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Abstract
As a particular problem within the field of non-autonomous discrete systems, we
consider iterations of two quadratic maps fc0 = z2 + c0 and fc1 = z2 + c1, according
to a prescribed binary sequence, which we call a template. We study the asymptotic
behavior of the critical orbits and define the Mandelbrot set in this case as the locus
for which these orbits are bounded. However, unlike in the case of single maps, this
concept can be understood in several ways. For a fixed template, one may consider
this locus as a subset of the parameter space in (c0, c1) ∈ C

2; for fixed quadratic
parameters, one may consider the set of templates which produce a bounded critical
orbit. In this paper, we consider both situations and hybrid combinations of them,
and we study basic topological properties of these sets and interpret them in light of
potential applications.

Keywords Non-autonomous iterations · Complex polynomial dynamics ·
Asymptotic behavior · Mandelbrot slice · Replication error
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1 Introduction

Discrete dynamics of single iterated maps on the complex plane has been a rich field
of studies over many decades, in particular for polynomial maps. In this context, the
Julia set is defined as the boundary between initial conditions which remain asymp-
totically bounded and those which escape to infinity under iterations of the map. The
topological and fractal properties of Julia sets have been well studied for polynomials,
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with major results relating the geometry of the Julia set with properties of the critical
orbits (Branner and Hubbard 1992; Qiu and Yin 2009; Devaney and Look 2006). One
of the most studied families is that of quadratic maps in the family fc = z2 + c, with
c ∈ C, with a history that goes back more than a century, to the work of Fatou and
Julia (Fatou 1920; Julia 1918). For iterations of single quadratic maps, it is known
that the Julia set is either connected, if the orbit of the critical point 0 is bounded, or
totally disconnected, if the orbit of the critical point 0 is unbounded. The postcritically
bounded parameter locus is therefore the same as the Julia set connectedness locus in
the parameter complex plane and is known as the Mandelbrot set (Branner 1989), the
topology and properties of which have been amply studied since the 1960s.

While single map iterations have been often used to represent natural phenomena, it
is unlikely that natural systems evolve according to the same identical dynamics along
time. Amore realistic mathematical framework to model the variability and errors that
appear in replication systems is that of time-dependent (random) iterations, in which
the iterated map may change between steps (evolve in time).

A broad field of active research in probability theory centers around dynamical sys-
tems produced by random iterations. For example, Kiefer et al. have been investigating
theoretical ergodic properties of systems generated by iterations of functions chosen
at random from a certain family, according to some probability distribution (Kifer
2012). Diaconis and Freedman have developed methods for studying the steady state
distribution of a Markov chain and have given useful convergence criteria, in partic-
ular for iterates of random Lipschitz functions (Diaconis and Freedman 1999). Other
studies relate the idea of random function iterations to applications in economics (via
dynamical systems subject to random shocks) (Bhattacharya and Majumdar 2007), or
to periodically forced, monotone difference equations motivated by applications from
population dynamics (Cushing and Henson 2002; Haskell and Sacker 2005). In the
particular case of two maps f0 and f1, one can consider a probability measure on the
sequence space � = {0, 1}N which, in the simplest case, is generated as a product
measure of Bernoulli probabilities p and 1 − p on the two symbols in the set {0, 1}.
Along these lines, Bhattacharya and Rao have been studying invariant measures of
Markov processes obtained by iterations of maps chosen at random from a set of two
quadratic maps (Bhattacharya and Rao 1993).

A particular direction of research has been to study time-independent iterations of
complex maps. Rather than focusing specifically on the structure of the probability
space, the aim has been to describe general properties of the asymptotic dynamics for
arbitrary sequences of maps chosen from specific families (e.g., hyperbolic polyno-
mials of a certain degree). The focus on this aspect of non-autonomous systems was
introduced in the work of Fornæss and Sibony (1991) and continues in more recent
work by Comerford andWoodard (2013), Comerford (2006), Sumi (2011a). The sim-
ple particular case of an iterationwhich alternates two distinct quadratic complexmaps
(thus equivalent to iterating a complex quartic polynomial) was studied by Danca et al.
(2009). It was shown that in this case the Julia sets can be disconnected without being
totally disconnected, and that they exhibit a graphical alternation of patterns found
independently within the Julia set of each of the two iterated maps.

In this paper, we continue our previous work in the spirit of this latter line of
research (Rǎdulescu and Pignatelli 2016), while incorporating a simple probability

123



Journal of Nonlinear Science (2021) 31 :22 Page 3 of 26 22

space structure on the sequence space. More specifically, we study the dynamics gen-
erated by two different complex quadratic functions, fc0 and fc1 , applied according
to a general binary symbolic sequence s (template), in which the “zero” positions
correspond to iterating the function fc0 and the “one” positions correspond to iterat-
ing the function fc1 . We view template iterations as a framework for replication or
learning algorithms that occur in nature, with patterns that evolve in time, and which
may involve occasional, random or periodic “errors.” While our results are generally
expected to agree with existing general results in non-autonomous iterations of com-
plex polynomials, our interest resides more specifically in understanding properties
that are particular to a system based on a quadratic map pair. We study the dependence
of the dynamic behavior on the two primary features of this system’s hardwiring: (1)
the complex parameter pair (c0, c1) that fixes the iterated maps and (2) the structure
of the template, i.e., the particular succession (timing) of the 0s and 1s that govern the
iteration order.

In our previouswork,we studied the parameter locus forwhich the orbit of the initial
critical point remains bounded. More precisely, for a fixed (c0, c1, s) ∈ C

2 × {0, 1}N,
we studied the iterated orbit:

ξ0 = 0 → fcs1 (0) →
(
fcs2 ◦ fcs1

)
(0) → · · · →

(
fcsn ◦ · · · ◦ fcs1

)
(0) → · · ·

When c0 = c1, the orbit does not depend on s and corresponds to the traditional
orbit of ξ0 under the quadratic polynomial fc0 = fc1 . In this slice, the Mandelbrot
set is defined as the locus of all c0 for which the orbit of the origin is bounded, or
equivalently for which the Julia set of fc0 is connected. When extending the concept
to template iterations based on the parameter spaceC2 ×{0, 1}N, one natural question
to ask is, for example, whether the two traditional definitions are still equivalent. In
this scenario, in which an “erroneous” function fc1 interferes into the iteration of a
correct function fc0 , one may also ask how far can the erroneous map c1 stray from the
given correct map c0, so that we can be sure (with some probability) that the critical
orbit os(0) stays bounded when a random template s prescribes where the errors will
hit in the iteration process.

To better understand such questions, our direction is to consider different slices of
the full parameter space, as well as hybrid combinations; for these simpler sets, we
discuss topological properties of potential importance (such as connectivity), and we
explore connections with other possible definitions. The paper is organized as follows:

After discussing some basic definitions and properties in Sect. 2, we review two
concepts already introduced in previous work (Rǎdulescu and Pignatelli 2016): the
fixed map and the fixed template Mandelbrot sets, as parameter slices in {0, 1}N and
in C

2, respectively. We had previously documented some of the properties of these
sets for both periodic and random templates (e.g., there are detectable differences in
the Hausdorff dimension along the boundary of Mandelbrot slices for fixed templates,
between the case of periodic and that of non-periodic templates). In Sect. 3, we con-
centrate on fixing the complex parameter pair (c0, c1) and further understanding the
topology of the fixed-map Mandelbrot set, defined as a Mandelbrot slice in the space
{0, 1}N.
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In Sect. 4, we define hybrid Mandelbrot sets to illustrate, in the form of a surface
over the complex plane, the likelihood of a random template to produce a bounded
critical orbit os(0) under iterations of a fixed map fc0 and a variable map fc1 . We
find that the level sets of hybrids have a less complex geometric structure than the
traditional Mandelbrot set, possibly relating to a known phenomenon of cooperation
between generating maps toward “smoothing out the chaos” (Sumi 2011a).

A different possibility, raised previously by Comerford Comerford and Woodard
(2013), is to consider theMandelbrot set to represent the parameter locus for which the
iteration is postcritically bounded. This definition is more consistent with accounting
for multiple critical orbits when iterating higher order polynomials. In our case, this
definition means that none of the critical points ξ0 = 0 introduced at any step m ≥ 1
of the iteration can escape to infinity. In other words, all orbits:

0 → fcsm (0) → · · · → (
fcsn ◦ · · · ◦ fcsm

)
(0) → · · ·

are bounded. In Sect. 5 of our paper, we consider this stricter, “multi-critical” definition
of the Mandelbrot set. We define the corresponding parameter slices and investigate
the same questions as in the uni-critical definition and compare the results. In partic-
ular, we discuss, for both definitions, the relationship of the Mandelbrot set with the
connectedness locus of the Julia set for template iterations.

2 The Quadratic Family and Template Iterations

We will be working within the complex quadratic family

{
fc : C → C, fc(z) = z2 + c, with c ∈ C

}
.

For fixed parameters c0, c1 ∈ C, and a fixed binary sequence s = (sn)n≥1 ∈ {0, 1}N,
one can define the template orbit for any ξ0 ∈ C as the sequence os(ξ0) = (ξn)n≥1
constructed recursively, for every n ≥ 0, as

ξn+1 = fcsn+1
(ξn).

The parameter space of our template iterated system isC2×{0, 1}N, with the quadratic
parameter pair (c0, c1) ∈ C

2, and the template s ∈ {0, 1}N.
Definition 2.1 We define the Mandelbrot set for template iterations as

M = {
(c0, c1, s) ∈ C

2 × {0, 1}N, where os(0)

is bounded under iterations of fc0 and fc1
}
.

As a step toward understanding theMandelbrot set as a whole (in the full parameter
space C2 × {0, 1}N), one may first consider studying “Mandelbrot slices”, which are
easier to describe and visualize. In our previous work (Rǎdulescu and Pignatelli 2016),
we defined two main types of slices:
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Definition 2.2 Fix s ∈ {0, 1}N a symbolic sequence. The corresponding fixed-
template Mandelbrot slice is defined as

Ms =
{
(c0, c1) ∈ C

2, such that (c0, c1, s) ∈ M
}

.

Definition 2.3 Fix (c0, c1) ∈ C
2. The corresponding fixed-map Mandelbrot slice is

defined as

Mc0,c1 =
{
s ∈ {0, 1}N, such that (c0, c1, s) ∈ M

}
.

The space {0, 1}N is an ultrametric space with the metric induced by the distance

d(s, t) =
∞∑
k=1

|sk − tk |
2k

for any two templates s and t. To better represent subsets of templates with certain
properties, one can define an order on {0, 1}N by identifying each template with the
binary expansion of a real number in the unit interval, using the distance function to
the null space:

ψ : {0, 1}N → [0, 1]

ψ(s) =
∞∑
n=1

sn2
−n for all s = (sn)n≥1

Themapψ is surjective, but not injective, since any number in [0, 1] has at least one
binary expansion, but some numbers do have multiple expansions (e.g., 0.10 = 0.01).

Using this map, we can represent the set Mc0,c1 as its image ψ(Mc0,c1) ⊂ [0, 1],
which we will further illustrate and discuss in Sect. 3, where we also show that
ψ(Mc0,c1) are measurable with the Lebesgue measure L on the unit interval. In
fact, this corresponds to Mc0,c1 being measurable in {0, 1}N, with μ(Mc0,c1) =
L(ψ(Mc0,c1)), where μ represents the product measure induced on {0, 1}N by the
equally weighted Bernoulli probability p(0) = p(1) = 1/2 on each template trial.
For the sake of concreteness, we choose to illustrate in the remainder of the section
the images of the actual setsMc0,c1 , as subsets of the unit interval with the Lebesgue
measure.

On theC2 slice of the parameter space for template iterations, one can consider the
function

b : C2 → [0, 1], given by b(c0, c1) = L (
ψ

(Mc0,c1

))
.

For a fixed c0 ∈ C, we define

bc0 : C → [0, 1], given by bc0 (c1) = b (c0, c1) .
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One can then view the “graph” of each bc0 as a mixed, hybrid Mandelbrot set, poten-
tially related to phenomena of averaging out chaos, as described by Sumi in the context
of non-autonomous iterations on polynomial semigroups (Sumi 2011a).

Definition 2.4 Fix c0 ∈ C. The corresponding hybrid Mandelbrot set is defined as:

Mc0 = {(
c1, bc0 (c1)

) ∈ C × [0, 1], for all c1 ∈ C
}
.

While in previous work we focused on fixed-template Mandelbrot sets, in the current
paper we will investigate fixed-map and hybrid sets. The main goal of this paper is to
visualize the structure and conjecture properties of these sets, in particular understand
their dependence on the complex parameters and on the template structure, whichever
is appropriate in each case.

2.1 Escape Radius for Template Iterations

A simple, yet major result in the case of iterations of single quadratic complex maps
is the existence of an escape radius (Branner 1989). More precisely:

Theorem 2.5 For |c| < 2, Re = 2 is an escape radius for fc(z) = z2+c. In particular,
for the critical orbit (zn)n≥1 (with z0 = 0), if |zN | > 2 for some positive integer N,
then |zn| > 2 for all n ≥ N, and |zn| → ∞ as n → ∞.

More general results have been formulated by Comerford et al. for the case of non-
autonomous iterations (Comerford and Woodard 2013), as follows: Suppose we take
d ≥ 2, K ≥ 1, M ≥ 0 and let (Pm)∞m=1 be a bounded sequence of polynomials, that
is: (1) the degree dm of each Pm satisfies 2 ≤ dm ≤ d; (2) the leading coefficients am
satisfy 1/K ≤ am ≤ K ; (3) all coefficients of all Pm are within the disc of radius M .
Then, there exists an escape radius R > 0 for the sequence Pm , that is: for all m ≥ 0
and all |z| > R, we have |Pn ◦ . . .◦Pm+2◦Pm+1(z)| → ∞ as n → ∞. Comerford and
Woodard (2013) showed that one can find an escape radius R which depends only on
the bounds d, K and M , and works for every sequence which satisfies these bounds.

The existence and the value of the escape radius will be used in this study to
determine numerically which orbits are unbounded, allowing elimination from the
Mandelbrot set of the parameters for which the critical point iterates outside the escape
radius.While Comerford’s result permits custom computation of a tighter Re for a gen-
eral sequence of bounded polynomials, when iterating two quadratic maps according
to a template, it is possible to use a more convenient escape rate, reminiscent of single
map iterations. Below, we show that the single map escape radius Re = 2 still acts as
an escape radius for template iterations, under some relatively broad assumptions for
the maps. We have the following:

Theorem 2.6 For arbitrary (c0, c1, s) ∈ C
2 × {0, 1}N, consider a template orbit

(ξn)n≥1. Suppose |ξN | > Re, with Re = max{2, |c0|, |c1|} for some N. Then, |ξn| > Re
for all n ≥ N, and |ξn| → ∞ as n → ∞. In other words, Re = max{2, |c0|, |c1|} is
an escape radius for the template iteration of the maps c0 and c1.
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Proof Notice that

|ξn+1|
|ξn| = | fcsn (ξn)|

|ξn| = |ξ2n + csn |
|ξn| ≥ |ξn|2 − |csn |

|ξn| = |ξn| − |csn |
|ξn| .

We will prove by induction that |ξn| > Re, for n ≥ N . We know that this is true for
n = N , since |ξN | > Re by hypothesis. Suppose that |ξn| > Re, for some n ≥ N . We
will show that |ξn+1| > Re. Indeed, since |ξn| > |csn | by the induction hypothesis, we
have that

|ξn+1|
|ξn| ≥ |ξn| − |csn |

|ξn| > |ξn| − 1.

Since |ξn| > 2, we further have:

|ξn+1|
|ξn| > |ξn| − 1 > 1.

Hence, |ξn+1| > |ξn| > Re, which concludes the induction step. In conclusion, |ξn| >

Re for all n ≥ N .
It also follows from this that |ξn+1| > |ξn| for all n ≥ N , implying that the orbit

increases in radius toward its upper bound. If we assume that this upper bound is a

finite number l = lim
n→∞|ξn|, we get, taking limit on both sides of

|ξn+1|
|ξn| ≥ |ξn| − 1,

that the limit l ≤ 2, which contradicts the fact that l is the upper bound of a sequence
of values larger than 2. It follows that the limit lim

n→∞|ξn| = ∞. 	


Remark This implies directly that, when (c0, c1) ∈ C
2 with |c0|, |c1| ≤ 2, Re = 2 is

an escape radius for the template iteration corresponding to the pair of maps (c0, c1).

Proposition 2.7 For fixed c0 = 0 and any arbitrary c1 ∈ C, the template orbit (ξn)n≥1
of ξ0 = 0 under (0, c1) escapes once it falls outside the radius Re = 2. That is, if
|ξN | > 2 for some positive integer N, then |ξn| > 2 for all n ≥ N, and |ξn| → ∞ as
n → ∞.

Proof Suppose first that |c1| ≤ 2. From |ξN | > 2, it follows automatically in this case
that |ξN | > max{2, |c0|, |c1|}. From Theorem 2.6, it further follows that |ξn| > 2 for
all n ≥ N , and |ξn| → ∞ as n > N .

Now we consider the case |c1| > 2. We aim to track down when the critical orbit
os(0) leaves the disk of radius 2. The orbit will remain zero as long as the map fc0
is iterated, that is throughout the first succession of zeros in the template. (If fc1 is
never iterated, the critical orbit is trivial.) Otherwise, the first nonzero orbit entry will
be ξM = fc1(0) = c1, with |ξM | > 2. This will be squared repeatedly over the next
succession of zero template entries. If all the remaining template entries are zero, the
orbit will be, for all n ≥ 0, ξM+n = c2

n

1 , with |ξM+n| > 2. If there is at least one

additional nonzero entry in the template, at position M + K , then ξM+K = c2
K

1 , and

ξM+K+1 = c2
K+1

1 +c1. Notice that |ξM+K+1| = |c2K+1

1 +c1| ≥ |c1|(|c1|2K+1−1−1) >
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|c1| > 2.Hence, ξM+K+1 satisfies the conditions of Theorem2.6 and the orbit escapes.
In either case, once the orbit escapes the disk of radius Re = 2, it continues to increase
to ∞. 	

Remark Clearly, Re = 2 is not an escape radius for any arbitrary template iteration.
Here is a simple construction for which Re = 2 fails to act as an escape radius. Fix
a value of c0 outside of the traditional Mandelbrot set. We choose the value of c1
and the template s as follows. According to Theorem 2.5, the orbit of zero leaves
the disk of radius Re = 2 after a certain number N of iterations of fc0 and never
returns: 0 → z1 → z2 → · · · → zN →, with |zn| > 2, for all n ≥ N . Consider
now a point z′ in the filled Julia set of fc0 (hence |z′| < 2), and choose c1 = z′ − z2N
(notice that |c1| > |zN |2 − |z′| > 2). Choose the template s to be such that s j = 0,
for all j �= N + 1, and sN+1 = 1. Then, the orbit os(0) leaves the escape disk in N
iterates (since |zN | > 2), but zN+1 = z2N + c1 = z′, and the orbit remains henceforth
bounded (all future iterations are under fc0 ). Notice that the choice that generates this
counterexample is not robust, since the filled Julia set is totally disconnected for a c0
outside of the Mandelbrot set; hence, the choice of z′, and subsequently of c1, is made
from a set of area zero.

3 Structure of Fixed-MapMandelbrot Sets

Henceforth, we will focus on parameters c0 and c1 in the open complex disc of radius
two D(2). In this section, we will study the structure of fixed-map Mandelbrot sets,
and how this changes when the pair (c0, c1) ∈ D(2)2 is varied. Since later in the paper
we perform a computer-assisted numerical analysis, we will use truncated templates
in order to illustrate our sets. We therefore find it useful to define finitely iterated
versions of our sets (that is, Mandelbrot sets for binary templates of finite length N )
and explore the limit behavior as N → ∞.

Definition 3.1 For any integer N ≥ 1, we call the N -root of the template s = (sn)n≥1
the finite binary sequence 〈s〉N = s1 . . . sN . We will use the notation {0, 1}N for the
set of all N -roots.

We will say that two templates s and s′ ∈ {0, 1}N have a common N -root if they agree
up to the N th position: s j = s′

j , for 1 ≤ j ≤ N . N need not be maximal in order to
define a common N -root; if two templates have a common N -root, they will have a
common k-root, for all 1 ≤ k ≤ N . We will use the notation o〈s〉N (ξ0) for the finite

orbit of a point ξ0 under the N -root 〈s〉N , and o j
〈s〉N (ξ0) to designate the j-th iterate of

ξ0 under the N -root 〈s〉N .
Definition 3.2 For a fixed pair (c0, c1) ∈ D(2)2, we define the N -rooted fixed-map
Mandelbrot set as:

MN
c0,c1 =

{
s ∈ {0, 1}N, with |oN〈s〉N (ξ0)| ≤ 2

}

With this definition, together with the definition of the fixed-map Mandelbrot set in
Sect. 2, we have the following lemma:
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Lemma 3.3 For |c0|, |c1| < 2 and for any arbitrary integer N ≥ 1, we have that

Mc0,c1 ⊆ MN+1
c0,c1 ⊆ MN

c0,c1 . Moreover,
∞⋂
N=1

MN
c0,c1 = Mc0,c1 .

Proof Suppose 〈s〉N is an N -root such that |oN〈s〉N (0)| > 2 (that is, the orbit of ξ0 = 0

escapes by the time the iteration reaches the end of the N -root). Then, none of the
templates s ∈ {0, 1}N with the common N -root 〈s〉N are inMc0,c1 . Hence,Mc0,c1 ⊆
MN+1

c0,c1 . Moreover, if |o〈s〉N+1
(0)| ≤ 2 for some template s, then, from the escape

radius condition, it follows that |o〈s〉N (0)| ≤ 2 as well, which implies thatMN
c0,c1 are

nested around Mc0,c1 . Subsequently, the intersection
∞⋂
N=1

MN
c0,c1 ⊇ Mc0,c1 .

On the other hand, notice that if s ∈
∞⋂
N=1

MN
c0,c1 , so that |o〈s〉N (0)| ≤ 2 for all

N ≥ 1, then s ∈ Mc0,c1 . Hence,
∞⋂
N=1

MN
c0,c1 ⊆ Mc0,c1 . In conclusion

∞⋂
N=1

MN
c0,c1 = Mc0,c1 .

	

Notice first that the intersection Mc0,c1 is nonempty if either c0 or c1 are in the
traditional Mandelbrot set, (Mc0,c1 contains the all zero template if c0 is in M, and
it contains the all one template if is c1 is inM).Mc0,c1 is empty if both |c0| > 2 and
|c1| > 2. The “size” of Mc0,c1 for intermediate values of c0 and c1 will be further
discussed in Sect. 4.

Since ψ(MN
c0,c1) are Lebesgue measurable, it follows that ψ(Mc0,c1) is also mea-

surable (as claimed in Sect. 2). Figure 1 illustrates on the unit interval the nesting
of ψ(MN

c0,c1) to ψ(Mc0,c1), for two distinct pairs (c0, c1) of parameters in C
2. For

a fixed N , there are 2N possible N -roots 〈s0〉N = 0 . . . 00, 〈s1〉N = 0 . . . 01, up to

〈s2N 〉N = 1 . . . 11, whose images under ψ , together with the endpoint 1, form a par-
tition (aNj )1≤ j≤2N+1 of [0, 1] (the dyadic fractions of level N ): aNj = ψ(〈s j 〉N ), for

j = 0, 2N , and aN
2N+1

= 1. It is easy to see that ψ(MN
c0,c1) is a union of inter-

vals [aNj , aNj+1]. Similarly, ψ(MN+1
c0,c1) is a union of intervals [aN+1

j , aN+1
j+1 ] formed

by points in the partition generated by all (N + 1)-roots. Note that (aN+1
j ) is a finer

partition than (aNj ). Suppose now that an interval [aN+1
j , aN+1

j+1 ] ⊂ ψ(MN+1
c0,c1). This

means that the last iterate of zero under the (N+1)-root 〈s〉N+1 = ψ−1(aN+1
j ) is inside

the escape disc. Consequently, all the previous iterates under 〈s〉N+1 = s1s2 . . . sN+1

have to also be inside the escape disc. If aNi = ψ(s1, ..., sN ), it follows that
[aN+1

j , aN+1
j+1 ] ⊂ [aNi , aNi+1]. Hence, every interval in ψ(MN+1

c0,c1) is part of an interval

in ψ(MN
c0,c1). Figure 1 represents the sets ψ(MN

c0,c1) in different colors for different

123



22 Page 10 of 26 Journal of Nonlinear Science (2021) 31 :22

Fig. 1 N -rooted fixed-map Mandelbrot sets for two different map pairs (c0, c1): c0 = −0.117 − 0.76i
and c1 = −0.62− 0.62i (top); c0 = −0.75 and c1 = −0.117− 0.856i (bottom). The top subplot of each
panel shows sets ψ(MN

c0,c1 ) for different values of N , in different colors: N = 5 (blue), N = 7 (red),
N = 9 (green), N = 11 (pink), N = 13 (cyan), N = 15 (black). To make it easier to simultaneously
visualize these sets within the same copy of the unit interval, the sets were represented as blocks with height
decreasing from 1 to 1/6 for increasing N , layering out their structure for comparison (they are nested sets).
The bottom subplot represents the accumulation map for each of the sets on top, in corresponding colors

values of N . In order to make the nested property more visible, we plotted them as
two-dimensional “combs” ψ(MN

c0,c1) × [0, h], where the height h decreases with the
value of N (so that one can observe the layering of nested combs of different colors
as N increases).

We define the accumulation map for each MN
c0,c1 as follows. Consider {0, 1}N =

{〈s1〉N , . . . 〈s2N 〉N } the set of all N -roots, and their corresponding partition
(aNj )1≤ j≤2N+1, as defined above. Then, the accumulation map is given by
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φN
c0,c1 : [0, 1] → [0, 1],

φN
c0,c1(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, at t = 0

φ
(
aNj

)
on [aNj , aNj+1], if 〈s j 〉 /∈ MN

c0,c1

φ
(
aNj

)
+ t − aNj on

[
aNj , aNj+1

]
, if 〈s j 〉N ∈ MN

c0,c1 .

In otherwords, themap starts atφ(0) = 0, increases by1/2N oneach subintervalwhich
is in ψ(MN

c0,c1), and remains constant on each interval which is not in ψ(MN
c0,c1).

Since the sets ψ(MN
c0,c1) are nested, and the corresponding partition (aNj ) becomes

finer with increasing N , it follows that the accumulation map becomes lower as N
increases. The bottom subplots in Fig. 1 show, in two separate panels for two different
fixed pairs (c0, c1), a few instances of φN

c0,c1 , for the same values of N for which the
corresponding ψ(MN

c0,c1) sets are plotted in the top subplots.

Consider now the point-wise limit of φc0,c1 = lim
N→∞ φN

c0,c1 . This is also a positive,

non-decreasing map of the interval, which we will call the accumulation map of
Mc0,c1 . Some of the topological structure of Mc0,c1 for different pairs (c0, c1) can
be captured by looking at the structure of the corresponding accumulation map φc0,c1 ,
with patterns that may suggest a devil’s staircase (which we will discuss below).

Notice that the accumulation maps φc0,c1 and φN
c0,c1 can be expressed as integrals

of the indicator function χ of the subsets Mc0,c1 and MN
c0,c1 of the unit interval:

φN
c0,c1 =

∫ t

0
χ

(
ψ

(
MN

c0,c1

))
(u) du and respectively

φc0,c1 =
∫ t

0
χ

(
ψ

(Mc0,c1

))
(u) du.

The structure of the graph of the accumulation map is specific to the order put on
template images in [0, 1] (via the map ψ). The natural order makes the graph mono-
tonely increasing, so that its maximum value occurs at the end, for t = 1. This full
value of φ for the pair (c0, c1) can be written as the limit φc0,c1(1) = lim

N→∞ φN
c0,c1(1),

and coincides with the Lebesgue measure L(ψ(Mc0,c1)). Pulling back, the value of
φc0,c1(1) can be interpreted as the likelihood (with respect to the product measure μ

on {0, 1}N) for a random template s to deliver a bounded critical orbit os(0) under the
iterations of fc0 and fc1 specified by the template s.

Definition 3.4 Wewill say that a pair (c0, c1) is N -well behaved if the first N iterates of
the critical point remain inside the escape disc for all N -roots, for the given functions
fc0 and fc1 . We will say that pair is infinitely well behaved if the critical orbit remains
bounded under iterations of fixed fc0 and fc1 , for almost all templates.

In other words, the pair (c0, c1) is N -well behaved if the corresponding full N -root
value φN

c0,c1(1) = 1. The pair is infinitely well behaved if it is N -well behaved for all
N , i.e., if the full template value φc0,c1(1) = 1.

To better understand the topological structure of accumulation map graphs, we
analyzed the frequency of plateaus of different lengths. In Fig. 2, we represent this
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Fig. 2 Log-log representation of the distribution of plateau lengths for N = 20 and parameters c0 =
−0.117 − 0.76i and c1 = −0.62 − 0.62i (left); c0 = −0.75 and c1 = −0.117 − 0.856i (right)

frequency for the same (c0, c1) parameter pairs for which the accumulation maps are
shown in Fig. 1. For fixed N = 20, we consider all possible plateau lengths 1/l, with
1 ≤ l ≤ 2N . For each l, we denote by s(l) the number of all plateaux with length
1/l. A natural question is whether the distribution of plateaux exhibits the power
law behavior characteristic to a “devil’s staircase” (i.e., the number of plateaux of
a certain length decreases with the length as a power function, or equivalently as a
linear function if the variables are considered in the log-log form). In the two figure
panels, we represent log(s + 1) versus log(l) (one was added to s in order to avoid
getting an undefined value for lengths which are not represented). While our log-log
plots for finite N appear to be reminiscent of linear behavior (with large variations
around a decreasing linear trend), the value (N = 20) used for these plots is too small
to unequivocally extrapolate to linear behavior as N → ∞. In future work, we can
explore numerically the structure of these plots for higher values of N , as well as for
a more complex version of the accumulation map, considering orbits of all critical
points (that appear at all steps in the iteration sequence).

A related direction of potential interest is to study the topological structure of the
fixed-map Mandelbrot set ψ(Mc0,c1), as the parameters c0 and c1 are both varied. In
the following section, we examine an easier dependence: that of the end valueφc0,c1(1)
on the complex parameter pair (c0, c1).

4 Hybrid, Contour andMulti-Mandelbrot Sets

Fix now c0 ∈ D(2). With the notation from Sect. 3, notice that bc0(c1) = φc0,c1(1),
for c1 ∈ C. , so that the hybrid Mandelbrot set corresponding to c0 can alternatively
be written as:

Mc0 = {(
c1, φc0,c1(1)

)
, for all c1 ∈ D(2)

} ⊂ D(2) × [0, 1].

One can similarly define the root hybrid set corresponding to c0 as

MN
c0 =

{(
c1, φ

N
c0,c1(1)

)
, for all c1 ∈ D(2)

}
⊂ D(2) × [0, 1].
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Fig. 3 Root hybrid Mandelbrot set MN
0 for N = 20. Left. Each pair (c1, b) is represented as a point

c1 in the complex plane with an associated color from blue to dark red for b = φN
0,c1

(1) increasing from

0 to 1. Right. The shaded region corresponds to the N -well behaved pairs φN
0,c1

(1) = 1 for N = 20. It is
illustrated as a subset of a truncated representation of the traditional Mandelbrot set, based for comparison
on N = 20 iterations as well (the interior of the black curve)

Figure 3a illustrates the root hybrid set for c0 = 0, for a root length of N = 20, with
the values of φ0,c1(1) corresponding to each c1 represented as colors from blue to dark
red. For c0 = 0, the critical orbit will always be bounded when using the template
with all entries zero. With the color map in Fig. 3a, the blue region corresponds to
the values of c1 for which 〈s〉N = 0 . . . 0 is the only N -root that confines the critical
orbit to the escape disc. The dark red central region corresponds to the values of c1 for
which all N -roots confine the critical orbit to the escape disc D(2). In other words,
this is the region of c1 for which the pair (0, c1) is N -well behaved.

Figure 3b illustrates the central plateau of the hybrid set by comparison with an
approximation of the traditional Mandelbrot set M, computed based on the same
number N of iterates. The former is a subset of the latter, a property which remains
true in the limit as N → ∞:

{
c1 ∈ D(2) with φ0,c1(1) = 1

} ⊂ M ⊂ D(2).

Theorem 4.1 The set of infinitely well-behaved pairs (0, c1) contains the disc centered
at the origin, of radius 1/4.

Proof Consider c1 ∈ C, with |c1| < 1/4. Then, � = 1 − 4|c1| > 0, and one can

define d = 1 + √
�

2
= 1 + √

1 − 4|c1|
2

. Notice that 0 < d < 1. Suppose now that

|z| < d. It follows that

|z2 + c1| ≤ |z|2 + |c1| < d2 + |c1| = 1 + 2
√

� + �

4
+ |c1| = 1 + √

�

2
= d.

Subsequently, if |z| < d, then | fcsn (z)| < d, for all n ≥ 1. Inductively, it follows that
the orbit of ξ0 = 0 < d is completely contained in the disc of radius d around the
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Fig. 4 Hybrid sets for a grid of c0 values. Each panel represents one value of c0, covering the interval
[−1.6, 0.8] along the real axis and [−1, 1] along the imaginary axis, with distance 0.2 in between sample
values in both directions

origin; hence, it is bounded. In conclusion, the critical orbit is bounded for all possible
template iterations under the pair of maps (0, c1) with |c1| < 1/4. 	

Based on our simulations, we conjecture the following:

Conjecture 4.2 The set of all c1 ∈ D(2) such that the pair (0, c1) is infinitely well-
behaved, is a connected subset of M.

While the hybrid set for c0 = 0 may be the easiest to study and understand, one can
consider hybrid sets for other values of c0. Figure 4 illustrates the hybrid sets for a
grid of c0 complex values with Re(c0) ∈ [−1.6, 0.8], and Im(c0) ∈ [−1, 1]. There are
a few different ways in which one can organize this atlas of c0-indexed hybrid sets.
Below we describe two such ways, by defining two new sets. Based upon the function
b defined in Sect. 2, one can define a new function

β : D(2) → [0, 1], given by β (c0) = max {b (c0, c1) , for c1 ∈ D(2)}
= max

{
φc0,c1(1), for c1 ∈ D(2)

}
.

We also define a variation for truncated templates,

βN : D(2) → [0, 1], given by βN (c0) = max
{
φN
c0,c1(1), for c1 ∈ D(2)

}
.
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Definition 4.3 The contour Mandelbrot set is the graph of β:

CM = {(c0, β(c0)) , for all c0 ∈ D(2)} ⊂ D(2) × [0, 1].

Similarly, the N -root contour Mandelbrot set is

CMN =
{(

c0, β
N (c0)

)
, for all c0 ∈ D(2)

}
⊂ D(2) × [0, 1].

In other words, the contourMandelbrot set assigns to every c0 ∈ D(2) the largest value
of φc0,c1(1) over all c1 ∈ D(2). Similarly, one can assign to every c0 the largest value
of φN

c0,c1(1) and obtain the N -root contour Mandelbrot set—illustrated in Fig. 5a for
N = 8, with the colors representing the level sets of the function β.

One can consider the level set PMN corresponding to the highest value of β,
illustrated in Fig. 5a as the central (burgundy) plateau of CMN

PMN = {c0 ∈ D(2) for which there exists a c1 ∈ D(2)

such that (c0, c1) is N -well behaved} .

One can also consider the N -truncated Mandelbrot set

MN =
{
c0 ∈ D(2) such that f ◦k

c0 (0) ∈ D(2) for all 0 ≤ k ≤ N
}

.

It is easy to see that, if c0 ∈ MN , then there exists c1 = c0, for which (c0, c0) is N
well behaved, that is c0 ∈ PMN . Hence, MN ⊂ PMN , as illustrated in Fig. 5b. It
follows, in the N → ∞ limit, that

M ⊂ {c0 ∈ D(2) for which there is a c1 ∈ D(2) such that

(c0, c1) is infinitely well behaved} .

Definition 4.4 The multi-Mandelbrot set is defined as

MM =
{
(c0, c1) ∈ D

2(2), such that φc0,c1(1) = 1
}

.

and the N -root multi-Mandelbrot set is

MMN =
{
(c0, c1) ∈ D

2(2), such that φN
c0,c1(1) = 1

}
.

MM is the set of all infinitely well behaved parameter pairs in D(2) × D(2). Both
MM and MMN have real dimension 4. In Fig. 6, we illustrate three-dimensional
slices of MMN . While Fig. 6 shows that not all 3D slices of MMN are connected,
we conjecture that:

Conjecture 4.5 MM is a connected set in C2.
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Fig. 5 N -root contourMandelbrot set, for N = 8. Left. The colors represent values of b from zero (blue)
to 1 (dark red). Right. The yellow region represents the central plateau of CMN for N = 20. In blue is
shown an approximation of the classical Mandelbrot set M, for the same N = 20

Fig. 6 Three-dimensional slices of the N -root multi-Mandelbrot set, for N=8. Left. Real c0 ∈ [−2, 1].
Right. Complex c0 = Re(c0) + 0.1i , with Re(c0) ∈ [−2, 1]

5 Multi-critical Definitions

Our condition for the initial critical point at zero to have a bounded orbit, while inspired
by its relevance to potential applications, differs from the postcritically bounded con-
dition typically used in random iterations (Comerford and Woodard 2013). In order
to reconcile our results with this framework, we investigate whether the same objects
can be studied when using the alternative definition, in which all critical points, gen-
erated at all stages of the iteration, are required to remain bounded. (We will call the
corresponding sets multi-critical M-sets.)

This idea follows naturally when one considers the significance of a critical point
in the broader context of non-autonomous iterations. When one iterates consecutively
k differentiable functions f1 to fk , having a critical point for the composition requires
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that

( fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1)
′ (z)

= f ′
k

[
fk−1 ◦ . . . ◦ f2 ◦ f1(z)

] · . . . · f ′
2 [ f1(z)] · f ′

1(z) = 0.

Hence, z is a critical point for the composition if and only if either z is a critical point
for f1 or f j−1 ◦ . . . ◦ f2 ◦ f1(z) is a critical point for f j , for some 2 ≤ j ≤ k. In the
case of template iterations, we are applying a sequence of quadratic functions fc0(z)
and fc1(z). The situation is quite simple, because, at each step, the function we are
iterating has only one critical point ξ0 = 0 (independently on the step). So, an efficient
computational strategy for determining whether a template iteration is postcritically
bounded consists of checking whether the tails of the orbits below are bounded or
whether they escape to ∞:

0
fcs1−→ ∗ fcs2−→ ∗ fcs3−→ ∗ fcs4−→ ∗ . . .

fcsk−→ ∗
fcsk+1−→ . . .

0
fcs2−→ ∗ fcs3−→ ∗ fcs4−→ ∗ . . .

fcsk−→ ∗
fcsk+1−→ . . .

0
fcs3−→ ∗ fcs4−→ ∗ . . .

fcsk−→ ∗
fcsk+1−→ . . .

...

0
fcs4−→ ∗ . . .

fcsk−→ ∗
fcsk+1−→ . . .

0
fcsk−→ ∗

fcsk+1−→ . . .

Hence, we consider the following alternative definitions, which consider all critical
points generated throughout the iteration:

Definition 5.1 Fix a template s ∈ {0, 1}N. The corresponding multi-critical fixed-
template Mandelbrot set is defined as

mMs =
{
(c0, c1) ∈ D(2)2, where osk (0) is bounded for all integers k ≥ 0

}
.

where sk is the right k-shift of the template s. We additionally define the N -root
multi-critical fixed-template Mandelbrot set as

mMN
s =

{
(c0, c1) ∈ D(2)2, where |oN−k

sk (0)| ≤ 2 for all 1 ≤ k ≤ N
}

.

Definition 5.2 Fix (c0, c1) ∈ D(2)2. The corresponding multi-critical fixed-map
Mandelbrot set is defined as

mMc0,c1 =
{
s ∈ {0, 1}N, where osk (0) is bounded for all integers k ≥ 0

}
.

The N -root multi-critical fixed-map Mandelbrot set is defined as

mMN
c0,c1 =

{
s ∈ {0, 1}N, where |oN−k

sk
(0)| ≤ 2 for all 1 ≤ k ≤ N

}
.
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We consider the multi-critical version of the function b defined in Sect. 2, as well as
its variation for truncated templates:

mb : C2 → [0, 1], given by mb (c0, c1) = L (
ψ

(mMc0,c1

))
,

mbN : C2 → [0, 1], given by mbN (c0, c1) = L
(
ψ

(
mMN

c0,c1

))
.

Then, for a fixed c0 ∈ C, we define the projections

mbc0 : C → [0, 1], given by mbc0 (c1) = mb (c0, c1) ,
mbNc0 : C → [0, 1], given by mbc0 (c1) = mb (c0, c1) .

Definition 5.3 For a fixed c0 ∈ D(2), the multi-critical hybrid Mandelbrot set is
defined as:

mMc0 = {(
c1,

m bc0 (c1)
) ∈ D(2) × [0, 1], for all c1 ∈ D(2)

}

We additionally define the N -root multi-critical hybrid Mandelbrot set as:

mMN
c0 =

{(
c1,

m bNc0 (c1)
)

∈ D(2) × [0, 1], for all c1 ∈ D(2)
}

Figure 7 shows a few examples of multi-critical M-slices for fixed c0 = 0 and for fixed
templates with specific frequencies of iterating one function versus the other. These
sets are presented in comparison with their regularM-slice counterparts, of which they
are subsets.

As in the previous section, we obtain a more comprehensive view by computing
multi-critical hybrid sets. For illustration purposes, we consider the same parameter
values c1 ∈ C as in Fig. 4 in Sect. 4 and show in Fig. 10, side by side, the tables
for regular hybrid slices and for multi-critical hybrid slices. Notice that the burgundy
plateaux are identical between the two figures, for all c0 panels (as justified in the
following section). Moreover, the regular and multi-critical hybrid sets differ less
when c0 is close to the origin, and more in the panels for c0 away from the origin.

5.1 Fatou–Julia Theorem

A great rationale for using the multi-critical definition for the Mandelbrot sets is
the relationship of this condition with the topology of the template Julia set. it is a
well-known phenomenon in both real and complex dynamics that the behavior of a
polynomial’s critical set encompasses the whole dynamic behavior of the map. In
particular within the complex quadratic family fc(z) = z2 + c (with a unique critical
point at z0 = 0 for all maps), a bounded orbit for z0 = 0 (i.e., c in the Mandelbrot
set) is equivalent to connectedness of the Julia set J ( fc), and an escaping orbit for
z0 = 0 is equivalent to the Julia set being totally disconnected. This duality stands
more generally for polynomials P of degree d ≥ 2, where the filled Julia set is
connected (a cellular set, in fact) if and only if it contains all finite critical points of
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Fig. 7 Examples of fixed-template M-slices and multi-critical M-slices for c0 = 0. The template s
was selected at random such that A. the probability of a 1 entry is p = 0.5; B. the probability of a 1
entry is p = 0.25; C. the probability of a 1 entry is p = 0.75. The larger region (red contour, shaded in
blue) represents the M-slice for c0 = 0, which is the subset c1 ∈ C for which the original critical point
ξ0 = 0 is bounded under the maps (c0, c1) with template s. The nested region (green contour, shaded
yellow) represents the multi-critical M-slice, which is the subset of c1 ∈ C for which the whole critical set
(consisting of ξ0 = 0 from all iteration steps, as described in the text) is bounded under the iteration system

P , and it has uncountably many connected components iff the orbit of at least one of
the critical points escapes (see, for example, Theorem 9.5 in Milnor 2006, or Theorem
4.1 in Carleson and Gamelin 1993).

We want to check how this duality holds in the context of template iterations.
Clearly, the result follows trivially in the case of periodic templates, since the system
is equivalent in this case with the iteration of a single polynomial of higher degree,
with critical orbits identical with those initiated at all steps of the template iteration.
We illustrate this in Fig. 8, for the periodic template s = [011], showing that the
multi-critical Mandelbrot set coincides in this case with the connectedness locus of
the Julia set in C.

For random iterations, the traditional dichotomy of the Julia sets having either one
or uncountably many connected components is no longer guaranteed, since Julia sets
may exist that have a finite number ≥ 2 of connected components. However, the
equivalence between the postcritically bounded locus and the Julia set connectedness
locus remains valid, even for templates which are not periodic (as illustrated in Fig. 9).
That is because, for any m > 0, the Green’s function defined by Fornæss and Sibony
(1991)

Gm(z) = lim
n→∞

1

2n
log|Qm,m+n+1(z)|

still exists on the iterated basin of infinityA∞,m = {z ∈ C such that lim|Qm,n(z)| =
∞} (where Qm,n(z) = fsn ◦ . . . ◦ fsm+1 ), so that os(z) escapes iff z ∈ A∞,m iff
Gm(z) > 0. In addition, it was also shown that there is a Böttcher isomorphism
ϕm : A∞,m → C \ D such that ϕm+1 ◦ fsm+1 = ϕm(z2) (Rainer 2001). The result
follows similarly to the traditional result in the case of single map iterations.
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Fig. 8 Mandelbrot slice, multi-critical Mandelbrot slice and connectedness slice for fixed periodic
template s = [011] and fixed c0 = 0. a The Mandelbrot slice is the blue interior of the red curve. The
multi-criticalMandelbrot slice is the yellow interior of the green curve, which is a subset of the former. bThe
panel illustrates the connectedness locus of the Julia set in the slice c0 = 0, with colors in the hot spectrum
representing the number of connected components of the Julia set, estimated numerically. Black represents
the parameters c1 for which the template Julia was estimated to have a single connected component (the
connectedness locus). The intermediate darker to lighter (brown to yellow) colors represent the increasing
number of connected components (estimated by our algorithm to be finite, but ≥ 2). The outside (white)
region represents the locus where our algorithm estimated the Julia set to be totally disconnected. The
boundary of the corresponding Mandelbrot and multi-critical Mandelbrot slices (shown in A) is overlaid as
blue and, respectively, green curves, for comparison

5.2 Hybrid Sets

Section 5.1 shows that, at the level of each specific template iteration (for fixed param-
eters c0 and c1, and a fixed template s), the multi-critical Mandelbrot set contains more
information about the system than the regular Mandelbrot set. However, for practical
purposes, a regular Mandelbrot set is computationally less expensive. In mind with the
goal of obtaining “averaged” information over all templates (useful for applications),
we want to investigate whether one definition remains superior to the other in the
context of hybrid Mandelbrot sets.

As before, we can define the functions

mβ : D(2) → [0, 1], given by mβ (c0) = max
{mb(c0, c1), for c1 ∈ D(2)

}
and

mβN : D(2) → [0, 1], given by mβN (c0) = max
{
mbN (c0, c1), for c1 ∈ D(2)

}
.

Definition 5.4 The multi-critical contour Mandelbrot set is the graph of mβ:

mCM = {(
c0,

m β (c0)
)
, for all c0 ∈ D(2)

} ⊂ D(2) × [0, 1].

Similarly, one can define the N -root multi-critical contour Mandelbrot set as

mCMN =
{(

c0,
m βN (c0)

)
, for all c0 ∈ D(2)

}
⊂ D(2) × [0, 1].
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Fig. 9 Mandelbrot slice, multi-critical Mandelbrot slice and connectedness slice for c0 = 0 and a
random template. The top panels illustrate these objects using an approximation based on a 50 entry root
of the template; the bottom panels show a refinement, based on a longer root of 200 entries of the same
template. Left. In each case, the Mandelbrot slice is the blue interior of the red curve. The multi-critical
Mandelbrot slice is the yellow interior of the green curve, which is a subset of the former. Right. The
panels illustrate the connectedness of the Julia set in the slice c0 = 0, with colors in the hot (red to yellow)
spectrum representing the number of connected components of the Julia set, estimated numerically. Black
represents the parameters associated with one connected component (the connectedness locus). As before,
the intermediate darker to lighter (brown to yellow) colors represent the increasing number of connected
components (estimated by our algorithm to be finite, but ≥ 2). The outside (white) region represents the
locus where our algorithm estimated the Julia set to be totally disconnected. The intermediate lighter to
darker (yellow to brown) colors represent the number of connected components estimated by our algorithm
to be finite, but ≥ 2. The boundary of the corresponding Mandelbrot and multi-critical Mandelbrot slices
(shown on the left) is overlaid as blue and, respectively, green curves, for comparison

Definition 5.5 We define the multi-critical multi-Mandelbrot set as

mMM =
{
(c0, c1) ∈ D(2)2, such that osk (0)

is bounded for almost all templates s and all k ≥ 0}

where sk designates the k-shift of s. We define the N -root multi-critical multi-
Mandelbrot set as
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Fig. 10 Hybrid sets for a grid of c0 values. Regular hybrid sets (left) and multi-critical hybrid sets (right).
The grid covers [−1.6, 0.8] along the real axis and [−1, 1] along the imaginary axis, with distance 0.2 in
between sample values in both directions. All panels are based on N -root approximations with N = 8
iterations

Fig. 11 ContourMandelbrot sets for the regular (left) and multi-critical (right) definitions. For each point
c0 ∈ C, the color represents the value of the maximum likelihood b, in the space of templates of length
N = 8, for the critical orbit(s) to be bounded, with the maximum taken over all c1 ∈ C. The color map
ranges from zero (blue) to 1 (dark red). Improvements to the quality of the illustrations can be obtained
with increasing the spatial resolution in the complex c0 plane, and the number N of iterations, all of which
increase multiplicatively the computational cost

mMMN =
{
(c0, c1) ∈ D(2)2, with |oN−k

sk
(0)|

≤ 2 for almost every template s and all 0 ≤ k ≤ N }

Recall that:

MMN =
{
(c0, c1) ∈ D

2(2), such that φN
c0,c1(1) = 1

}

Suppose (c0, c1) ∈ mMMN , that is |o〈sk 〉N−k
(0)| ≤ 2 for almost every s ∈ {0, 1}N

and all shifts 0 ≤ k ≤ N . This is true in particular for k = 0, which implies
that |o〈s〉N (0)| ≤ 2 for almost every s; hence, (c0, c1) ∈ MMN . This proves that
mMMN ⊆ MMN (Fig. 10).

123



Journal of Nonlinear Science (2021) 31 :22 Page 23 of 26 22

Nowsuppose (c0, c1) ∈ MMN , Thismeans thato〈s〉N (0) is boundedunder (c0, c1)
iterations for almost every s ∈ {0, 1}N; hence, |o〈s〉N (0)| ≤ 2 for every s ∈ {0, 1}N.
The inverse image under the shift map σ of a subset of full measure in {0, 1}N has
full measure as well. In addition, a finite intersection of sets of full measure has itself
full measure. Hence, MMN ⊆ mMMN , and thus, mMMN = MMN for all N .
Since

MM =
∞⋂
n=1

MMN and mMM =
∞⋂
n=1

mMMN

it follows easily that:

Proposition 5.6 For any (c0, c1) ∈ D(2)2, the multi-Mandelbrot and multi-critical
multi-Mandelbrot sets coincide, i.e., MM = mMM.

It also follows as a consequence that, while the contourMandelbrot sets differ between
the two (regular and multi-critical) definitions, their central plateaux are identical (see
Fig. 11):

Proposition 5.7 For any (c0, c1) ∈ D(2)2, the central plateaux of CM and mCM
coincide.

It is useful that the two definitions are interchangeable at the level of these averaged
sets. One of the advantages is the possibility to compute these sets using the more
efficient definition (with one critical point), yet obtain the connectedness of the Julia
set delivered by the stricter (multi-critical) definition, as discussed in Sect. 5.1. In
Sect. 6, we further discuss the relationships between the two means of computing
these sets, and we interpret this in the context of applications.

6 Discussion

6.1 Interpretation of Our Results

In this paper, we expanded our study of asymptotic dynamics under template itera-
tions, introducing new concepts and ideas for further research. Inspired by one of the
alternative definitions of the traditional Mandelbrot set for single map iterations, we
investigated extensions in the new context of template iterations. Since in this case
the parameters are a combination of the complex value pair (c0, c1) ∈ C

2 and the
template s ∈ {0, 1}N, we defined a few different types of parameter slices, which can
be more easily visualized and understood than the whole parameter set C2 × {0, 1}N.

We first embraced an application-driven idea, and viewed the Mandelbrot set as the
parameter locus for which the initial resting state (i.e., the initial condition ξ0 = 0,
also the critical point of all maps in the quadratic family) remains bounded under
iterations. For fixed (c0, c1), the fixed-map Mandelbrot set designated the set of tem-
plates, visualized as a subset of the unit interval, for which the critical orbit stays
bounded. These sets were found to be unions of subintervals in [0, 1], with structure
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tightly dependent on the fixed (c0, c1) pair. We suggested that the distribution of these
subintervals’ lengths should be further investigated for power-law behavior. To study
the Lebesgue measure of fixed-map Mandelbrot sets in [0, 1], we proceeded to define
and analyze hybrid Mandelbrot sets.

For any fixed c0 ∈ C, the hybrid Mandelbrot slice was defined as an object in
C × [0, 1], which can be visualized as a surface, or color plot: for any c1 in the
complex plane, the height/color is assigned based on the likelihood that a random
template will keep the critical orbit bounded when iterated in conjunction with the
pair of maps ( fc0 , fc1). If, as proposed in the Introduction, we think of the fixed fc0 as
the “correct” iteration map, the hybrid setMc0 identifies, for each c1 ∈ C, how likely
it is for the system initiated from rest to evolve along a sustainable (i.e., bounded)
trajectory when randomly interposing “erroneous” maps fc1 in the iteration. In each
C×[0, 1] hybrid plot, this likelihood can vary theoretically between 0 and 1. However,
the maximum of 1 will not be necessarily achieved by all hybrid sets. As illustrated
by Fig. 4, the maxima of the hybrid sets generally get lower as |c0| increases, but they
do so in a non-trivial way.

To describe this phenomenon, we defined the contour Mandelbrot set, associating
to each c0 the highest probability (over all c1 ∈ C) for the template system to have
bounded critical orbit. In particular, we considered the locus of c0 ∈ C for which this
highest probability value in the corresponding hybrid set attains the full value of 1.
In other words, we searched for those “correct” maps fc0 for which there exist some
errors fc1 that deliver a sustainable evolution of the system initiated at rest, irrespective
of the time of occurrence of these errors along the iteration. This locus contains the
traditional Mandelbrot set, which warrants sustainability of the critical orbit for the
system in absence of error.

We then studied how these results changewhen imposing themore restrictive condi-
tion that the orbits initiated at all critical points along the template iteration be bounded.
We called the parameter loci obtained by this variation of the definition “multi-critical
Mandelbrot sets.” As shown by standard theorems in non-autonomous dynamics, the
multi-critical Mandelbrot set for a fixed template iteration is equivalent with the Julia
set connectedness locus. This equivalence has been extensively investigated by Hiroki
Sumi, in the broader and somewhat different context of polynomial semigroups. In
Sumi’s framework, the answer is no, and a counterexample is presented as Example
1.7 in Sumi (2011b). However, the same reference provides a set of sufficient condi-
tions for a postcritically bounded polynomial semigroup to have a connected Julia set
(Theorem 2.14 in Sumi 2011b).

We can formulate a practical interpretation of the equivalence of the Mandelbrot
set with the Julia set connectedness locus. Suppose that the system is operating within
the parameter range of the multi-critical Mandelbrot set; if the system is reset at any
arbitrary iteration to its resting state (by which we mean the critical point ξ0 = 0), this
resting state is part of a connected prisoner set. In other words, the initial condition
of the system can be perturbed continuously from rest into all other sustainable (i.e.,
asymptotically bounded) initial states.

Finally, we defined the multi-Mandelbrot set as the parameter locus in C
2 of all

(c0, c1) which render the critical orbit bounded when iterated in any random order.
This locus has 4 real dimensions, making it hard to visualize per se. One way to
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represent it is to plot two-dimensional slices obtained by fixing one of the two complex
parameters (say, c0), to obtain a collection of complex subsets corresponding precisely
to the dark red hybrid plateaux illustrated in the panels of Fig. 4. Another way to
represent the multi-Mandelbrot set is via three-dimensional slices obtained by fixing
one parameter and some aspect of the second parameter, such as its modulus, or its
real/imaginary part (as done in Fig. 6). The multi-Mandelbrot set represents the set
of all map pairs which produce a bounded critical orbit under all possible template
iterations. In the context of applications, this represents all combinations of “good”
and “erroneous” transformations which can be iterated in any template order while
retaining a sustainable evolution for the critical set.

We noticed that the multi-Mandelbrot set is the same for both definitions. This is
therefore a very desirable parameter range. First, if one thinks of c0 as the correct map
and of c1 as its perturbation, or error, having a pair (c0, c1)within themulti-Mandelbrot
set guarantees sustainability of the resting system, independently of the frequency and
timing of the errors along the template iteration. Second, this also implies sustainability
if the system resets to rest at any point along the iteration.

6.2 FutureWork

This study represents only afirst step in establishing and exploring significant questions
for template iterations, in understanding their connection (similarities and differences)
to the classical theory of single map iterations, as well as with exiting more general
work in non-autonomous dynamics.

Our future work will focus on approaching analytically specific conjectures pro-
posed in this paper. For example, one aspect which we have not pursued in this paper
is the change in the shape and boundary of hybrid Mandelbrot sets Mc0 as c0 tra-
verses different level sets of the contour set. Figure 4 suggests that hybrid sets have
increased fractal level sets when 0 < β(c0) < 1 traverses the transitional contours of
M (between the central plateau and the outside blue region). While this is intuitively
not surprising, we would like to investigate the idea further, both computationally and
analytically. A lot of theoretical work remains to be done, and exploring these ques-
tions may require a combination of methods from traditional and non-autonomous
iterations.

Part of our future work is also aimed at understanding the significance of our results
in the context of applications to the life sciences. In particular, we are considering the
potential of using this theoretical framework to study natural iteration mechanisms,
such asDNAreplication.When a cell divides, it has to copy and transmit the exact same
sequence of billions of nucleotides to its daughter cells. While most DNA is typically
copied with high faithfulness, errors are a natural part of the process, and sometimes
escape repair mechanisms, so that a mutated cell will end up being used as a template
for the next replication iteration, with the possibility to lead to substantial, accumulated
changes in the structure of later daughter cells. On one hand, accumulating mutations
can lead to pathologies like cancer. On the other hand, perfect replication would lead
to no genetic variation. Organisms may have to construct successful mechanisms that
optimize between these two ends. In our previous work (Rǎdulescu and Pignatelli

123



22 Page 26 of 26 Journal of Nonlinear Science (2021) 31 :22

2016), we have suggested that template iterations may be appropriate to study how
the size and timing of these mutations affect cells in the long term. In our current
work, we are laying the groundwork for contextualizing these questions within our
mathematical framework, by introducing local errors in our template iterations (in the
spirit of the errors made by chromosome replication mechanisms).
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