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Abstract

We study the dynamics of template iterations, consisting of arbitrary compositions of func-
tions chosen from a finite set of polynomials. In particular, we focus on templates using complex
unicritical maps in the family {zd + c, c ∈ C, d ≥ 2}. We examine the dependence on param-
eters of the connectedness locus for a fixed template and show that, for most templates, the
connectedness locus moves upper semicontiuously. On the other hand, one does not in general
have lower semicontinuous dependence, and we show this by means of a counterexample.

1 Introduction on template iterations

In previous work by the second author, we first introduced questions concerning the asymptotic
dynamics of template iterations of two quadratic maps from the family fc : C→ C, fc(z) = z2 + c
where c ∈ C is a constant parameter [12, 13]. This can be viewed as a particular case of the non-
autonomous iteration of polynomials, which was first studied in 1991 by Fornaess and Sibony [10].
Additional work was done done by Brück et al [1, 2, 3], by Sumi [15, 16, 18, 19, 20], and by the
first author [5, 6, 7, 8, 9].

The framework of template iterated systems can be generalized to apply to any number of gen-
erating monic unicritical polynomials of the form f(c,d) = zd + c. More precisely, given any natural

number D, any D-tuple c = (c0, . . . . . . , cD−1) ∈ CD, any D-tuple of integers d = (d0, . . . . . . , dD−1)
with di ≥ 2 for each 0 ≤ i ≤ D − 1, and any sequence s = {sm}∞m=1 ∈ {0, . . . . . . , D − 1}∞ (which

we also call a template), we consider the iterated system in which the polynomial P s,c,d
m iterated at

each step m is f(ci,di) = zdi + ci, if sm = i. We then say a sequence {P s,c,d
m }∞m=1 of monic centered

unicritical polynomials is generated by the D-tuples c = (c0, . . . . . . , cD−1), d = (d0, . . . . . . , dD−1)
and the template s if it is constructed in this way. For two fixed iterative times 0 ≤ m < n, we will
also need to consider the polynomial composition taken from time m to time n given by

Qs,c,d
m,n = f(csn ,dsn ) ◦ · · · · · · ◦ f(csm+1 ,dsm+1 )

= P s,c,d
n ◦ · · · · · · ◦ P s,c,d

m+1 .

For convenience we will denote in particular Qs,c,d
0,n by Qs,c,d

n and we will refer to the D-tuples c
and d as respectively the constant and degree vectors associated with our template iteration. If
D = 1, then clearly we recover the classical situation of iteration with a single monic centered
unicritical polynomial. Note that, in view of Theorem 2.1 in [5], any non-autonomous sequence of
unicritical polynomials will be conjugate in the appropriate sense to a sequence of monic centered
unicritical polynomials. However, in general, the members of such a monic centered sequence will
not be chosen from among finitely many possibilities as we consider here (even when the members
of the original sequence were chosen from among finitely many possible polynomials). Finally, we
remark that template iteration using polynomials of varying degrees has already appeared in the
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literature. See for example Theorem 1.12 in [9] where the authors consider all possible template
sequences arising from choices among the two polynomials z2 − 1 and z3.

Let σ denote the shift map on the template space {0, . . . . . . , D − 1}∞ and for m ≥ 0 let σ◦m

denote the mth iterate of σ, which has the effect of truncating the first m members of any given
sequence (here, we just take σ◦0 to be the identity). For any template iterated system, since the
leading terms of the finitely many polynomials f(ci,di)(z), 0 ≤ i ≤ D−1 dominate when |z| is large,
one can then consider, in a similar fashion as in the traditional case of iterations with a single map,
the iterated basin of infinity at time m, arising from the truncated sequence σ◦m(s), on which all

points escape locally uniformly to infinity under the compositions Qs,c,d
m,n as n tends to infinity. We

denote this basin of infinity by Aσ
◦m(s),c,d
∞ or more simply As,c,d

∞,m.

The complement of As,c,d
∞,m, for each m ≥ 0, is then the set of points whose orbits do not escape

to infinity (which is easily seen to be equivalent to the condition that the orbits be bounded) and
is called the iterated filled Julia set at time m. We denote this set by Kσ◦m(s),c,d or more simply
Ks,c,d
m :

Kσ◦m(s),c,d = Ks,c,d
m = {z ∈ C; Qs,c,d

m,n (z) is bounded}.

Finally, for each m ≥ 0 we have the iterated Julia set at time m, which is simply the common
boundary of the iterated filled Julia set and basin of infinity and is denoted by J σ◦m(s),c,d or just
J s,c,d
m i.e.

J σ◦m(s),c,d = J s,c,d
m = ∂Ks,c,d

m .

The iterated Julia sets coincide with the iterated Julia sets from standard non-autonomous
polynomial iteration and are precisely those points on which the compositions Qs,c,d

m,n fail to give a
normal family on any neighbourhood (see e.g. [6] for details).

When m = 0 we will refer to the corresponding iterated basin of infinity, filled Julia set, and
Julia set as simply the basin of infinity, filled Julia set, and Julia set respectively. These then
clearly extend the corresponding definitions from standard polynomial iteration and for simplicity
we usually denote them by As,c,d

∞ , Ks,c,d, and J s,c,d, i.e.

As,c,d
∞ = As,c,d

∞,0 , K
s,c,d = Ks,c,d

0 , J s,c,d = J s,c,d
0 .

When the D-tuples c, d are fixed and there is no danger of confusion, we will omit c, d from
the superscript for simplicity, and use the notation Qs

m,n for the composition maps, As
∞,m for the

basin of infinity at time m, and respectively Ks
m and J s

m for the iterated filled Julia sets and the
iterated Julia sets at time m ≥ 0 (with similar notation for the basin of infinity, filled Julia set,
and Julia set at time 0).

The term ‘iterated’ for the iterated basins of infinity, filled Julia sets, and Julia sets is justified
in view of the following invariance result, the proof of which is a relatively easy exercise we leave
to the reader (also see [6] for a slightly stronger invariance statement).

Lemma 1.1 (Complete Invariance). For any s ∈ {0, . . . . . . , D−1}∞ and 0 ≤ m < n, we have that
Qs
m,n(As

∞,m) = As
∞,n, Qs

m,n(Ks
m) = Ks

n, and Qs
m,n(J s

m) = J s
n .

For a fixed template s ∈ {0, . . . . . . , D−1}∞ and an upper bound d ≥ max0≤i≤D−1 di on degrees
(which we introduce as we require compactness), we define the fixed-template Mandelbrot set Ms

as a subset of CD × {2, . . . . . . , d}D defined by:

Ms = {(c,d) ∈ CD × {2, . . . . . . , d}D : Qs,c,d
m,n (0) is bounded for all 0 ≤ m ≤ n}.

Remarks. In the case of template iteration where the polynomials have constant degree, the
fixed-template Mandelbrot set Ms can obviously be identified with a subset of CD as is more
common in classical polynomial iteration (and as we will do ourselves in Section 3). Since hav-
ing an unbounded orbit is clearly an open condition, it is easy to see that Ms is automatically
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a closed subset of CD×{2, . . . . . . , d}D (where we endow {2, . . . . . . , d}D with the discrete topology).

With these extensions, some of the results established in the traditional context of single map
iterations are easily generalizable for template iterations. Others are nontrivial to extend, or do
not hold true for templates. We already remarked earlier that template iterations is a special case
of the non-autonomous iteration of polynomials. We also note that there is a strong connection
between template iteration and polynomial semigroups as studied by Sumi and Stankewitz [14,
15, 16, 17, 18, 19], especially for finitely generated polynomial semigroups as considered in [20].

Some results for templates follow trivially from the general theory of non-autonomous iteration,
but we also have have objects and properties which apply only to the context of templates. For
example, we showed in prior work that template iterated systems have an escape radius, and that,
when D = 2 and d0 = d1 = 2, M = max{2, |c0|, |c1|} acts as such an escape radius for any
template iteration of the two maps arising from the pair (c0, c1) [12]. In this paper we want to
refine this result and we show that the fixed template Mandelbrot set Ms is a subset of the set
D(0, 2)D × {2, . . . . . . , d}D ⊂ Cd × {2, . . . . . . , d}D for most templates s.

For any s ∈ {0, . . . . . . , D−1}∞, it remains true that the fixed template Mandelbrot set coincides
with the connectedness locus for the Julia set corresponding to the same template:

Lemma 1.2. The fixed template Mandelbrot set Ms is equal to each of the following sets:

{(c,d) ∈ CD × {2, . . . . . . , d}D : Ks,c,d is connected },
{(c,d) ∈ CD × {2, . . . . . . , d}D : J s,c,d is connected },
{(c,d) ∈ CD × {2, . . . . . . , d}D : Ks,c,d

m is connected, for all m ≥ 0},
{(c,d) ∈ CD × {2, . . . . . . , d}D : J s,c,d

m is connected, for all m ≥ 0},
{(c,d) ∈ CD × {2, . . . . . . , d}D : 0 ∈ Ks,c,d

m for all m ≥ 0},
{(c,d) ∈ CD × {2, . . . . . . , d}D : csm ∈ Ks,c,d

m for all m ≥ 1}.

The proof carries through for non-autonomous (and in particular template) iterations in a similar
way to that for single polynomial maps (using Green’s functions where a critical point in the basin
of infinity gives rise to a level curve which separates the Julia set [3]). We will make use of this
fact in the following sections.

2 Boundedness of the template Mandelbrot set

It is easy to see from the standard theory of iterations with a single quadratic polynomial that,
for some templates s = {sm}∞m=1 ∈ {0, . . . . . . , D − 1}∞ and degree bounds d, the fixed template
Mandelbrot setMs is unbounded in CD ×{2, . . . . . . , d}D. More precisely, if there exists i, 0 ≤ i ≤
D − 1 for which sm 6= i for all m ≥ 1, so that P s,c,d

m 6= zdi + ci for all m ≥ 1, then Ms will be
unbounded in the i-th coordinate as there is no constraint on the corresponding critical value ci in
parameter space. With this in mind, we say that the template s = {sm}∞m=1 is full if this does not

occur and that, for each 0 ≤ i ≤ d−1, sm = i and thus P s,c,d
m = zdi + ci for at least one value of m.

We observe that this condition is clearly generic. We will show that, in the case of a full template,
Ms is bounded as one might expect.

We first start with a technical lemma which makes use of a well-known fact from potential
theory. In this paper, for z ∈ C and r > 0, we use the common notation D(z, r), D(z, r) to denote
the open and closed discs respectively with centre z and radius r.

Lemma 2.1. For any s ∈ {0, . . . . . . D − 1}∞ and any pair of d-tuples (c,d) ∈ Ms, the iterated

filled Julia sets Ks,c,d
m satisfy

Ks,c,d
m ⊂ D(0, 2), for all m ≥ 0.

3



Proof. By Lemma 1.2 above, since (c,d) ∈ Ms, for each m ≥ 0 the iterated filled Julia set Ks,c,d
m

is connected. By Theorem 5.3.2 (a) in [11], we have that diam(Ks,c,d
m ) ≤ 4 cap(Ks,c,d

m ), where

diam(Ks,c,d
m ) and cap(Ks,c,d

m ) are respectively the diameter and the logarithmic capacity of the set

Ks,c,d
m . Furthermore, since the polynomials f(csm ,dsm ) are monic, cap(Ks,c,d

m ) = 1 (see Theorem

1.4(5) in [6] or Theorem 2.1 in [10]), whence diam(Ks,c,d
m ) ≤ 4.

Recall that the diameter of a regular n-gon with vertices on the unit circle is 2 for n even and√
2− 2 cos

(
2πk
2k+1

)
< 2 for n = 2k + 1 odd. Since P s,c,d

m+1 (z) = f(csm+1 ,dsm+1 )
(z) = zdsm+1 + csm+1 ,

if dm+1 is even, then Ks,c,d
m is symmetric about 0 under z 7→ −z and it follows immediately that

Ks,c,d
m ⊂ D(0, 2). On the other hand, when dm+1 is odd, we have the slightly weaker condition

that Ks,c,d
m ⊂ D(0, r) where r = 4/

√
2− 2 cos(2πk/(2k + 1)) > 2, the worst case being when

dm+1 = 3 which gives r = 4/
√

3. Thus in any case we can say that for each m ≥ 0 we must

have Ks,c,d
m ⊂ D(0, 4/

√
3) (regardless of whether dm+1 is even or odd) and so, by Lemma 1.2, since

(c,d) ∈Ms, we have that
|cm| ≤ 4/

√
3, m ≥ 0. (1)

However, ifm ≥ 0, |z| > 2, dm+1 ≥ 3, and |cm+1| ≤ 4/
√

3, we have |P s,c,d
m+1 (z)| = |f(csm+1 ,dsm+1 )

(z)| >
8− 4/

√
3 > 4 from which it follows using (1) above that z escapes to infinity under iteration using

the sequence {Qs,c,d
m,n }∞n=m+1. Using this, it follows that Ks,c,d

m ⊂ D(0, 2), when dm+1 is odd also,
which completes the proof.

Lemma 2.2. If s ∈ {0, . . . . . . , D−1}∞ is a full template, thenMs is a compact subset of D(0, 2)D×
{2, . . . . . . , d}D.

Proof. Suppose (c,d) = ((c0, . . . . . . , cD−1), (d0, . . . . . . , dD−1)) ∈ Ms. Then, by Lemma 1.2 it

follows that for each m ≥ 1 the critical value csm of P s,c,d
m = f(csm ,dsm ) belongs to Ks,c,d

m . Since
s is full, it follows that, for each 0 ≤ i ≤ D − 1, there exists mi ≥ 1 such that smi = i and

P s,c,d
mi = zdi + ci, (for some 2 ≤ di ≤ d) so that ci ∈ Ks,c,d

mi . On the other hand, from Lemma 2.1,

it follows that Ks,c,d
mi+1 ⊂ D(0, 2). Thus, (c,d) ∈ D(0, 2)D × {2, . . . . . . , d}D, and, since Ms is closed

(as remarked earlier), while the set {2, . . . . . . , d}D is finite, Ms is also compact, which concludes
our proof.

3 Limit behavior for arbitrary templates

On the space of templates {0, . . . . . . , D − 1}∞ we consider the ultrametric defined for any two
templates s = {sm}∞m=1, s̃ = {s̃m}∞m=1 by

‖s− s̃‖ =

∞∑
k=1

|sk − s̃k|
Dk

.

We also make use of the product metric on CD × {2, . . . . . . , d}D. To be specific, for two points
(c,d) = ((c0, . . . , cD−1), (d0, . . . , dD−1)), (c̃, d̃) = ((c̃0, . . . , c̃D−1), (d̃0, . . . , d̃D−1)) ∈ CD×{2, . . . , d}D,
we have

d((c,d), (c̃, d̃)) = max{max{|c̃i − ci|, |d̃i − di|}, 0 ≤ i ≤ D − 1}.

We then use the notation

B((c,d), δ) = B(((c0, . . . . . . , cD−1), (d0, . . . . . . , dD−1)), δ)

= D(c0, δ)× · · · · · · ×D(cD−1, δ)× (d0 − δ, d0 + δ)× · · · · · · × (dD−1 − δ, dD−1 + δ)
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to denote the open balls with respect to this metric.

The distance between a point (c,d) ∈ CD × {2, . . . . . . , d}D and a set B ⊂ CD × {2, . . . . . . , d}D is
defined as:

d((c,d), B) = inf{d((c,d), (c̃, d̃)), (c̃, d̃) ∈ B}.

For two sets A,B ∈ CD × {2, . . . . . . , d}D, the distance from A to B is defined as:

d(A,B) = sup{d(c, B), c ∈ A}.

Finally, the Hausdorff distance between two sets A,B ∈ CD × {2, . . . . . . , d}D is then given by:

dH(A,B) = max{d(A,B), d(B,A)}.

Theorem 3.1. Let s ∈ {0, . . . , D − 1}∞ be a full template and consider a sequence of templates{
sN
}∞
N=1

that converges to s as N →∞. Then

lim
N→∞

d
(
MsN ,Ms

)
= 0.

Proof. Since
{
sN
}∞
N=1

converges to s, for any finite m0 ≥ 1, there exists N0 such that the first

m0 components of components of the templates sN and s coincide for all N ≥ N0. Since s is full,
from this we see that sN must be full for all sufficiently large N . It follows from Lemma 2.2 that
Ms ⊂ D(0, 2)D ×{2, . . . . . . , d}D and likewiseMsN ⊂ D(0, 2)D ×{2, . . . . . . , d}D (for all sufficiently
large N).

Suppose that (c,d) = ((c0, . . . . . . , cD−1), (d0, . . . . . . , dD−1)) ∈ D(0, 2)D × {2, . . . . . . , d}D. From
above is not hard to see, in a similar manner to the classical case for a single quadratic polynomial
z2 + c, that R = 2 acts as an escape radius for the polynomial sequence arising from the D-tuples
(c,d) in conjunction with any template and in particular sN and s (note that the existence of
this escape radius for the case D = d = 2 is Theorem 2.6 in [12] while the general case is proved
similarly). If in addition we assume that (c,d) ∈ (D(0, 2)D×{2, . . . . . . , d}D)\Ms, then at least one
of the critical points of the template iteration under s escapes. More precisely, there exist me ≥ 0,
te ≥ 1 such that

|Qs
me,me+te(0)| = |f(csme+te

,dsme+te
) ◦ · · · · · · ◦ f(csme+1 ,dsme+1 )

(0)| > 3

(where the polynomials f(csm ,dsm ), me + 1 ≤ m ≤ me + te are constructed using the template s and
the parameter (c,d)).

Again since
{
sN
}∞
N=1

converges to s, there exists N0 such that the first me + te entries of the

templates sN and s coincide for all N ≥ N0. Hence in particular:

QsN

me,me+te(0) = Qs
me,me+te(0)

so that
|QsN

me,te(0)| > 3, for all N ≥ N0. (2)

For (c̃, d̃) = ((c̃0, . . . . . . , c̃D−1), (d̃0, . . . . . . , d̃D−1)) ∈ CD × {2, . . . . . . , d}D, one can define, similarly
to our earlier notation, the compositions

Q̃sN

me,me+te = Q̃s
me,me+te := f(c̃ste+me

,d̃ste+me
) ◦ · · · · · · ◦ f(c̃sme+1 ,d̃sme+1 )

(where the polynomials f(c̃sm ,d̃sm ), me + 1 ≤ m ≤ me + te are constructed using the template s, the

parameter c̃ which is allowed to vary over CD, and the degree bound d which we regard as fixed).
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It is easy to see that these polynomials are jointly continuous in z, and in each c̃i, 0 ≤ i ≤ d−1.
In addition, the coefficients for these polynomials (in z) are fixed polynomials in the parameters
c̃i whose degrees in each variable are at most dme+te−1. Further, the degrees of these coefficient
polynomials will be locally constant as the parameter (c,d) moves continuously. Finally, the degrees
of these polynomials (again in z) are at most dme+te and thus uniformly bounded. Hence the partial
derivatives in each c̃i, 0 ≤ i ≤ d−1 of these polynomials are locally uniformly bounded as functions
of these D variables and there thus exists δ > 0 such that:

d((c,d), (c̃, d̃)) < δ =⇒ |Q̃sN

me,me+te(0)−QsN

me,me+te(0)| < 1. (3)

From (2) and (3), it follows that, for all (c̃, d̃) ∈ B((c,d), δ) and N ≥ N0, we have:

|Q̃sN

me,me+te(0)| ≥ |QsN

me,me+te(0)| − |Q̃sN

me,me+te(0)−QsN

me,me+te(0)| > 3− 1 = 2.

Since from above R = 2 is an escape radius for any iterated template system with (c,d) ∈
D(0, 2)D × {2, . . . . . . , d}D, it follows that (c̃, d̃) /∈ MsN . Hence we have shown that, given any
(c,d) ∈ (D(0, 2)D × {2, . . . . . . , d}D) \ Ms, we can find N0 ∈ N and δ > 0 such that the ball

B((c,d), δ) is contained in (CD × {2, . . . . . . , d}D) \MsN for all N ≥ N0.

Now let ε > 0 and set

Nε = {(c,d) ∈ D(0, 2)D × {2, . . . . . . , d}D : d((c,d),Ms) < ε}.

By Lemma 2.2, we have Ms ⊂ D(0, 2)D × {2, . . . . . . , d}D, so that Ms ⊂ Nε. It follows from above
that for any D-tuples (c,d) ∈ (D(0, 2)D × {2, . . . . . . , d}D) \ Nε, one can make δ > 0 sufficiently
small and N0 > 0 sufficiently large to guarantee that

B((c,d), δ) ⊂ (CD × {2, . . . . . . , d}D) \MsN , N ≥ N0.

Since (D(0, 2)D×{2, . . . . . . , d}D)\Nε is compact (this is the point in the proof where the existence
of the degree bound d is essential), it follows that we can actually choose N0 large enough such
that

(D(0, 2)D × {2, . . . . . . , d}D) \Nε ⊂ (CD × {2, . . . . . . , d}D) \MsN , for all N ≥ N0

and, since MsN ⊂ D(0, 2)D × {2, . . . . . . , d}D, again from Lemma 2.2 above, we have in fact that

CD × {2, . . . . . . , d}D \Nε ⊂ (CD × {2, . . . . . . , d}D) \MsN , for all N ≥ N0.

Hence
MsN ⊂ Nε, for all N ≥ N0.

In conclusion, since MsN is compact in view of Lemma 2.2 (which again requires the existence of
the degree bound d), we have

d(MsN ,Ms) < ε, for all N ≥ N0

which completes the proof.

Basically, the above theorem states that the template Mandelbrot sets depend upper semi-
continuoulsy on the parameter (c,d) (see Figure 1 below for an illustration of how this looks in
practice). We remark the similarity between this result and the upper semicontinuous dependence
of the filled Julia set in non-autonomous polynomial iteration (Theorem 2.4 in [6]) as well as the
classical iteration with a single polynomial. We will next show next that that this statement does
not remain true in the other direction. In other words, we do not have lower semicontinuous depen-
dence, and thus we do not have continuity with respect to the Hausdorff topology. To be precise,
we will show that:
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Figure 1: Slices of the Mandelbrot set for the template s = 0111 . . . using two quadratic polynomials.
The parameter is (c,d) = ((c0, c1), (d0, d1)) = ((12 −

1
256 ,

1
4 + 1

256), (2, 2)) and slices are taken in the
c0-direction on the left and in the c1-direction on the right. The Mandelbrot slices for the limit
template are shown in green while the approximate slices using periodic approximations to the limit
template of periods 20 and 200 are shown in light blue and dark brown, respectively. The pictures
were made using a maximum of 400 iterations and a resolution of 1200×1200. The plotting ranges
are [−1.25, 1.25]× [−1.25, 1.25] for the c0 panel and [−1.5, 0.5]× [−1, 1] for the c1 panel.

Theorem 3.2. Let D = d = 2, let s = (011111 . . . . . .), and let {sN}∞N=1 be any sequence of
templates in {0, 1}∞ such that lim

N→∞
‖sN − s‖ = 0, and such that sN 6= s for infinitely many N .

Then
d(Ms,MsN ) 6→ 0 as N →∞.

Remark. The key to the proof of this result is the asymmetry of the sequence s above which passes
from 0 to 1 but not from 1 to 0. On the other hand, the conditions on the approximating sequences
sN force these sequences to make a transition from 1 to 0 for infinitely many such sequences. Using
this, we can make the dynamics sufficiently different (at this point, the reader might like to consult
Figure 2 below) to ensure that all critical points for template iteration using s with parameters
((c0, c1), (2, 2)) have bounded orbits while at the same time we can ensure that, for a reasonably
small neighbourhood of these parameters, there must be a critical point whose orbit escapes if one
uses the templates sN (again for infinitely many such sequences). Before we can proceed with the
proof of this result, we first need a small lemma about stability under perturbation for the basin
of infinity. Since we are now in the situation of constant degree 2, for convenience we will suppress
the degree vectors in the parameters, referring to (c0, c1) instead of ((c0, c1), (2, 2)) as above, using
the product metric on C2 instead of C2 × {2}2 for our parameter neighbourhoods, and identifying
our parameter spaces with subsets of C2 instead of C2 × {2}2.

Lemma 3.3. Let 0 < ε0, ε1 ≤ 1
8 and let c0 = 1

2 − ε0, c1 = 1
4 − ε1. Then there exist η >

0 and δ > 0 depending only on ε0 and ε1 such that, if s ∈ {0, 1}∞ is any arbitrary template,
d((c0, c1), (c̃0, c̃1)) < η, and {P̃ s

m}∞m=1 is the polynomial sequence constructed from the pair (c̃0, c̃1)

7



(and degrees 2) according to the template s, then

D(x, δ) ⊂ Ãs
∞, for all x ≥ β +

√
ε1,

where β := 1
2 +
√
ε1 is the repelling fixed point for fc1 and Ãs

∞ is the basin of infinity for {P̃ s
m}∞m=1.

Proof of Lemma 3.3 Let s ∈ {0, 1}∞ be an arbitrary template and let Jc0 , Jc1 and Kc0 , Kc1
denote the Julia and filled Julia sets respectively for fc0 , fc1 (again the reader is referred to Figure
2 for pictures of these Julia sets and how they are used in our proof). As mentioned above, β is
a repelling fixed point for fc1 and one checks that Kc1 ∩ R = [−β, β]. Recall also that, provided
(c̃0, c̃1) ∈ B((0, 0), 2), then R = 2 is an escape radius for any polynomial sequence {P̃ s

m}∞m=1 as
above. Clearly, there exists N0 = N0(ε1) such that:

f◦N0
c1 (β +

√
ε1) > 3.

Since c0 ≥ c1 and fc0 and fc1 are both increasing real-valued functions on (0,∞), this implies that

Qs
N0

(x) > 3, for all x ≥ β +
√
ε1 (4)

where Qs
N0

denotes the finite composition generated by the pair (c0, c1) and the first N0 entries of
the template s. We next proceed to finish the proof according to two cases depending on the value
of the quantity x.

Case 1: β +
√
ε1 ≤ x ≤ 3. Consider the collection of compositions {Q̃u

N0
(z)} where u is any

template, and the polynomial sequences {P̃u
m}∞m=1 (which give rise to the compositions {Q̃u

N0
(z)})

are generated according to the template u and the pair (c̃0, c̃1) ∈ C2 (using degree 2 for each
polynomial P̃u

m). Each member of this collection is jointly differentiable in z, c̃0, and c̃1, and the
number of possibilities for the first N0 entries of the template u is finite (actually 2N0). In addition,
the degrees of these polynomials are all 2N0 and their coefficients (in z) are fixed polynomials in c̃0,
c̃1 (of degree at most 2N0−1 in each variable). It follows (somewhat) as in the proof of Theorem 3.1
that the partial derivatives of these functions in z, c̃0, c̃1 are uniformly bounded on any bounded
subset of C3. From this we can deduce that there exist η, δ > 0 (depending only on ε0 and ε1) such
that, if (c̃0, c̃1) ∈ B((c0, c1), η), β +

√
ε1 ≤ x ≤ 3, and |z − x| < δ, then (c̃0, c̃1) ∈ B((0, 0), 2) and

|Q̃u
N0

(z)−Qu
N0

(x)| < 1.

In conjunction with (4), this implies (by the reverse triangle inequality) that

Q̃s
N0

(D(x, δ)) ⊂ C \D(0, 2).

Since (c̃0, c̃1) ∈ B((0, 0), 2), R = 2 is an escape radius for any template sequence of quadratic poly-
nomials {P̃ s

m}∞m=1 generated using (c̃0, c̃1) and s as above. It therefore follows that D(x, δ) ⊂ Ãs
∞.

Case 2: x > 3. To conclude the proof: if x > 3, make δ smaller if needed so that δ ≤ 1 (which
still leaves the dependence on ε0 and ε1 unaltered). Then, since we still have (c̃0, c̃1) ∈ B((0, 0), 2),
it follows that R = 2 is an escape radius for {P̃ s

m}∞m=1. We then automatically have D(x, δ) ⊂ Ãs
∞

in this case also, which completes the proof.

Proof of Theorem 3.2. Clearly the result follows if we show that, for any template sequence
{sN}∞N=1 such that sN 6= s for every N > 1, we have lim supN d(Ms,MSN

) > 0. We therefore
start (without loss of generality) by assuming this is the case and that sN 6= s for every N ≥ 1.
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As before, let 0 < ε0, ε1 ≤ 1
8 and set c0 = 1

2 − ε0, c1 = 1
4 − ε1. Recall that, as a single map

under iteration, fc1(z) = z2 + 1
4 − ε1 has two fixed points: α := 1

2 −
√
ε1 (which is attracting)

and β := 1
2 +
√
ε1 (which is repelling). As above, the filed Julia set Kc1 of fc1 still satisfies

Kc1 ∩ R = [−β, β]. Then

fc0(0) =
1

2
− ε0 ∈ [−β, β] ⊂ Kc1 .

Thus, fc0(0) has bounded orbit under fc1 . Since 0 also has bounded orbit under fc1 , all critical
points of the sequence {P s

m}∞m=1 generated by the pair (c0, c1) and the template s (as well as the
degree pair (2, 2)) have bounded orbit and so

(c0, c1) ∈Ms.

Now take ε0 and ε1 sufficiently small such that:

3
√
ε1 − ε1 + ε0 <

1

4
. (5)

Then

fc0(α) = α2 +
1

2
− ε0 > β +

√
ε1. (6)

Let η, δ > 0 (depending on ε0, ε1) be as in Lemma 3.3, let m0 ≥ 0 be arbitrary, and let
u = {um}∞m=1 be any template satisfying um0+1 = 0. Hence, using (6), Lemma 1.1, and Lemma
3.3, if d((c0, c1), (c̃0, c̃1)) < η, then

D(fc0(α), δ) ⊂ Ãu
∞,m0+1, (7)

where the polynomial sequence {P̃u
m}∞m=1 is generated according to u and (c̃0, c̃1) (as well as the

degree pair (2, 2)), while Ãu
∞,m0+1 represents the basin of ∞ at time m0 + 1 for this polynomial

sequence.
Since fc̃0 is continuous, it follows that there exists a τ0 > 0 (also depending on ε0 and ε1), such

that:
fc0(D(α, τ0)) ⊂ D(fc0(α), δ2). (8)

Let η′ = min(η, δ/2) (which also depends on only ε0 and ε1). It follows that, when |c̃0− c0| < η′

(so that |fc̃0(z)− fc0(z)| = |c̃0 − c0| < η′ ≤ δ
2 for any z ∈ C), then, by (7), (8)

Q̃u
m0,m0+1(D(α, τ0)) = P̃u

m0+1(D(α, τ0)) = f̃c0(D(α, τ0)) ⊂ D(fc0(α), δ) ⊂ Ãu
∞,m0+1. (9)

Recall that fc1 has an attracting fixed point at α = 1/2−√ε1, with multiplier 2α = 1− 2
√
ε1.

Since this condition is clearly stable under perturbation, we can make η′ smaller if needed (still
only depending on ε0 and ε1), such that, if |c̃1 − c1| < η′, then fc̃1 has a fixed point α̃ such that

|α̃− α| < τ0/2 (10)

while we can at the same time ensure that the multiplier 2α̃ of this fixed point has absolute value
strictly less than 1 − √ε1. The multiplier of α̃ is thus uniformly bounded below away from 1 in
absolute value so that the fixed points α̃ are uniformly attracting while the immediate basin of each
of them must contain the critical point 0 (see e.g. [4] Chapter III Theorem 2.2). An easy argument
using relative compactness of D(c1, η

′)) shows that there then exists N0 > 0 (depending only on ε0
and ε1), such that, in view of (10):

f◦Nc̃1 (0) ∈ D(α̃, τ0/2) ⊂ D(α, τ0), for all N ≥ N0. (11)
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Figure 3: Zooms about (c0, c1) = (12 −
1

256 ,
1
4 + 1

256) (with degree vector (2, 2)) of the pictures in

Figure 1 illustrating the lack of lower semicontinuity where d(Ms,MsN ) does not tend to zero
as N tends to infinity. Here we have ε0 = ε1 = 1

256 which satisfies condition (5) in the proof of
Theorem 3.2 above. Again, slices in the c0-direction are on the left and in the c1-direction on the
right. The cross marks the point of intersection of these two complex lines at (c0, c1). As before,
we have a maximum of 400 iterations, and a resolution of 1200 × 1200. As with Figure 1, the
Mandelbrot slices for the limit sequence are in green, with those for the periodic approximations
of periods 20 and 200 in light blue and and dark brown respectively. The plotting ranges are
[c0 − 0.25, c0 + 0.25]× [−0.25, 0.25] for the c0 panel and [c1 − 0.05, c1 + 0.05]× [−0.05, 0.05] for the
c1 panel.

Now we look at the sequence of templates {sN}∞N=1. Since ‖sN−s‖ → 0 and since we have assumed
that sN 6= s for all N , it follows that there exists N1 (which thus tends to infinity as N tends to
infinity) such that

• Q̃sN
0,1 = P̃ sN

1 = fc̃0 ,

• Q̃sN

1,N1+1 = f◦N1
c̃1

, and

• Q̃sN

N1+1,N1+2 = P̃ sN

N1+2 = fc̃0 .

In other words, the first member of the sequence {P̃ sN }∞m=1 is fc̃0 , the next N1 members are fc̃1 ,
and the (N1 + 2)-nd member is again fc̃0 . Then, by (9) and (11) (where we let m0 = N1 + 1 in
(9)), it follows that, if we choose N sufficiently large so that we also have N1 ≥ N0, then,

Q̃sN

1,N1+2(0) ∈ ÃsN

∞,N1+2.

It follows that, for N sufficiently large, if |c̃0 − c0| < η′, then the critical point zero at time one
escapes for any template in this sequence, that is:

(c̃0, c̃1) /∈MsN

11



Hence
B((c0, c1), η

′) ⊂ C2 \MsN

and thus
d((c0, c1),MsN ) ≥ η′

(see Figure 3 above) so that

lim sup
N→∞

d(Ms,MsN ) > 0

as required, from which the result follows.
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