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Abstract
The interplay between neuronal network connectivity and neuron dynamics is known to drive global brain behavior;

however, the exact relationship between network connectivity and node dynamics is complex and remains poorly

understood. Previous theoretical and modeling work has shown that in small toy networks, when nodes are equipped with

discrete quadratic dynamics, properties of the emergent behavior of the complex quadratic network (CQN) can give rise to

features that relate to the underlying topology. Specifically, when the long-term behavior of CQNs is represented by

asymptotic fractal sets, certain topological features of the fractal can be used to classify the network topology. However,

the success of this approach has thus far not been tested on more complex real-world networks. Here, we apply a CQN

modeling approach to capture individual differences in real-world brain networks derived from human connectome data.

We show that CQNs are more sensitive than traditional graph theoretic measures at capturing individual differences in the

topology of the human connectome, and that features of the associated equi-M sets can differentiate between male and

female connectomes. This study, therefore, provides a basis upon which future work can build in order to better quantify

individual differences in brain connectivity, and how these differences drive brain function and behavior.
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1 Introduction

The function of many systems in the life sciences can be

described as collective behavior of units that are part of a

larger network [1]. To gain insight into how the ensemble

behavior of these units operates in natural systems,

dynamical systems modeling has been widely used to

understand the associated nonlinear and chaotic phenom-

ena [2]. Modeling each coupled unit in a fashion that

captures natural dynamics with accuracy is important for

applications. Unfortunately, accuracy in modeling comes

with a price, and matching the complexity of real systems

in a mathematical model leads to increased analytical and

computational challenges. This often compromises

tractability of the model behavior and comes back around

to take away precisely from its potential applicability.

To complement the dynamical systems approach to

understanding complex systems, network science has been

focused on the graph theoretical aspect of networks, par-

ticularly on investigating the relationship between the

network’s connectivity architecture and its function. By

applying graph theoretical measures, one can investigate,

for example, the sensitivity of a system’s temporal
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behavior to removing/adding nodes or edges at different

places in the network structure. However, graph theoretical

measures cannot in and of themselves explain the mecha-

nisms by which connectivity patterns act to change sys-

temic behavior. Therefore, a network model needs to

incorporate both graph structure and node-wise dynamics

in one unified framework, which can then be used to

interpret empirical results and make predictions.

This is true in particular for the brain, which can be

viewed as a ‘‘dynamic network,’’ self-interacting in a time-

dependent fashion and at multiple spatial and temporal

scales, to deliver an optimal range for biological func-

tioning. Graph theoretical approaches have been applied to

brain networks to understand organizational and functional

neural principles [3–5], with results supporting certain

architectural and topological properties, such as modular-

ity, small-worldness, the existence of hubs, and ‘‘rich

clubs’’ [6, 7]. Such measures have been used successfully

on brain imaging data, tying pathological behavioral pat-

terns to specific abnormalities in connectivity [8–10].

Additionally, much effort has been invested toward formal

modeling approaches that would explain how network

connectivity patterns may affect functional dynamics

[11, 12] from biophysical models [13] to simplified sys-

tems [14].

Navigating the trade-off between faithful representation

and mathematical simplicity can be difficult. In computa-

tional neuroscience in particular, models of brain dynamics

often lie at either end of the spectrum: incorporating

intractable complexities in favor of biological realism or

sacrificing accuracy (and with it, practical impact) in favor

of mathematical simplicity. Indeed, it has become

increasingly clear that the construction of a realistic, data-

compatible computational model presents many difficulties

related to dimensionality, computational cost, addressing

multiple scales, and even simple bookkeeping. These dif-

ficulties make it nearly impossible to deliver any useful

general results relating brain connectivity patterns to brain

dynamics and observed behavior.

To bridge this gap, we previously developed a simplified

complex quadratic network (CQN) model that captures

both connectivity and coupled dynamics in terms of dis-

crete iteration in the complex frame, in a canonical

framework [15–17]. The model relies on ideas from tra-

ditional complex quadratic dynamics to address questions

which are notoriously difficult in realistic models of natural

networks. Rephrasing these questions in terms of complex

map iterations presents an approachable way that can lead

to novel results and to progress on applications.

Complex quadratic iterations of individual functions in

the family fc ¼ z2 þ c deliver rich dynamics and provide

textbook recipes for creating fractal asymptotic sets, with

history going back more than a century [18, 19]. For a

parameter value c 2 C, the Julia set of the corresponding

map fc is defined as the boundary between initial points z0
whose orbits remain bounded under iterations of fc (pris-

oners) and those which escape to infinity under repeated

iterations of the map (escapees). One interesting result

refers to the existence of an escape radius for these itera-

tions: Once the orbit transcends the radius R ¼ 2, the orbit

is guaranteed to escape.

The geometry of prisoner set for single quadratic maps

is notoriously tied to the properties of the critical orbit of

the function, starting at z0 ¼ 0 [20–22]. A famous theorem

in discrete dynamics guarantees that prisoner sets for

quadratic functions are either connected, if the orbit of the

critical point z ¼ 0 is bounded, or totally disconnected, if

the orbit of the critical point is unbounded [23]. The

parameter locus c for which the map fc is postcritically

bounded is then the same as the parameter locus for which

the prisoner set is connected, and is known as the Man-

delbrot set [24]. The Mandelbrot set has been extensively

studied as a topological object in the complex plane, and

since the critical orbit of z0 ¼ 0 governs the potential

behaviors of all the other orbits, the Mandelbrot set can be

seen as an atlas of information on global system dynamics,

going beyond simply describing the evolution of the sys-

tem from the resting state z0 ¼ 0. Because of this, the

Mandelbrot set can be viewed as a key object in discrete

dynamics that captures, in a canonical and efficient way,

the long-term dynamic behavior of all functions in the

quadratic family simultaneously.

In prior work, we have focused on tying connectivity to

dynamic patterns using simple, low-dimensional networks,

which are both analytically tractable and allow easier

visualization and interpretation of the results. By defining

and computing the equi-M set (see Sect. ‘‘Methods’’), we

observed visually a collection of universal, unifying fea-

tures: For example, all equi-M sets appear to exhibit a main

cardioid, and some reminiscent bulb-like structure

(although the traditional hyperbolic bulbs no longer exist,

since network combinatorics must track behavior of many

nodes simultaneously). Hence, properties such as con-

nectedness, size, position of the cusp, and tail present with

a lot of variability, based on the architecture of the

underlying network.

We further identified a few global network effects,

associating larger connection weights with significantly

smaller equi-M sets [16], and tying sparser networks

to decreased node synchronization [17]. We found that the

presence of even weak inhibitory coupling is efficient in

breaking down sets into connected components when

introduced in a network formed of purely excitation con-

nections [15]. More interestingly, we also identified finer

and less intuitive local effects, showing that changing the
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weight of one edge may lead to significant changes in the

topology of the equi-M set (Fig. 1). This effect depends

tightly on the position of the inserted/deleted edge in the

network and is strongly related to the contribution of the

edge to graph theoretical properties of the network, as well

as to the weight of the edge.

Thus, while CQN modeling has shown great promise to

quantify the effects of changes in the underlying connec-

tivity of the network, its success thus far has been limited

to simple toy models. However, it forms a critical basis

upon which future plans to develop a theoretical corre-

spondence between properties of more complex systems,

and geometric properties of the equi-M set can be groun-

ded. For example, it raises the possibility of using equi-M

set topology toward an assessment and classification tool-

box for brain functional dynamics. In this paper, we

explore for the first time this practical possibility, by

computing equi-M sets for a tractography-derived data set.

We illustrate the ability of the equi-M set to differentiate

between individuals and groups of individuals with dif-

ferent physiological profiles. We show that equi-M topo-

logical measures can outperform graph theoretical

measures, by illustrating dynamic properties that connec-

tome measures fail to capture.

Fig. 1 Illustration of how perturbations in the network placement and

weights affect the shape of equi-M sets. The traditional Mandelbrot

set for single-map iterations is shown for reference. For each c in the

complex plane, the color represents how fast the critical orbit of

f ðzÞ ¼ z2 þ c escapes the disk of radius two (with black representing

no escape). All simulations used 100 iterations and a spatial

resolution of 400� 400 in the complex square ½�2; 1� � ½�1:5; 1:5�.
Four networks are show in the top panels, with direction, sign, and

weight specified on each edge. The evolution equations for each

network are shown in the second row. The corresponding equi-M sets

are shown in the bottom panels. Changing to edge weights and adding

negative feedback to the network induce quantifiable changes in the

topology of the equi-M sets, altering the number of connected

components, as well as the position and shape of the cusp. The same

resolution and color coding were used as for the traditional M set
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2 Methods

2.1 Complex quadratic network (CQN) modeling

In our work, we use quadratic iterations to understand the

principles of how dynamic behavior emerges in large net-

works of nodes, and how it depends on the network

structure. Each node is viewed symbolically as an inte-

grator of internal and external inputs. We use the asymp-

totic behavior of multi-dimensional orbits (via the

topological and fractal structure of Julia and Mandelbrot

sets) to quantify dynamic behavior under perturbations of

the network architecture. Topological landmarks of Man-

delbrot sets provide valuable means of classification and

comparison between different systems’ behavior, as will be

further summarized in the following section.

In our complex quadratic network (CQN) model, the

node-wise dynamics are set to be complex quadratic

dynamics, within the family fc : C ! C, fcðzÞ ¼ z2 þ c.

More specifically, in this framework, each network node

adds all weighted inputs from adjacent nodes and integrates

the sum of inputs, in discrete time, as a complex quadratic

map. If all the nodes use the same map f ðzÞ ¼ z2 þ c, the

system takes the form of an iteration in Cn:

zjðtÞ �! zjðt þ 1Þ ¼
Xn

k¼1

gjkAjkzkðtÞ
 !2

þc

where n is the size of the network, A ¼ ðAjkÞnj;k¼1 is the

binary adjacency matrix of the oriented underlying graph,

that is, Ajk ¼ 1 if there is an edge from the node k to the

node j, and Ajk ¼ 0 otherwise. The coefficients gjk are the

signed weights along the adjacency edges (in particular,

gjk ¼ 0, if there is no edge connecting k to j, that is, if

Ajk ¼ 0). In isolation, each node zjðtÞ ! zjðt þ 1Þ,
1� j� n, iterates as the quadratic function f ðzÞ ¼ z2 þ c.

When coupled as a network with adjacency A, each node

will act as a quadratic modulation on the sum of the inputs

received along the incoming edges (as specified by the

values of Ajk, for 1� k� n).

This ‘‘network environment’’ preserves, often in a

weaker form, some of the properties and results determined

in the traditional case of a single iterated quadratic map

(e.g., the existence of an escape radius is guaranteed in

some types of networks, but may fail in others). We used

this to our advantage and proceeded to study theoretically

the effects of network architecture on its long-term

dynamics. To do this, we needed to extend the definitions

of asymptotic sets from the traditional context of single-

map iterations to the context of networks. Below, we will

only provide the definitions and interpretations that lie

within the scope of this paper. The broader context and

construction can be found in [15–17].

Definition 1 We call the equi-Mandelbrot set (or the

equi-M set) of the network, the locus of c 2 C such that

the multi-orbit of the critical point (0, ..., 0) is bounded for

the equi-parameter c ¼ ðc; c; :::cÞ 2 Cn.

Broadly speaking, one can interpret iterated orbits as

describing temporal trajectories of an evolving system.

Along these lines, we view a parameter c in the equi-M set

(for which the critical orbit escapes to 1) as representing a

system with unsustainable long-term dynamics when ini-

tiated from rest, while the c range for which the critical

orbit remains bounded can be viewed as the ‘‘sustainable

dynamics locus.’’ We quantify the properties and shape of

equi-M sets through the following metrics:

The positions of the cusp (c) and of the tail (s). The

presence of the cusp is a robust, network-independent

feature of the equi-M sets throughout our data set—unlike

the tail structure, which is very fragile to network modifi-

cations. However, the position c of the cusp along the real

axis varies with the network properties, as illustrated in

Fig. 3. For a fixed equi-M set, c is easy to compute (as the

largest coordinate reached by the boundary of the equi-M

set along the real axis) and relatively robust to choosing the

spatial resolution. The accuracy of the tail position s,
computed as the leftmost point of the equi-M set along the

real axis, is more resolution-dependent, since the tail is

connected by thin filaments.

The area A of the set in the complex plane. Our com-

putation algorithm provides an overestimate of the exact

value of A, due to the finite iteration-based approximation

of the asymptotic equi-M set (some of the equi-M points

retained in our set representation may in reality escape

upon further iteration). Note that spatial resolution of the

computation may limit detection of thin filaments; these,

however, have negligible area, hence, they are not expected

to have a major contribution to the value of A.

The horizontal diameter dh is the distance between the

cusp and the tail along the real axis.

The vertical diameter dv is the largest vertical distance

between two points of the set. Our computational algorithm

provides us with slight underestimates of this measure;

more exact computations are problematic, due to the

presence of thin filaments around the boundary.

2.2 Subjects and DTI data

Our analysis is based on tractography-derived, neural

connectivity data obtained from the S1200 Q4 release of

the Human Connectome Project [25]. The project released
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to the public domain extensive MRI, behavioral, and

demographic data from a large cohort of individuals

([ 1000). For our own study, we considered the Q4 sub-

ject subgroup (the latest available at the time the data

analysis was performed), consisting of N ¼ 197 individu-

als, age 22–36 years (107 males, mean age l� 25:8 years,

and 90 females, mean age l� 28 years).

2.3 Structural network construction

Preprocessed diffusion-weighted images, part of the

Human Connectome Project, were used to construct

structural connectomes for the subjects. Fiber tracking was

done using DSI Studio with a modified FACT algorithm

[26]. As a first step, data were reconstructed using gener-

alized q-sampling imaging (GQI) [27]. Diffusion-weighted

images were reconstructed in native space, and the quan-

titative anisotropy (QA) for each voxel was computed.

Fiber tracking was performed until 250,000 streamlines

were reconstructed with angular threshold of 50o, step size

of 1.25 mm, minimum length of 10 mm, and maximum

length of 400 mm. Streamline counts were estimated for

the parcellations schemes based on the AAL [28] atlas

version-1 containing 116 brain regions. The AAL atlas was

registered to the isotropic diffusion component (ISO)

image, an output of GQI. Registering directly to the ISO

image minimizes any registration issues that could arise by

first registering to an individual’s T1w image. Atlas reg-

istration was conducted using FSL FLIRT [29] with default

parameters. The transformation matrix obtained from the

registration was applied to all regions in the AAL atlas. In

case, two regions were registered to the same voxel, the

voxel was assigned to the region with the highest proba-

bility. In order to fully sample the fiber orientations within

a voxel, tracking was repeated 250x with initiation at a

random sub-voxel position generating 250 connectivity

matrices per subject.

For each subject, a symmetric, non-negative, weighted

structural connectivity matrix, A, was constructed from the

connection strength based on the number of streamlines

connecting two regions. The final connectivity matrix

included edges which were present in at least 10% (or 25)

of the 250 matrices. This connectivity matrix was nor-

malized by dividing the number of streamlines between

each two coupled regions by the combined volumes of the

two regions. For each connectome, we computed a set of

graph theoretical measures, consisting of node degree

centrality, eigenspectrum, clustering coefficient, between-

ness centrality, eigenvalue centrality, local efficiency, and

numbers of 3-motifs and 4-motifs, using the Brain Con-

nectivity Toolbox [30].

2.4 Equi-M set construction and quantification

To generate numerically, using a computer code, the equi-

M set for each connectome, one needs to choose two

computational parameters: the number of iterations (or

network updates) and the spatial resolution in the c-plane

(the sampling resolution for c). For the exploration in this

paper, the number of iteration steps was fixed to 100, and

the figures were produced in 400� 400 spatial resolution.

The values of these parameters can be easily improved in

the future analyses, at higher computational cost.

For each equi-M set, we computed the set of topological

metrics described in Sect. 2.1, quantifying its position and

size. The metrics are based on common topological land-

marks (like the cusp and the tail), use the symmetry of the

set with respect to the real axis, and the fact that all equi-M

sets in our data set presented as one connected component.

These represent a preliminary set of measures, illustrating

broad topological relationships, and are generally robust

with respect to the computational parameters. Potential

candidates for more advanced measures, aimed to better

capture finer topological detail, are proposed for future

analyses in the ‘‘Discussion’’ section. Those are expected

to depend more sensitively on the number of iterations and

on spatial resolution, hence may require future analyses to

be carried out for multiple options of computational

parameters, in order to allow comprehensive comparisons.

2.5 Correlation analysis

We investigate how the graph structure of the connectome

(representing fixed, hardwired connectivity information, as

captured in the set of graph theoretical measures in

Sect. 2.3) reflects into the shape of the equi-M set (which

encompasses how information propagates in the CQN), as

represented by the set of topological measures in Sect. 2.1.

We computed both Pearson and Spearman correlations

between the graph theoretical and the topological mea-

sures. Since the topology of the M set can be viewed as a

symbolic representation of the network’s long-term

dynamics, and since the network architecture (underlying

graph) is a factor in determining these dynamics, correla-

tions between properties of one and the other may help

understand which graph theoretical properties lead to

which types of long-term dynamics. Understanding this

relationship at the level of simple quadratic dynamics may

provide crucial information that can be extrapolated to the

more complex, neural dynamics that occurs in reality in

these brain networks.

In addition, correlations computed within the set of

topological measures may help identify to what extent

these measures are inter-related. Similarly, correlations
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computed within the set of graph theoretical measures will

quantify the degree of redundancy in the information pro-

vided by these measures.

2.6 Gender-based statistics

We test if the shape of the equi-M set can distinguish

statistically between the subjects’ gender. In order to make

the least assumptions on our distributions, we used a

Mann–Whitney nonparametric rank test (as provided by

the Matlab 2020a package) to assess if each measure dif-

fers significantly (p\0:001) between the male and female

subjects (the null hypothesis being that they are extracted

from the same overall distribution).

3 Results

Here, we use our previously established CQN model

(Methods) to generate equi-M sets describing individual

connectomes derived from diffusion-weighted images of

human brains from the Human Connectome Project. We

quantify features of the topology of the equi-M sets as

described in the Methods and use these results to (1)

establish whether there are correlations between graph

theoretical measures of the connectomes and geometric

measures of the equi-M sets and (2) test whether the

topology of the equi-M set can effectively differentiate

between the subjects’ gender (as a proof of principle, to be

potentially extended in the future to other physiological or

behavioral measures).

3.1 Between-subject differences

Our computation of equi-M sets across all 197 subjects

revealed between-subject differences. Figure 2 illustrates

these differences between three example individuals (with

the top panels of the figure showing the subjects’ data-

derived connectomes, while the bottom panels show the

corresponding equi-M sets).

While differences in the shapes of these three sets are

undeniable, they are also subtle, especially when set

against the theoretical potential for variability in shape as

observed between the examples in Fig. 1, in response to

making only local changes to the network connectivity.

This was true in general for the entire data set, with all the

197 equi-M sets showing unifying geometric features (a

common ‘‘signature’’ to all connectomes): all equi-M sets

we obtained have a cusp and a tail, and a structure remi-

niscent of the main cardioid of the traditional Mandelbrot

set. At the same time, much like fingerprints, the sets

exhibit extensive variations in detail, due to subtle differ-

ences in the connectome.

To formally test these impressions, a quantifiable

assessment of equi-M set topology is needed. However,

this is difficult, because the dynamics no longer capture the

simple combinatorics of a single iterated map. The

hyperbolic bulb structure of the traditional Mandelbrot set,

which could have been helpful for classifications, no longer

exists in that form for network equi-M sets. Instead, we

used position and shape landmarks (see ‘‘Methods’’ sec-

tion), which allow us to quantify subtle versus significant

geometric differences and to distinguish between shapes.

Figure 3 illustrates these landmarks for the same three

equi-M sets as those in Fig. 2. Only the contours of the sets

are shown here, to avoid overcrowding the panels. The set

in the right panel is the ‘‘largest,’’ with the leftmost posi-

tion for tip of the tail, the rightmost cusp, and the largest

diameters and area. Beyond the differences in size, the set

on the left has a ‘‘pinch point’’ on the real axis, at

x ¼ �4:04, which, if removed, breaks the set into two

connected components, reminiscent of the original bulbs.

In turn, the set in the middle panel has a ‘‘narrow bridge’’ at

x ¼ �3:5, with very small diameter 2y ¼ 0:12 across,

connecting the main body and the tail region reminiscent of

the traditional hyperbolic components. For the set on the

right, the smallest vertical diameter between the body and

the tail occurs at x ¼ �2:96 and is 2y ¼ 0:36, with a less

significant separation.

Pinch points and narrow bridges show future promise

toward assembling a finer and more complete geometric

assessment of the equi-M set signature. For the current

study, we will strictly focus on using the collection of

measures described in the ‘‘Methods’’ section, for all of our

assessments. Based on these assessments, we investigated

the graph theoretical source of the similarities and differ-

ences between sets.

3.2 Inter-correlations between graph
and topological measures

We want to establish if there is a well-defined correspon-

dence between graph teoretical properties of the connec-

tomes in the data set and geometric properties of the

corresponding equi-M sets.

For each subject, we computed the set of topological

measures consisting of ðc; s;A; dh; dvÞ (as described in the

‘‘Methods’’ section). The mean and standard deviation of

all five measures are described in Fig. 4. The correlation

analysis confirmed that these measures are not independent

in the context of our data. Figure 5 suggests that they are

strongly correlated with each other (e.g., a position of the

cusp more to the right also corresponds to a tail shifted to

the left, larger diameters, and a larger area).

For each connectome, the set of graph theoretical mea-

sures described in the ‘‘Methods’’ section were also
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computed: node degree centrality, eigenspectrum, cluster-

ing coefficient, betweenness centrality, eigenvalue cen-

trality, local efficiency, and numbers of 3-motifs and 4-

motifs. We performed correlation analyses, investigating

the inter-relationship between the topological and the graph

theoretical measures. The results of both Pearson and

Searman correlation analyses are shown in Fig. 5. In both

analyses, we found strong correlations between most pairs

Fig. 2 Examples of M sets for three connectomes in our data set. The

connectomes are sparse; that is, many entries are zero, marking node

pairs not directly connected by an edge. In addition, many nonzero

entries are very small, corresponding to weak connections. Subtle

differences in the connectomes reflect into noticeable, quantifiable

differences in the topology of the equi-M sets, so that each individual

has a unique, distinctive equi-M set, like a personal signature, or a

fingerprint encoding the CQN dynamic flow through their brain

connectome

Fig. 3 Landmarks for equi-M sets. The panels show the contours of the equi-M sets for the same three connectomes as in Fig. 2, with labels

marking in each case the position of the tail, the cusp, and other distinguishing points on the boundary
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(overall average p-value p ¼ 5:9088� 10�4). Higher

degree centrality, eigenspectrum, and local efficiency cor-

related significantly with smaller equi-M sets. Specifically,

the cusp and tail landmarks were closer to the origin, and

the area and diameters were smaller. In contrast, the

eigencentrality measure correlated positively with the size

of the equi-M set (i.e., higher eigencentrality values cor-

responded to larger equi-M sets). Betweenness centrality

did not show significant correlations. Interestingly, the

number of motifs showed consistent significant negative

correlations with the size of the equi-M set: the stronger the

motifs, the smaller the topological measures. A potential

explanation to this correlation between motif strength and

size of the equi-M set is proposed in our previous work

[17], but a complete proof is nontrivial and still under way.

This analysis confirms that there is a tight correspon-

dence between connectome patterns and geometric patterns

of the equi-M set. This approach can be refined with

developing and using finer topological measures for the

equi-M sets, as further considered in the ‘‘Discussion’’

section.

3.3 Gender-based statistics

Recent imaging research has been consistently reporting

differences in structural and functional networking

Fig. 4 Topological measures statistics (means l and standard deviations r). Cusp position c: l ¼ 0:77; r ¼ 0:36. Tail position s: l ¼ �4:88;
r ¼ 1:87. Area A: l ¼ 18:52; r ¼ 15:29. Horizontal diameter dh: l ¼ 5:65; r ¼ 2:22. Vertical diameter dv: l ¼ 5:10; r ¼ 2:45

Fig. 5 Correlations within and between graph theoretical and

topological measures. The left panel presents the results of the Pear-

son correlation analysis, and the right panel shows the results of the

Spearman correlation analysis. Each panel represents in color the

correlation values for all pairs of measures for which the correlation

value was significant (with a p-value threshold a ¼ 0:05). The color

coding for sign and strength of correlations is specified by the color

bar. The pairs for which correlations were not significant are shown in

white. On both axes, topological measures are labeled 1–5 (repre-

senting the following order: 1 = cusp position c, 2 = absolute value of

the tail position s, 3 = area A, 4 = diameter along real axis dh, and 5 =

vertical diameter); then graph theoretical measures are labeled 1–13

(representing the following sequence: 1 = degree centrality; 2 =

eigenspectrum; 3 = clustering coefficient; 4 = betweenness centrality;

5 = eigenvalue centrality; 6 = local efficiency; 7–8 = numbers of

3-motifs; and 9–13 = numbers of 4-motifs
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between the male and female connectomes. A tractogra-

phy-based analysis of a large population of young subjects

[31] found male brains to be optimized for intrahemi-

spheric projections (interpreted as facilitating connectivity

between perception and coordinated actions), while female

brains appeared to emphasize interhemispheric communi-

cation (hence facilitating communication between analyti-

cal and intuitive processing modes). Another structural

study exploring the biological basis of intelligence [32]

suggested that these rely on neural mechanisms engaging

an interacting network of regions, the patterns of which

were also found to differ between genders. In turn, func-

tional MRI studies also revealed a gender dimorphism in

the functional organization of the brain, with a different

balance between strongly and weakly connected brain

nodes between genders [33]. Despite such widely reported

structural and functional gender differences, few studies

examine the relationship between the two. Among these, a

recent study on a large subject group including both

structural and funcional imaging measures [34] concluded

that gender differences are encoded in both brain structure

and brain function, but in different manners.

This hints to the complexity of the mechanisms that link

hardwiring to function and that may underlie gender-based

behavioral differences. However, no study to date has been

able to successfully investigate these mechanisms and

capture in a mathematically tractable way how gender

differences in wiring paterns may lead to differences in the

dynamics information flow through the connectome. In our

work, we constructed the CQN model precisely as a tool to

help us understand the emerging network dynamics,

encoded in the form of a topological object entirely based

on the structural connectome. To test the utility of our

analytical approach, we investigated if our framework is

able to identify gender differences in our subject popula-

tion (consisting of healthy young adult male and females).

We found that our model is able to capture previously

unidetified and nuanced differences between the male and

female groups in our sample. Specifically, the shapes of the

equi-M sets correlated with the sex of the subjects. These

gender differences for the topology measures are described

in Fig. 6. The equi-M sets corresponding to the male

subgroup have significantly larger cusp coordinates, longer

tails, larger areas, and horizontal and vertical diameters

than the female counterparts. Figure 7 provides an illus-

tration of the between-gender differences in topology

stemming from differences in connectivity. Each fig-

ure panel presents a stochastic representation of the equi-M

sets in each subject group (‘‘frequency plot’’), constructed

as follows: To each point in the complex plane, we asso-

ciated the number of subjects in the group for which that

point is in the equi-M set. Then, we used a color map to

represent this as a two-dimensional plot (with darker colors

corresponding to more subjects and lighter colors to fewer

subjects, as specified in the color bar). This conveys visual

patterns such as, for example, the idea that the sets are

smaller within the female group (the colored region is

smaller than the corresponding one in the male group), and

have less variability (the halo of transitional colors is

thinner than that for males).

Further, in Fig. 8, we highlight how topology outper-

forms graph theory in identifying gender differences. We

computed two group ‘‘mean’’ (or ‘‘prototypical’’) connec-

tomes, by averaging the individual connectomes over each

subject group (males and females, respectively). The male

and female prototype connectomes are shown in the top

row of Fig. 8. We then computed the prototypical male

and, respectively, female equi-M sets from these two

connectomes, as illustrated in the bottom row of Fig. 8.

The two prototypical connectomes are hardly distinguish-

able from each other with the naked eye; significant indi-

vidual detail in connectivity patterns was mostly

eliminated through averaging, resulting in two almost

identical connectomes. However, these seemingly unno-

ticeable differences were enough to produce visibly dif-

ferent equi-M prototypical sets for males and females (with

a deeper cusp, and wider and more pronounced detail

around the cusp in the set corresponding to the female

group than in the set corresponding to males).

4 Discussion

Here we showed, for the first time, how the theory of

complex quadratic networks (CQNs) can be applied to

improve our understanding of natural networks, specifi-

cally tractography-derived brain networks (connectomes).

We did so by using the equi-M set, a topological object

describing the asymptotic dynamics of the network. We

found that, as one might expect, the geometry of the equi-

M set is to a large extent encoded in measurable graph

theoretical properties of the connectome. Information on

the size and the distribution of the weights in the network is

crucial to producing the topology of the connectomes

observed empirically. Crucially, some of the unifying and

the distinguishing features between the tractography-gen-

erated equi-M sets seem to be driven by features in the

connectome that might not be captured by traditional graph

theoretical measures (see, for example, the prototypical

sets in Fig. 8).

In order to obtain a better understanding of how the

structural and dynamic aspects are tied, future work will

focus on refining the topological assessments of equi-M

sets to better probe the relationship between traditional

graph theoretical measures and fractal properties of the

equi-M set. For example, the traditional Mandelbrot set has
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a hyperbolic bulb structure. In particular, the bulbs that are

centered along the real axis are tangent to each other along

the axis at what we will call ‘‘pinch points’’ (because their

removal would break the set into connected components).

While for equi-M sets, the bulb structure is not preserved,

some of the pinch points persist—either in this form, or just

as a narrowing of the set (which we call ‘‘narrow bridge’’),

delimiting ‘‘pseudo-bulbs.’’ Although beyond the scope of

this work, in the future studies, we plan to compute the

number of pinch points as a measure of bulb structure

preservation. We expect these to be easier to compute than

the maximal vertical diameter in general, since the nar-

rowing points of the sets are not typically associated with

filaments (similarly with the seahorse valley in the tradi-

tional Mandelbrot set). An alternative measure, related to

the presence of narrow bridges, is the entropy around the

equi-M boundary (since it captures the regularity of the

vertical variations between high and low points along the

top boundary of the set).

We also explored the possibility of using the equi-M set

as a classification and prediction tool. This is an interesting

and promising direction of investigation, since a classifi-

cation instrument that uses brain dynamics is one step

closer to capturing the subjects’ physiology and behavior

than classifiers based entirely on the hardwired structure

(i.e., the connectome). A very important step in this

Fig. 6 Comparison of topological measures statistics by gender. Male

statistics. Cusp position c: l ¼ 0:88; r ¼ 0:36. Tail position s:
l ¼ �5:52; r ¼ 1:76. Area A: l ¼ 23:08; r ¼ 16:19. Horizontal

diameter dh: l ¼ 6:40; r ¼ 2:10. Vertical diameter dv: l ¼ 5:85;
r ¼ 2:42. Female statistics. Cusp position c: l ¼ 0:63; r ¼ 0:33. Tail

position s: l ¼ �4:12; r ¼ 1:73. Area A: l ¼ 13:10; r ¼ 12:26.
Horizontal diameter dh: l ¼ 4:76; r ¼ 2:04. Vertical diameter dv:
l ¼ 4:21; r ¼ 2:20. The p-values of the male/female between-group

comparison (Wilcoxon rank-sum test) can be found below the box

corresponding to each measure

Fig. 7 Stochastic versions of the equi-M set for the male group (left

panel) and for the female group (right panel). The color for each point

in these parameter squares represents for how many subjects the

c value corresponding to the point is in the equi-M set of the subject’

network. The color map used (with lighter colors for lower numbers

and darker colors for higher numbers) is indicated for each group in

the color bar (color figure online)
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direction is to show that classifications based on equi-M set

topology can, in fact, outperform classifications using

graph theoretical measures. Here, we gave a simple illus-

tration of this potential, by showing that the topology of the

equi-M set can efficiently capture differences in dynamics

between male vs. female prototypical connectomes with

otherwise seemingly indistinguishable architecture. In the

future work, we plan to further explore the ability of the

equi-M set to capture physiological and behavioral markers

and its potential as a predictor of these aspects. One

weakness of the current work is that the structural con-

nectome has the intrinsic limitation of only capturing the

physical connections, but not to what extent these are

effectively used, or contribute to the coupled dynamics at

the moment of the scan. In fact, it is likely that some of the

weak connections between nodes may be typically silent,

without much cost for the brain. In a parallel study [17], we

showed that weak connections contribute crucially to CQN

dynamics and synchronization. Hence, access to the

functional connectome seems to be of utmost importance

when aiming to understand the network dynamics. Direc-

tion and signature of connections (excitatory versus inhi-

bitory) were also found in our preliminary explorations to

be crucial to the emerging dynamics and down the line to

the brain’s function and observed behavior. Future work

will, therefore, incorporate both structural and functional

connectivity analyses, where the functional network can

include effective, signed, and/or directed connections.

In the long term, this direction can be unified into a

statistically comprehensive approach. In this framework,

for a given set of connectome data, one would be able to

select a collection of topological measures that optimally

reflect the differences in the equi-M sets, as well as their

relationship with the graph architecture. This could then be

used as a topological profiling toolbox (TPT) for the data

set at hand. The TPT could be used to produce a ‘‘dynamic

brain signature’’ based on the connectome—encoding the

efficiency in each individual’s brain regulation. Eventually,

Fig. 8 Prototypical connectomes and equi-M sets for the male and

female groups. Top. Prototypical connectomes for male subjects (left)

and female subjects (right), obtained by averaging the individual

connectomes for the respective subject groups. Bottom. Prototypical

equi-M sets for male (left) and female subjects (right), obtained from

the prototypical connectomes for the respective groups
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we would develop TPT-like lookup charts that could be

used as a neurobiologically-based diagnostic instrument to

be used clinically to assess the efficiency of brain regula-

tion and information transfer.

Future work will also look to improve the theoretical

bounds and computational tractability of the model. For

example, at this point, we have only computed a network

escape radius for certain network conditions, which are not

necessarily satisfied by all our data-generated networks.

Practically, this implies that orbits that get large over the

first 100 computed iterations are not automatically guar-

anteed to escape; hence, our numerically-generated plots

are not guaranteed to be the most reliable representations of

the true equi-M sets. More general escape radius theoretical

results, together with improved, higher-resolution numeri-

cal simulations, will permit better estimation of topological

measures for equi-M sets.

Despite these limitations, overall, the results of this

study support the intriguing idea that CQNs have very

practical applications, and as we further develop our

analysis of CQN dynamics an equi-M set topology, more

potential applications are likely to come through. Our work

on CQNs aligns in spirit with an emerging recent effort to

use network models with simplified, tractable node

dynamics (e.g., threshold linear networks [35, 36]) to

mathematically tie complex network structure with coupled

dynamics. While at the moment these models are still few

and far between, especially in computational neuroscience,

there is increasing evidence that they can be used suc-

cessfully to understand and predict natural network

dynamics, with sharper clarity than more complex models.

Taken together, this work, therefore, establishes that

CQN modeling is a new and exciting methodology that can

be applied to complex real work networks such as the

brain, in order to better understand the complex relation-

ship between network structure, dynamics, and function.

CQN modeling is useful to amplify small individual dif-

ferences in human brain connectiomes and outperformed

traditional graph theoretic measures as a classifier of gen-

der in our data set. We, therefore, urge that the use of CQN

modeling and quantification of the resulting equi-M set be

adopted by researchers in addition to traditional graph

theoretic measures in order to better classify brain network

data, identify biomarkers of disease progression, and make

predictions about task performance and further the field of

personalized medicine.
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