTURAL ORITENTATION DATA. A FILE OF
FOLIATION OR LINEATION DATA IS INFUT# NORMALISED
EIGENVALUES ANDII EIGENVECTORS ARE OUTFUT. EIGENVECTORS
ARE GIVEN ROTH AS VECTOR COMFONENTS AND AS FLUNGE AND
TRENDS. THE SUM AND THE SUM OF THE PRODUCTS OF THE
DIRECTION COSINES ARE ALSO GIVEN. THE FROGRAM USES AN IMSL
FUNCTION EIGRS FROM THE LIBRARY$ USE FETCH»IMSL/V=M77.

THE INFUT FILE MUST CONTAIN THREE LARELSy DATA TYPE
(1-5 FOR LINEATIONSy »5 FOR FOLIATIONS)» NUMERER OF
MEASUREMENTS» AND THE DATA. THE DATA IS -IN THE FORM?
E-W MAF COORDINATE»s N-S5 MAF COORDINATE, FLUNGE. TREND
(OR STRIKE: INIFy LIF DIRECTION). DUMMY MAF COORIDINATES
MAY BRE USED.

~F.W. VOLLMER» 1984y U OF MN

DIMENSION EIGVAL(3)sEIGUVEC(3s3)sEFL(3)sETR(3)yWK(10)
INTEGER TYPEsFLyTRsSTRyDIFrAZ»ANG - '
REAL L(3)sM(&) 1 N(3) - ’
CHARACTERXZy IR |
CHARACTER®10 s LAREL 1L AREL2 s LAREL3
R=0,017453293
NCL)Y=N(2)=N(3)=0
D05 Id=1i+6
M(I4)=0
READIN(S»10)LARELL
READRC(S»10)LLARELZ2
READN(ES 10 LARELS
10 FORMAT(ALQ)

READ(Ss%) TYPEsNUM

0 40 I=1ysNUM

IF (TYFE.GT,.5) GO TO 20

REAN(Sy15) IXsIYsFL»TR
15 FORMAT(IZ»1iXI3»1XsyI2y1XsI3)

GO TO 30
20 READ(S»25) IXsIYsSTReDIFIIR
25 FORMAT(IZs1XsI391Xs»I3s1XsI291XrA2)
CONVERT STRIKE TO TREND OF NORMAL.

TR=STR+20 '

IF (TR.GT+360) TR=TR-340

IF (DIR.EQ.’'N 3} AZ=0

IF (NIRJ.EQ.’NE’) AZ=45

IF (DIRLER.’E ‘) AZ=90

IF (DIR.EQ.’SE’) AZ=135

IF (IIRL.EQ.’S ‘) AZ=180

IF (DIR.EQ.’SW’) AZ=2205

IF (DIRJEQ.‘W /) AZ=270 -

IF (DIR.EQ.'NW7) AZ=315

IF (DIREQ.’ ‘) AZ=0

ANG=AES(TR-AZ)

IF (ANG.GT.180) ANG=3460-ANG

IF (ANG.LT.90) TR=TR+180

444
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IF (TR+GT+340) TR=TR~360
FPL=90-0IF-
CALCULATE DIRECTION COSINES.
30 L(1)=COS{TRER)XCOS(FLXR)
L¢2Y=28IN(TR¥R)XCOS(PLXR)
L(3)=SIN(FLXR)
CALCULATE DIRECTION COSINE FPRODUCT MATRIX.
MOL)=MCL)+L (1) %%X2
M2)=M(2)+L(2)%KL (1)
MO3I=M{3)+L(2)%k%2
M(4)=M(AY+L (3% (1)
M5 =M(5)+L(3IXKL(2)
M6)=M(6)+L (I KX2
NCL)=N(1Y+HL (1)
N(2)=N(2)+L(2)
60 N(3)=N(Z)+L.(3)
CALL EIGRS(M:3+2+sEIGVALEIGVEC3sWKy IER)
o 90 12=1+3
ERL(I2)=ASINCEIGVEC(3,I2))/R
ETR(I2)=ATANR(EIGVEC(2,I2) yEIGVEC(1+I2))/R
IF (EFLC(I2).LT.0.0) ETR(IZ2)=ETR(I2)+180
EFLCI2)=ARS(EFL{IZ2))
IF (ETRC(IZ2)LT+0.0) ETR(IZI=ETR(I2)+360-
IF (ETR(I2).GT.3860.0) ETR¢IZ2)=ETR(I2)-3460"
90 EIGUALCIZ)=EIGVAL(IZ2)/NUM -
WRITE(S6»100)LARELL
WRITE(6+100)LARELD
WRITECSHs 100)L.ARELS
100 FORMAT(AL10)
WRITECSHs 110IMCLY s NCL) s M(2) s M{3) 2 N(2) s M(4) »
+M(SI e M6 s N(3)
110 FORMAT(/7X»1HL»10X» 1HM7 10Xy LHN/
F1HLsI1XsF10.5s25X»F10.5/
+1HMy IXsF10.571XsF10.514XsF10.5/
+1HN!1X7F10oq!1XyF100u!1X9F10¢u!3X!F100u//)
WRITE(&6y %) 'EIGENVALUES”
ng 130 J=1:3
130 WRITE(S6y140) EIGVALC(J) yEIGVEC(1sJ)sEIGVEC(27J)
FEIGVEC(3y J) sEFLC(I) sETRC(J)
140 FORMAT(F7. 5y iXy1H(sF7+S91XsF7 52 1XsF7.59 1HY »
+1XsFS.291XsF6.2)
WRITE(6y150)IER
150 FDRMQT(/l”HERROR FACTOR1Xs1I5)
STOP
END
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PROGRAM -EIGLIST (INPUTyOUTPUT» TAPES=INPUT» TAPES6=0UTFUT)
THIS FROGRAM -CALCULATES- EIGENVECTORS FOR: ORIENTATION-
DATA- IN EACH SQUARE-KILOMETER OF THE MAP-AREA. -THESE-
ARE GIVEN AS EEST-FIT FOLIATIONS AND FOLD AXES-FOR-
FOLIATION DATA» AND AS REST-FIT LINEATIONS -FOR-

LINEATION DATA. K AND C PARAMETERSs WHICH ARE MEASURES-

OF DATA CLUSTERINGs ARE- ALSO-CALCULATELD FOR EVALUATION-
OF THE -VEETORS-

THE FROGRAM USES AN IMSL FUNCTION- EIGERS FROM THE
LIEBRARY+$ USE FETCHyIMSL/V=M77.-

THE- INFUT FILE MUST CONTAIN THREE LABELSy DATA-TYPE

. ¢1-5 FOR LINEATIONSs »% FOR FOLIATIONS)»y NUMBER OF-
- MEASUREMENTS, AND THE DATA. THE DATA -IS- IN THE FORMI-

E-W MAF-COORDINATEs N-5 MAP COORINNATEy PLUNGEs—TREND
(OR STRIKEy DIFs DIF DIRECTIONY. THE DATA-MUST-BE
ORDEREDN-RY SQUARE KILOMETERy LISTED-FROM NORTH--TQ
SOUTH 'BY COLUMN+

— F.Ws VOLLMERy -Us OF MN,y-1984

DIMENSION EIGVAL(3)sEIGVEC(3r3)sWK(10):.
INTEGER TYFErFLs TRy STRyIIFsAZyANGYEPL(3) rETR(3)y
+ESTRyEDIF»PLO» TRO»STROy DIFO -
REAL-L(3)7M(6) 5K
CHARACTERX2, IR EDIRsDIRO:
CHARACTERX10sLABEL1,LAREL2sLAREL3
R=0,017453293 :
NCT=PL=TR=STR=DIF=0
DIR=!
00 5 I4=1s6
5 M(I4)=0
READ (%55 10)LABELL
READN(5»10)LABELZ
READ (57 10) LABEL3
WRITE(&r10)LARELL
WRITE(6710)LARELD -
WRITE(é»10)LAREL3
10 FORMAT(ALO)
READI(Sy %) TYPEsNUMN
D0 200 -T=17NUM
IF (TYPE.GT.5) GO-TQ 20
READ -IN-LINEATION- DATA,
REAL(S»15)- IXr IYsPLy TR
15 FORMAT(I3y1XsI351Xy 12y 1XrI3)
IF (I.EQ.1)> IXKM=C(INT(IX/10))%10
IF (I.EQ.1) IYKM=CINT(IY/10))%10
IF (¢ CIY=IYKM) »GT+9) JOR. (CIY=IYKM) LT.0)) GO TO 60
17 PLO=FL . o
- TRO=TR
NCT=NCT+1
GO TO- 30
READ IN FOLIATION DATA.
20 REAN(5,25) IXsIYsGTR,DIF,DIR

2% FORMATC(IZsiXsI3s1XsI3r1XyI251XyA2)

IF (I.EQ.1) IXKM=(INT(IX/10))%10
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“IF (I EQ.1) IYKM=C(INT(IY/10))%10
IF ((CIY=IYKM)+BT+9)+0R. (CIY-IYKM) . LT.0)) GO TO 60
26 STRO=STR
DIFO=NIP
DIRO=DIR
~NCTENCT¥I-
C CONVERT STRIKE TO TREND-OF NORMAL.--
TR=STR+90-
_ . IF (TR.GT.340) TR=TR~3&0
; . IF (DIRWEQ.’N- ’) AZ=0-
! - = IF (DIRJEQ.’NE’) -AZ=45
: : ~ ~ - IF (DIRJEQ.’E-*)-AZ=90
s , oo -« IF (DIR.EQ+<SE%) AZ=135-
: IF (DIRWEQ.’S *) AZ=180-
IF (IIIREQ. 'SW’ ) -AZ=225
<o e IF (DIRGEQ.‘W-7) AZ=270
e IF- (DIRWEQ, ‘NW’) AZ=315
- IF (DIRJEQ.’ ‘) AZ=0
N _ _ e ANG=ARS (TR-AZ)
' ' S ©IF (ANG.GT.180) ANG=3460-ANG-
IF (ANG.LT.90) TR=TR+180
IF (TR.GT.360) TR=TR-340
FL=90-DIF -
C CALCULATE DIRECTION COSINES,-
30 L(1)=COS(TRARIXCOS (PLKR)
~ L (2)=SIN(TRXR) XCOS (FLXR)
: L¢3 =SIN(PLXR)
C CALCULATF DIRECTION COSINE FRODUCT MATRIX.
- oMLY =ML L (1) K2
S e MC2)=MO2)HFL(2IKL (L) -
o M) =M(3)+L (2 ) R%K2-
¥ . e MCA) =M L3I KL (1)
: MCS)=M(S)+L (3 YKL (2) -
S MCSYEMCO)FL(B ) RXD -
f e B0 -TO 200 -
S 40 IXK=IXKM4S
e TYR=TYKMAS
= IXKM=(INT(IX/10))%10
- ~-IYKM=CINT(IY/10))%10
: o+ oo IF-(NCT.EQ.1) THEN
P : EPL(Z)=FLO
| ; ETR(3)=TRO-
! ! - - ©  ESTR=STRO
: : © - ERIP=DIFO
- L ENIR=DIRD
e EFL(1)=ETR(1)=0
i e K=C=0,0
. e : GO TO 100
] | e - ENDIF--
; ( CAL.L EIGRS(H!C‘];;_:FIGUALrFlGUECr3!Ul\yIER)
i - - oo DD 90 I2=1+3
: . EPLCI2)=NINT(ASIN(EIGVEC(3sI2))/R)
o : C e ETROIZ)=NINT(ATAN2(EIGVEC(2sIR2)»EIGVEC(1+I2))/R)
—~ IF (EPLCIZ2).LT.0.0) ETR(IZ)=ETR(I2)+180
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SERLCI2)»=ARS(EPL(I2))
IF (ETRC(I2)LT+0:0) ETR(IZ)=ETR(I2)»+360-
90 IF (ETRCI2)GT.+360.0) ETR(I2I=ETR(I2)»-360
C e = IF (EIGVAL (1) LT 0,000000001) THEN
SRS CK=0=0+0 :
R GO-TO 100
ENDIF-
K=ALOG(EIGUAL(3)/EIGUAL(Q))/ALOG(EIGUAL(E)/EIGVQL(1))*
. - C=ALOG(EIGVAL(3)/EIGVAL(L1) ) '
i 100 IF (TYPE.GT5) GO -TO-140
€ PRINT QUT--LINEATION- DATA.
WRITEC6r130)IXKy IYKsEPL(3) yETR(3)>sNCTsKyC
130'FURﬁQT(I3!1XrI3!1XvI7vinI3y3Xr13!1X!F6z311X1F6;?)
B0 -1 354t S
435 M1 4)mb—
: NE T
GO TO 12
- ¢ CALCULATE -FOLIATION-STRIKE-ANI-IHIF+
140- IF (NCT.EQ.1) GO-TO 145~
-ESTR=ETR(3)>+90
e e IF (ESTR.BT.360) ESTR=ESTR-360
i TE-CETRC(3)LT.180) ENIR='W *
- - IF- {ETR(3).6T.180) EDIR='E *
¢ e IF({ETR{3) 6T+ 135)ANII. (ETR(3) LT.QQS)) EHIR*’N £
IF C(ETRC(3)+6T+315) OR(ETR(3).LT, 4a)) EDIR=’S -
N ERIP=90~EFL (3%
- € PRINT OUT FOLIATION DATA.
- - 145 NRITE(é!luO)IXh!thiESTRrFDIPrFBIR!FPL(l)9ETR(1)7
+NCT Ko O -
150 FORMAT(3(I3!1X)rIQ!1X!AQ!3X!13r1X773v3XrI371Xr
+F&.391XsF&.3}
- 0o 170 I4=1+4
170 M(I43=0-
NCT=0 -
GO TO 26
200 CONTINUE
- -8TOP
END-
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FROGRAM DSEARCHC(INFUTOUTFUTy TAFES=INFUT, TAFES=0UTFUT)

THIS FROGRAM IS FOR USE IN A DOMAIN BOUNDARY SEARCH.
AN ESTIMATED PLUNGE (FLI) AND TREND (TD) OF A DOMAIN B
AXIS IS OBTAINED BY EIGENVALUE ANALYSIS OF AN ARBITRARY
INITIAL DOMAIN. THIS IS INFPUT INTO THIS FROGRAM WHERE IT
IS COMPARED TO A GIVEN FILE OF FOLIATION DATA.--ALL
FOLIATIONS THAT ARE COMPATARLE WITH THAT AXIS (I.E«
CONTAIN THAT AXIS WITHIN-A SPECIFIED LEVIATION) ARE- THEN
DUTFUT AS A LIST, THE - LIST CAN THEN BE USELDM TO DEFINE--
A NEW LNOMAIN AREA. A NEW B AXIS CAN THEN-RE CALCULATELD
FOR THE NEW DOMAINr AND THE FROCESS REFEATED UNTIL THE-
DOMAIN ROUNDARIES ARE STAERLE.

—F W.VOLLMERY- U, OF MN.» 1984

INTEGER PD,TIrPLyTR»STRyDIFsAZ -
CHARACTER¥10 yLAREL1 s AREL2yLAREL3
CHARACTERX2yDIR—

INPUTPLUNGE- ANI--TREND OF DOMAIN B AXIS.
- PD=73-

- - -TD=107

€

‘R=0,017453293—-
-READ{(S»10)LARELY
READ<Sy 105 EARELZ
‘READ(S+LOYLAREL3
WRITE(&6s20)LARELL1,FI,TD
20 FGRHAT(AIO/iH"rIEyIH-rI3)
- 10--FORMAT(AL10) :
READ: IN DATA-TYFE CODEs AND NUMRER OF- MEASUREMENTS. -
~READ(S» %) TYPE »NUM

— e DO 50-F=1-y NUM
-——-C- READ IN FOLIATION DATA.

C-,_,.

- - READ(S»25) IXrIYsSTRyDIFPYLIR

‘25 FORMAT(I3s1XrI3s1XsI371XsI271XsA2)
CONVERT -STRIKE T8 TRENI'-OF FOLIATION NORMAL.
~-—FR=STR+%0

IF--(TR.GT+360) TR=FR-340
-~ IF--(DIR.EQ+ *N--*) AZ=0

- IF-¢DIR.EQ. ‘NE’ ) AZ=45

=== IF~CBIREQ+4 'E -’ ) AZ=90

< —-IF-(RIRLEQV/SE‘) AZ=135 -

- IF--¢DIRWEQ+ 7S ‘) AZ=180
IF (DIR.EQ.,‘SW") AZ=225
IF (DIR.EQ.’W ’) AZ=270
IF (DIR.EQ.‘NW’) AZ=313
IF (DIR.EQ.’ 7)) AZ=0
ANG=ARS{TR-AZ)
IF (ANG.GT.180) ANG=Z60-ANG -
IF (ANG.LT.90) TR=TR+180
IF (TR.GT+360) TR=TR-360
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- C CONVERT DIP TO FPLUNGE 0OF FOLIATION NORMAL.
PL=20-DIF
C CALCULATE ANGLE BETWEEN FOLIATION NORMAL AND B AXIS. .
ANG=ACOS ((COS(FIXR)IXCOS(TOXR)YXCOS(FLXR)XCOS(TRXR))+
+(COS(PLXRYXSIN(TIKR) XCOS (FL¥R)¥SIN(TR¥R) )+ (SIN(FI¥R)
- +XSIN(FLXR)))
- - -~ IF (ANG.LT.0.0) ANG=ANG+360%R-
IF-CANG.GT 180%R) -ANG=ANG—-180%R
IF (ANG.GT.920%R) ANG=180XR~ANG
.- € REJECT IF ANGLE WITH FOLIATION NORMAL IS LESS THAN 80.
“IF-<ANG.GT+R%80) THEN--
e e e ANG=ANG/R
= = - - WRITE(S+60)IXsIYySTRyDIPyDIRYANG
ENLIIF -
S0 CONTINUE
w e &0 FORMAT(I3»1XyI391XrI371XrI2y1XsA2y2XrF441)
R STDFI
"ENTI -
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FROGRAM STGRAFHCINFUT s OUTFUTy TAFES=INPUT» TAFES=0UTFUT)
THIS FPROGRAM FRODUCES EQUAL-AREA LOWER -HEMISFHERE
STEREOGRAFHIC FROJECTIONS FOR STRUCTURAL ORIENTATION
IATA. THE NETS ARE 10 CENTIMETERS IN-DIAMETER.

DATA TYFPES!?

1=/47y 2=70'y 3='Z’y 4=’8’ (LINEATIONS)
é6='+'y 7='0’y B8=%’ (FOLIATIONS)

S=+ (EIGENVECTORS)

THREE LARELS FPROCEED DATA FOR EACH FLOT. FOLLOWED RY
DATA TYFE CODE AND NUMERER. THE LAST DATA TYFE ON A FLOT
MUST EBE FOLLOWED RY 0,0, FOLLOWING THIS ARE THREE MORE
LARELS (E.G. EIGENVALUES), THE FIRST FLOT -WILL EE IN THE
UFFER LEFT# SUBSEQUENT PLOTS WHOSE DATA LISTS ARE
FPROCEEDED RY & 2y 3y OR 4, WILL EE IN THE UPFER RIGHT»
LOWER LEFT AND LOWER RIGHT RESFECTIVELY. THE FINAL
FLOT DATA MUST EE TERMINATED EY A 0.

~F.W, VOLLMER,» 1984y U OF MN

INTEGER TYFEsFPL»TRsSTRyDIFrAZsANG
CHARACTERX1S5YM.
CHARACTERX2sI'IR
CHARACTER%10sLAREL 1y LAREL2 s LAREL3sLAREL4sLARELS s LARELS
CALL EBGNCOR(GsOs1s0)
CAl.L. BGNVSF (0)
CALL VSFONCO)
CALL SWINDD(-15.0s15.0y-13,0715.0)
CALL SVFOR2(0.0:0.420168y0.42014850,840334)
READI(S¢10) LARELL1
REAN(S»10) LABELZ
REALI(Sy10) LABEL3
10 FORMAT(A10)
- Call CRTSEG

20 READC(S»X) TYFEsNUM

IF (TYFE.EQ.0) GO TO 100

IF (TYFE.EQ.1) SYM='+'

IF (TYFE.EQ.2) 8YM=‘0"

IF (TYFELEQ.3) SYM="Z'

IF (TYFE.EQ.4) 8YM='8’

IF (TYFE.EQ.3) SYM="+"

IF (TYPE.EQ.6) 8YM='+"

IF (TYFE.EQ.7) SYM='0"

IF (TYFE.EQ.8) 8YM="X‘

SIZE=0.3

IF (TYFE.ER.5) SIZE=0.8

CALL SCSIZE(SIZE»SIZE)

callL SCJUST(3)

IF (TYFE.GT.S) GO TO 40
READ IN LINEATION DATA.

no 30 I=1yNUM

READ(S25) IXeIYsFL,TR
25 FORMATC(IZr1XsI3y1XsI2y1Xy13)
CALCULATE PLOTTING COORIINATES.

i
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R=14,1421%SIN(0,785398~-FPLX0.0087266%5)
X=RXCOS((20-~-TR)%0.0174533)
Y=RXSIN((20-TR)%0.0174533)

CALL MOVARC(X»Y)

30 CALL TEXT(S8YMs1)

REA
40

50
CON

GO TU 20

I IN FOLIATION DATA,

DO 60 I=1sNUM

READ(S,50) IXsIYsySTRyDIFsDIR
FORMAT(I3s1XsI3r1X»I391XyI2s1XsA2)
VERT STRIKE TO TRENDI OF NORMAL.
TR=STR+%90-

IF (TR.G6T.360) TR=TR-360

IF (DIR.EQ.'N 7)) AZ=0

IF (DIRJEQ.’NE’) AZ=45

IF (DIR.EQ.'E 7) AZ=%0

IF (DIR.EQ.'SE’) AZ=135 -

IF (DIR.EQ.’S ') AZ=180-

IF (DIRLEQ.’SW’) AZ=225

IF (DIR.EQ.'W 7)) AZ=270-

IF (DIR.EQ.‘NW’) AZ=315

IF (DIR.EQR.” 7) AZ=0-
ANG=ARS(TR-AZ) ’

IF (ANG.GT.180) ANG=3460-ANG -
IF (ANG.LT.?0) TR=TR+180

IF (TR.GT:360) TR=TR-~340
FL=90-DIF

C CALCULATE PLOTTING COORDINATES.

C

60

IRA
100

110

R=14,1421%SIN(0.785398~-FL%0.00872645)
X=RXCOS((90~-TR)%X0.01745333)
Y=R¥SIN{(P0-TR)%0.,0174533)
CalL MOVA2(X»Y)

CALL TEXT(SYMr1)

GO TO 20

W NET OUTLINE AND LABEL NET.
READN(S+10) LAREL4

REALI(S+10) LABELS-
READ(S»10) LARELG6

CALL MOVAR(0.0s10.0)

no 110 K=1-360

X=10%XCO0S( (P0-K)*0,0174533)
Y=10%SIN((90-K)*%0.,0174533)
CALL LINAZ(X»Y)-

CALL LINAZ2(0.0-,10.2)

C ADJUST LETTERING WIDTH ANII HEIGHT.

CalLL SCSIZE(0.5:0.7)
CALL SCJUST(9)

CALL TEXT(’N‘»1)
Call MOVA2(0.0+0.3)
CALL LINAZ2(0.0,-0.3)
caLlL MOVA2(0.3:0.0)
Cal.l LINAZ2(-0.3+0.0)
CALL SCSIZE(0.35+0.6)
CaALL SCJIUST((8)



caLL

CALL

CAaLL
call
- CALL
CALL
CALL
CALL
caLL
CaLlL

caLl-

cAaLL
caLl.
READ
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MOVA2(8+02-9.0)
TEXT(LAREL1y10)
MOVA2(8.0s-10.0)
TEXT(LARELZy10)
MOVA2(B8.0»-11.0)
TEXT(L.AREL3y10)
MOVAZ2(-10,0+11.0)
TEXT(LAREL4r10)
MOVR2(0.,0y-1.0)

TEXT(LABELS»10)

MOVR2(0.07-1.0)

-TEXT(LAREL&+10)
~CLTSEG

(SrXx2 IQUAL

IF--(IQUADER.0) GO TO-200-

IF ~¢IQUADINER:2)> CALL SVFOR2(0.4201750.8403450.,42017r
+0.84034) : '

IF (TQUAD.EQR.3) CALL SVFOR2(0,0r0.,42017+0.0+0.42017)

IF (IQUAD.EQR.4) CALL SVFOR2(0.,42017:0+84034+0.0r
+0.42017)

GO TO §

200 CALL

CalLL
CaLl
© 8TOF
END

VSFOFF (0)
TRMVSF (0)
TRMCOR
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PROGRAM LINEFL(INPUT»OUTPUT s TAPES=INFUTy TAFES6=0UTFUT)

THIS PROGRAM IS-DESIGNED TO PLOT LINEATION OR- FOLIATION
IATA FOR THE MAF- AREA. THE ORIENTATION-DATA FILE-MUST
CONTAIN GRID COORDINATES. DATA TYPES LESS THAN-6 ARE-
FLOTTED AS LINEATIONS+ DATA TYFES GREATER THAN 5

ARE FLOTTED- AS FBLIATIONS.
o= Falo UDLLHER u. OF MN.» 1984

CHARACTER%2yDIR
CHARACTER¥10yLABEL1sLAREL2sLABEL3
REAL LIy LS -

INTEGER - TYPE,PL,TR,STR,DIP,AZ,ANG—
- R=0,0174533

CALL BGNCOR(0yOr1r0)

CALL BGNUSF(0)

TALL USFON(O) -

SCALEING FACTORS IN SWINDD ANDI SUPOR2 GIVE 1:50000.

CALL SWINDO(-1.0516,0r-1,0716+0)
CALL SUFOR2(0.050,950150,07049501)
CALL CRTSEG- :
REAL(S,10) -LAFEL1
REALNS,10) -LAREL2
REAL(S5,10) LAREL3

10 FORMAT(A10)

 REAL(S»X) TYPEs NUM
LII=1%0
LS=041

- D0 50 I=1,NUM
IF (TYFE.GT.5). GO TO 20
REALNSyX) IXsIYsFLsTR
GO TG 30

20 READ(S»25) IXrIYsSTRyDIF,DIR

25 FORMAT(I3»1X»I3s1XsI371XsI2s1XrA2)

CONVERT STRIKE TO TREND OF NORMAL.
TR=STR+90--

. IF (TR.GT.360) TR=TR-360

T IF (DIRGEQ.’N “)-AZ=0

CIF (DIRJEQ.’NE’) AZ=45
IF (DIR.EQ.’E ‘) AZ=90
IF (DIR.EQ.’SE’) AZ=135
IF (DIR.EQ.’S ‘) AZ=180
IF (DIRJEQ.’SW’) AZ=225
IF (DIRVEQ. ‘W ‘) AZ=270-
IF - (DIR.EQ. ‘NW’) AZ=315
IF (DIR.EQ.’ ‘) AZ=0

e ANG=AES (TR-AZ)

“IF (ANG.GT.lBO)-ANG=360—ANG
IF-{ANG.BT+90) TR=TR+180
IF- (TR.,GT+360) TR=TR-3460
PL=0IP )

--C CONUERT GRIDIN COORDINATES TO PLOT COORDINATES.

30 IF (IX.LT.010) IX=IX+1000-
- XFLOT=(IX-8%90.02/10,0"
YPLOT=(IY-150.0)/10.0
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PR COS (PLXRY)
IF- (TYPE+GT 5) IFE=0 025
HTFe=GINCTFRERI R DIPE
YT=C0S ( TRXR ) ¥DIPL
o IF (TYPE-«LT+4) GO TO 40
e -0 PLOT- STRIKE AND- DIP FOR FOLIATION.
- XG51=SIN((TR+P0)XR)XLS
YS1=COS{({TR+90)XR)IXLS
- XS2=GSIN((TR+270)XR)XLS
S YS2=COS((TR+270) kR IXKLS
CALL MOVA2(XFLOT+XS1,»YFLOTHYS1) -
<+ CALL LINA2(XPLOTHXS2,YFPLOT+YS2)
40- CALL MOVAR(XPLOT»YPLOT?
-~ CALL LINR2(XT+YT)
- IF (TYFE.GT.5) GO TO 50

=€ PLOT ARROW FOR LINEATION.

XS1=8IN((TR-160)%R)XLS

s e - YB1=COSC(TR-160)XR)XLS

s e XG2=GINC(TR+160)XRIXLS
YS52=COS((TR+160)XRIXKLS
CALL LINR2(XS1srYSL)
CALL MOVAR(XFLOTHXT YFLOTHYT)
- CALL -LINR2¢XS2yY52)-

e - 50 CONFINUE

¢ PLOT MAF OUTLINE.
-CALL MOVAR(0.0:0.,0)"
CaALL LINA2(0.,0,15.00)
CALL LINA2(12.0515.,03)
- CALL LINAZ(12.,050.0)
- CALL LINAZ(0.0+0.,0)-
C LAREL MAP COORDINATES.
CaLL SCSIZE(0.250.25)
CALL MOVA2(0.0+¢5.0) "
CALL -LINAZ2(0.2+5.0)
- -CALL SCJUST(7)
—~~ - CALL TEXT(/207+2)
- ~-- - CALL MOVAR(12.0+5.0)
cee = CALL LINA2(11.8+5.0)
- CALL MOVAZ(1.0+15.05)

e e CALL LINAR2(1,0514.85)
e CALL MOVA2(11,0+15.05)

e CALL LINA2(11.,0914.83)

i - - CALL MOVAZ2(1,050.0)

S caLL LINA2¢1.0,0.2)
- -— -- CALL SCJUST(?)
- -CALL TEXT(’9207s2)
cem 0 CALL MOVAZ2(11.050.0)
- CALL-LINAZ(114050.2)
CALL TEXT(’007s2)
C TITLE.

T CALL MOVA2(0.0915.03)-

- CALL SCJUST(8) :
CalL TEXT(LAREL1s10)
CaLL MOVAZ(2.1+15.03)



-216 -~

- CALL--TEXT(LABEL3y»10)
- CALL-CLTSEG
- CALL--VSFOFF (0)
- CALL TRMVSF<0)
- CALL - TRMCOR -
-8TOP
"ENI
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FROGRAM SHEATH(OUTFUTs TAFES6=QUTFUT)

THIS FROGRAM IS DESIGNED TO FLOT THE TOFOGRAFHY OF A
DOUELE SINE SURFACE (DOME AND EASIN PATTERN) DEFORMED IN
SIMFLE SHEAR. SECTIONS OR THREE~DIMENSIONAL FROJECTIONS
MAY BE SFECIFIED. AN ADDITIONAL SIMULATION OF RACK-
SHEARING MAY RE ADDEI. ,
- F.W. VOLLMERy U. OF MN.y 1983

ODIMENSION X(-14:16y-128:128)sY(-16116y-1281128)>»
+Z(-16116) »GAMMAC4)
CHARACTERX100 LAREL
SFECIFY INITIAL ROTATION AND SIMFLE SHEAR FOR FOUR- FLOTS.
RI=2,0%0.0174533 :
GAMMA(1)=0.0
GAMMA(R2)=10.0
GAMMA(3)=20.0
GAMMA(4)=20.0
FINAL ROTATION FOR BAFK SHEARING IN FOURTH FLOT, OR ALL
SECTIONS.
RF=20.0%0.0174533 -
SPECIFY SECTIONs 1y OR PLOTy OF NUMBER OF LAYERS (OIN).
NXSECT=0 :
NLAYER=1 :
SFECIFY CROSS~SECTION NORMAL (VECTOR FOINFS TOWARDGS EYE)D .
SUX=0.0 -
sVY=1.0
8VUZ=0.364
SFECIFY FLOT VIEW NIRECTION (VECTOR FOINTS TOWARDS EYE).
UX=-0.6
VYy=1.4
UZ=2.2
LENGTH FARAMETER FOR X NIRECTION (32 TO 128).
NL=64
INITIATE PLOTTING ROUTINE
CALL EGNCOR(0r020:0)
CALL BGNVSF (0)
CALL VSFONCO)
CALL SREFRM(Q)
IF (NXSECT.EQ.0) GO TO 30
CALL SUPNOR{(-SUXsy-8VUYs-8VZ) -
CALL SWINDO(-7.557:59~745¢7.:5)
IF (ARS(SVY).GT.ARS(SVUX) ) CALL SVUF3 (0.050.0s-1.0)
CALL SFROJ(0:SVUXySEVY,S5VZ)
GO TO 40
30 CALL SVUFNOR(-VXy-VYy-VZ)
CALL SWINDO(=7.5y7.G9=74527+3)
FOR ORTHOGRAFHIC FROJECTIONS USE 07 1 FOR FERSP&CTIUE.
CALL SPROJ(Or20%VUX»20%VY»20%VZ)
40 [0 2000 NFLOT=1r4
SET UP VIEW AREAS ON FINAL PFLOT.
IF ((NFLOT.EQ.4).AND. (NXSECT.EQ.1)) GO TO 2000
IF (NFLOT.EQ.1) CALL SVFOR2(0.0:0.,55,0.,350.835)
IF (NFLOT.ER.2) CALL SVFOR2(0.5+1.0+0.3550.83)
IF (NFLOT.EQ.3) CALL SVFUOR2(0.:0s0.5v0.0+¢0.3)
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IF (NFLOT.EQ.4) CALL SVFOR2(0.571.0r0.050.5)
IF (NXSECT.EQ.0) GO TO 45
C DISTO IS THE DISTANCE OF THE SECTION FROM ORIGIN.
DISTO=(NFLOT-1.0)%0.5
CACLSVDFTHIIIISTO~05 00001 » DISTOFOT00001 ¥
CALL SFFCLP(1)
CALL SEFCLF(1)
45 CALL CRTSEG
IF (GAMMA(NFLOT)EQ.0,0) LABEL=’INITIAL FPERTUREATION%’
IF (GAMMACNFLOT) . EQ.1.0) LAREL='GAMMA=1%"'
IF (GAMMA(NFLOT).EQ.5.0) LAREL='GAMMA=5%"
IF (GAMMACNFLOT).EQ.10.0) LAREL='GAMMA=10%"
IF (GAMMA(NPLOT).EQ.20.0) LAREL='GAMMA=20%"
IF (BAMMA(NFLOT).ER.30.0) LAREL='GAMMA=30%’
IF (GAMMACNFLOT).EQ.40.0) LABEL='GAMMA=40%"
IF (GAMMA(NFLOT) .EQ.S50.,0) LAREL='GAMMA=50%"
IF (GAMMA(NFLOT).ER.60.0) LAREL='GAMMA=60%’
IF (GAMMA(NFLOT),EQ.100.0) LAREL=‘GAMMA= 10047
IF (GAMMA(NFLOT)WEQ.500.0) LAREL= ' GANMA=500% '
IF ((NFLOT.EQ.4).AND,(RF.NE.0.0)) LAREL="EACK- QHEQR$'
00 1000 NLAY=—(NLAYER-1)/2y (NLAYER-1)/2
c CALCULATE INITAL STATE FOINT COORDINATES
Do 10 M=-16+16 .
Z(M)=M%X0,19635
00 20 N=-NLsNL
X{MyNI=NXQ,19835
Y(MsNI=0.06283%(COSCX(MN)IHCOS(Z(MY))
++NLAYX0, 2
C INITIAL ROTATION
IF (RIL.EQ.0.0) GO TO 5
XTEMP=X(MsN)
X (M NI=XTEMPXCOS(RII+Y (MyNIXSINCRI)
Y(MsN)=-XTEMPXSINC(RIY+Y (M NIKXCOS(RI)
C SIMFLE SHEAR
5 X(MyNI=X(MsN)+GAMMACNFLOTIXY (MsN?
C SECOND ROTATION ANI RACKTHRUSTING.
IF (RF.EQ.0.0) GO TO 20
IF ((NXSECT.EQ.0) . ANII. (NFLOT.LT.4)) GO TO 20
- XTEMP=X(MyN)
X(MyN)=XTEMFXCOS (RFY+Y (Ms NI XSINCRF)
Y(MsN)==XTEMFASIN(RF)I+Y (MyN)XCOS(RF Y
IF C(AES(X(Mr»N))LE.0.7854) Y(MyNI=Y(MyNI+SINCX(MyNI¥Z)
IF (X(MsN).BT.0.7854) Y(MsNI=Y(M)N)+1.,0
IF (X(MsN)LT.—0.7854) Y(MsNI=Y(MsNI-1.0
20 CONTINUE
10 CONTINUE
€ FPLOT 7X’ LINES
IF (NXSECT.EQR.0) ISTEF=2
IF (NXSECT.EQ.1) ISTEF=1
o 100 I=—-16+16sISTEF
NCT=0
no 200 J=-NLyNL
IF (C(ARS(X(I»J))).GT.6.284) GO TO 250
50 NCT=NCT+1



300
250

200
100

60
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IF (NCT.GT.1) GO TO 300

CALL MOVAZ(X(I»J)sY(I» DdsZ(I))
GO TO 200

CALL LINAZ(X(Is D)o Y(I»J)»Z(I))
GO TO 200

NCT=0

CONTINUE

CONTINUE

- -C PLUT ‘Z7 LLINES

o 400 L=—NLsNLsISTEF
MCT=0
o 500 K=—-16+16-

~IF CCARS(X(KsL)) ). GT 6.284) GO0 T0O

MCF=MCT+1 -~
IF-(MCTLGT.1) GO TO 600

CALL MOVAZ(X(KeL) s Y(Ky L) »Z(K))

- G0 TO S00

- 600

950
500
400
1000

CALL LINA?(X(hyL)yY(k;L)yZ(h))
GO TO 500

MCT=0 -

CONTINUE
CONTINUE
CONTINUE

C PLOT ROX OUTLINE

IF (NXSECT.EQ.1) CALL SFPCLF(0)
IF (NXSECT.EQ.1) CALL SBEFCLF(O)
CALL MOVAZ(-6.283r2.0+~-3.1414)
CALL LINR3(0.0r-4,0:0.0)

CALL LINR3(0.0:0.0+s6.283)
CALL LINR3(12.56670.0-0.0)

CALL LINR3(0:.0:0.0+-6.283)

Cal.l. LINR3I(-12.566+0.070.0)

IF (NXSECT.EQ.1) GO - TO 800

C LAREL PLOT

800

2000

CALL SCSIZE(0.3+0.4)
CAaLL SCFLAN(0.05s0.07-1,0)
CALL MOVAZ(~6.0s2.0y-3,1416)
CALL TEXT(LAREL-100)
CALL- CLTSEG

CONTINUE

CALL VSFOFF(O)

CALL TRMVSF(0)

CALL TRMCOR

STOP

END

e

pw R

0
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FROGRAM SHEAROR(OUTFUT, TAFE6=0UTFUT)
THIS FROGRAM GIVES ORIENTATION DATA FOR A DOUELE SINE
SURFACE (IIOME AND BASIN FATTERN) DEFORMED IN SIMFLE SHEAR.
OUTFUT IS A LIST OF THE FLUNGES AND TRENDS OF SURFACE -

NORMALS .
- F.b.l. UULLHER! Uo OF MNo! 1983

NIMENSION X(-83:8,-2561256)Y(-818y-2561206),2(-818)
INTEGER PLyTRyFLOsTRO
REAL LU»MUsNUSLTsMIyNESLNTH
K2=K3=PLO=TR0O=0
SFECIFY INITIAL ROTATION AND SIMFLE SHEAR«
RI=2%0.0174533
GAMMA=20.0
CALCULATE INITAL STATE FOINT COORDINATES
no 10 M=-8,8
Z(MI)=MX0,19635
0o 20 N=-206r256
X{MsNI=NX0,00613592
Y(MsN)=0,062832%(COS(X(MrN) IHCOSCZ(MYI)
INITIAL ROTATION
IF (RI.EQ.0.0) GO TO- 5
XTEMF=X(MsN)
X (M N)=XTEMPXCOS(RIY+Y (M NI RSINC(RI )
Y (MsN)=—XTEMFRSIN(RI)+Y (MsN)¥COS(RI)
SIMPLE SHEAR
5 X(MsNI=X(MsNIFGAMMAXY (M7 N)
20 CONTINUE
10 CONTINUE
CALCULATE VECTOR COMFONENTS- IN SURFACE.
Do 500 I=-8-7 -
Do 400 J=-2565255
AX=X (T J+1)-X(IsJ)
AY=Y(Iy J+1)-Y(I D)
BX=X(I+1sJ)=-X(Iv.J)
RY=Y(I+1» D=Y(Is.D
BZ=Z(I+1)-Z(I)
CALCULATE DIRECTION COSINES OF SURFACE NORMAL.
LI=-AYXRBZ
MI=RZ%AX
NI=AXXRY-EXXAY
LNTH=SART (LIKK2+MIRK2+NIX%2)
LU=LI/LNTH : '
MU=MI/LNTH
NU=NI/LNTH
CALCULATE FLUNGE AND TREND OF NORMAL.
FL=NINT(ASIN(MU)/0.017453)
TR=NINT(ATAN2(NULU)/70.017453+270)
IF (PL.LT.0) TR=TR+180
IF (FL.LT,0) FL=-FL
IF (TR.GT.+360) TR=TR-340
K2 GIVES TOTAL NUMBER OF SURFACE NORMALS.
K2=K2+1
IF ((PL.EGfPLO).AND.(TR.EQoTRO)) GO TO 600
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PLO=PL

K3

555
600
500

666

~TRO=TR

GIVES NUMBRER OF PLOTTED SURFACE NORMALS.
K3=K3+1 : B
WRITE(6+355) FLsTR
FORMAT(7HO00 000s1XyI251XyI3) -
CONTINUE

CONTINUE

WRITE(69666) K2yK3

FORMAT (3I&)

STOF

END
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82
DOMAIN 4
N=18
79 -
968 268
969 270
269 271
969 271
968 272
469 274
989 219
9290 239
295 207
699 -
975 271
975 271
975 271
975271
272 281
P74 -290-

990 223 -

216
207
205
219
208
212
203
157
136

102
067
086

170
142

161

202

990 223 205

900 223
53

203

73 E 82
71 E --82
88 W 82
889 SE 82
84 SE 82
86 SE &2
83 SE 52
60--8W 82
62 -8W-52-

50 § -AP
85 SE AP-
75 & -AP
75 W -AP
65 SUW--AP-
71 -SW--AP
88 -SE -AP
87 W AP -
88 W AP

-000-000-00- 112
000 000 29--022
-©00-000-61- 203

._O_’.OA.Z_

“61=,67564

-§2=,3087
S53=,0157
00-112
29-022
-61-203
52
DOMATN-
-N=3

72

992 257
007 287
vl
009 269
H+3
000 - 000

4]

000 000 -

000 000
00 :
81=.7959
§2:=,1279
83=,0762
58-075

1 13~-186
29283

-0

147 57 W 82
215 40 NW S2
120 18 SUW -AF
58 075
13 184
29 -283
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