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Abstract. We present a nonlinear mathematical model of dopamine-
modulated prefrontal-limbic interactions in schizophrenia, including dis-
crete time-delays. An extensive stability and bifurcation analysis is un-
dertaken in a neighborhood of the positive equilibrium of the system. The
results reveal the importance of time-delays in modulating dopamine re-
activity.
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1 Introduction

Schizophrenia is an incurable neuropsychiatric illness, with dramatic personal
and social implications [2, 4, 6, 11]. Its diagnosis and treatment are currently
based on clinical symptoms rather than on the neurophysiological basis (which
remains unknown). The ”stress-diathesis model” remains a popular hypothesis
that attributes stress vulnerability in schizophrenia to a pre-existing impairment
in hippocampal and prefrontal inhibitory control of the limbic arousal response.
The subsequent exacerbated fear reaction raises cortisol levels, with toxic effects
on the hippocampus, further deepening the pre-existing impairment of the in-
hibitory unit. This is a possible trigger for the main neurodegenerative cycle in
schizophrenia. While empirical work cannot fully explain the complex mechan-
ics of the prefrontal-limbic system, a mathematical model can approach system
dysregulation with analytical techniques, quantifying the nonlinear components
of a self-interacting network. It can be used to test hypotheses that bridge con-
nectivity with functional dynamics and subsequently with behavior observed
empirically.

It has been proposed that schizophrenia symptoms constitute an end-stage of
a cyclic and neurodegenerative process [1], in which a hereditary predisposition
reduces the individual psychological threshold toward stimuli to the point where
even minor daily stresses will directly trigger psychotic experiences. However,

NODYCON2019, 044, v4 (final): ’A time-delay nonlinear model of dopamine-modulated . . . 1



2 E. Kaslik, M. Neamţu, A. Rădulescu

the etiology of this systemic degeneration has been challenging any simple ex-
planation, and current antipsychotic medications are likely treating the outward
symptoms rather than their cause.

2 Modeling methods

One of our earlier studies on empirical fMRI time series from human subjects
suggested that key dynamic differences between patients with schizophrenia and
healthy controls can be captured in the existence and geometry of oscillations
in a two dimensional subspace of prefrontal-limbic regions [12]. This inspired us
to consider, in our subsequent modeling work [13], a two-dimensional prefrontal-
amygdala system, and understand analytically how the coupled dynamics can
play the major role that had been demonstrated empirically in regulation of
emotional arousal. In the current paper, we refine the model with a focus on
the dopamine regulatory aspect, which in previous work was represented math-
ematically by nonlinear terms. New literature shows that dopamine-modulated
mechanisms, unlike those mediated by other neurotransmitters, operate based
on a system of actual biophysical delays. It has been suggested that the three
different timescales across which dopamine operates [15, 14] (fast, intermediate
and low) may underlie the broadness of dopamine’s effects on executive, cogni-
tive and motivational function (disrupted in schizophrenia). In particular, at the
lowest timescale, “dopamine exerts an almost tonic influence on postsynaptic
structures.” Deficits in this delayed/tonic dopamine release have been shown to
affect post-synaptic function (which cannot be otherwise explained by reductions
in phasic dopamine changes) and may further lead to the deficits in movement,
attention and cognition – characteristic to pathologies like Parkinson’s disease
or schizophrenia.

A realistic model of brain function which encompasses the regulatory effect of
dopamine must therefore take into consideration delays, which may have crucial,
if subtle effects that go beyond the nonlinearities included and discussed in our
original framework. The use of nonlinear delayed equations as a distinct and
important approach in modeling schizophrenia-like neural patterns have been
recently investigated in [15]. In this paper, we improve our previous work to
address dopamine delay mechanisms, by introducing a delayed neural response
in the target regions of dopamine-mediated pathways.

Our model represents the time activations of the amygdala, the hippocampus
and the prefrontal cortex as three distinct variables a, p and h, while a fourth
variable δ stands for the activation of the dopamine system, controlled via the
nucleus accumbens and the ventral tegmental area.





ȧ = −µ1a− k1p− γ1h+ I

ṗ = k2a− µ2f(p, δτ ) +
γ2

a1C(a) + 1
h

ḣ = k3f(p, δ
2
τ )− a2C(a)

δ̇ = −ξ1f(a, δ) + ξ2f(p, δ) + ξ3f(h, δ)

(1)
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Here, the function f is of the form f(x, δ) = xg(δ), where x can be a, p or h,
and the function g is increasing, such that g(0)=1. The term δτ (t) = δ(t − τ)
represents the delay term, where the parameter τ is the delay in the dopamine
action. The linear coefficients are positive system parameters, representing the
strengths of the connections between the respective brain areas. As in prior works
[3, 10, 13], the dependence of cortisol on arousal levels (measured as amygdala

activation) is represented as C(a) =
αea

ea + 1
.

In prior work [13], we investigated the dependence of the system’s temporal
dynamics on an larger set of physiological parameters, representing connectivity
strengths between the same key brain areas, but also including vulnerability to
stress-induced cortisol, dopamine regulation and autoimmunity.

3 Results

We performed stability analyses, we studied the system’s sensitivity to parameter
perturbations, and we computed bifurcations. We obtained analytical conditions
for the existence of a positive stable equilibrium, and for this equilibrium to
undergo a supercritical Hopf transition into stable oscillations. Hopf transitions
are illustrated in the presence and the absence of delays, with respect to different
parameters.

3.1 Nonlinear model

For the system without delays, we focused on locating Hopf bifurcation curves
in the parameter plane defined by µ1 (level of anxiety) and a2 (vulnerability
to stress cortisol). Our results suggest that varying a2 for fixed µ1 can readily
push the system through qualitative changes in asymptotic dynamics (see Fig.1),
while changing µ1 and keeping a2 fixed, is more likely to introduce more subtle
quantitative/kinetic changes in the convergence to the equilibrium, or in the
duty cycle. A small sensitivity to stress cortisol in the system is necessary to
stabilize the system to the equilibrium characteristic to a healthy functional
(region 2). When this sensitivity is increased past a “vulnerabilty” threshold,
the system crosses the Hopf curve and enters oscillations (region 3), exhibiting
out of phase swings in the amygdala arousal reaction to the stimulus I, and
in the prefrontal activation, attempting to (unsuccessfully) provide appropriate
inhibition. When a2 is increased past a “pathological” value, the system loses the
oscillatory stability, and enters unstable oscillations, with escaping trajectories
(region 4).
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Fig. 1. Transitions in between dynamic regimes in the (a2, µ1) parameter
plane. The Saddle Node (green), Hopf (blue) and Fold (red) curves delimit the plane
into the parameter regions (1)-(4), with different asymptotic behaviors, as explained
in the text.

3.2 Delay model

The equilibrium states of the model (1) are the solutions of the following system:




µ1a+ k1p+ γ1h = I

k2a− µ2pg(δ) + C2(a)h = 0

k3pg(δ
2)− a2C(a) = 0

ξ1a = ξ2p+ ξ3h

(2)

with C2(a) =
γ2

a1C(a) + 1
.

In the delayed case, the linearization of system (1) at an equilibrium state
E = (a⋆, p⋆, h⋆, δ⋆) has the form:

ẋ(t) = Ax(t) +Bx(t− τ),

where x(t) = (a(t)− a⋆, p(t)− p⋆, h(t)− h⋆, δ(t)− δ⋆)T and

A =




−µ1 −k1 −γ1 0
k2 + C ′

2(a
⋆)h⋆ −µ2g(δ

⋆) C2(a
⋆) 0

−a2C
′(a⋆) k3g((δ

⋆)2) 0 0
−ξ1g(δ

⋆) ξ2g(δ
⋆) ξ3g(δ

⋆) 0


 and B =




0 0 0 0
0 0 0 −µ2p

⋆g′(δ⋆)
0 0 0 2k3p

⋆δ⋆g′(δ⋆)
0 0 0 0




Therefore, the characteristic equation is of the form:

∆(λ, τ) := λP3(λ)− P2(λ)e
−τλ = 0 (3)

where

P3(λ) = λ3 + r2λ
2 + r1λ+ r0 = λ−1 det(λI4 −A),

P2(λ) = s2λ
2 + s1λ+ s0

with ri and si expressed in terms of the elements of the matrices A and B.
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Proposition 1 (Local asymptotic stability in the non-delayed case). In the
non-delayed case, if the following inequalities are satisfied:

r2 > 0, r1 > s2, r0 > s1, s0 < 0,
r2(r1 − s2)(r0 − s1) > (r0 − s1)

2 − s0r
2
2,

(4)

then the equilibrium point E of system (1) is locally asymptotically stable.

Following [5, 7–9], we obtain:

Theorem 1. Assume that inequalities (4) are satisfied and consider

τ+0 =
1

ω0
arccos

(
1

ω0
· ℑ

(
P2(iω0)

P3(iω0)

))
(5)

where ω0 > 0 is the smallest positive solution of the equation |P2(iω)| = ω|P3(iω)|.
The equilibrium point E is asymptotically stable for τ ∈ [0, τ+0 ). At τ = τ+0 ,

system (1) undergoes a Hopf bifurcation at the equilibrium point E.

Proof. The characteristic equation (3) has a pair of complex conjugate roots
z = ±iω (with ω > 0) on the imaginary axis if and only if

iωP3(iω) = P2(iω)e
−iωτ . (6)

Taking the absolute value in (6) we obtain |P2(iω)| = ω|P3(iω)|. The roots of
this equation are the solutions of the equation R(ω) = 1 where

R(ω) =

( |P2(iω)|
ω|P3(iω)|

)2

.

The continous function R satisfies R(0) = ∞ and R(∞) = 0, therefore there
exists at least one ω0 > 0 such that R(ω0) = 1. If ω0 denotes the smallest such
solution, it can easily be seen that R′(ω0) < 0, i.e.

R′(ω0) = − 2

ω0

(
1 + ω0ℑ

[
P ′
2(iω0)

P2(iω0)
− P ′

3(iω0)

P3(iω0)

])
< 0

From equation (6), we obtain the critical value τ+0 given by (5). Based on
Proposition 1, the equilibrium point E is asymptotically stable when τ = 0, and
therefore, due to the continuous dependence of the roots of the characteristic
equation on the parameter τ , we have that E is asymptotically stable for any
τ ∈ (0, τ+0 ).

Let λ(τ) denote the root of the characteristic equation (3) satisfying λ(τ+0 ) =
iω0. Therefore:

λ′(τ+0 ) = −∂∆/∂τ

∂∆/∂λ

∣∣∣
τ=τ+

0

= − λP2(λ)e
−τλ

P3(λ) + λP ′
3(λ)− P ′

2(λ)e
−τλ + τP2(λ)e−τλ

∣∣∣
τ=τ+

0

and hence, a straightforward computation leads to:

sign
(
ℜ
[
λ′(τ+0 )

])
=sign

(
1 + ω0ℑ

[
P ′
2(iω0)

P2(iω0)
− P ′

3(iω0)

P3(iω0)

])
=sign (−R′(ω0))=1.
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This nondegeneracy condition for the Hopf bifurcation shows that the equilib-
rium point E is asymptotically stable if τ ∈ [0, τ+0 ) and at τ = τ+0 , system (1)
undergoes a Hopf bifurcation at the equilibrium point E.

We conclude that the parameter dependence observed in the nonlinear system
is further modulated by the degree of delay, in the sense that: (1) the system
will be prompted to cross from a regime of stable equilibrium into a stable
oscillation one at lower levels of stress vulnerability a2 and/or anxiety µ1 for
slower dopamine reactivity τ , and will be more “resilient” for higher dopamine
reactivity; (2) for given stress vulnerability and anxiety, the lack of appropriate
dopamine reactivity (too large τ) may in and of itself push the system into
oscillations.

4 Numerical simulations

For the numerical simulations, we have chosen the following parameter values:

µ1 = 3, µ2 = 1, k1 = 2, k2 = 1, ξ = 1,

γ2 = 1, a1 = 2, a2 = 1, α = 0.8, I = 0.83.

For these values, we find the positive equilibrium state of system (1):

E = (a⋆, p⋆, h⋆, δ⋆) = (0.2075, 0.146798, 0.0607023, 0.015552).

The set of inequalities (4) are satisfied and the equilibrium E is therefore asymp-
totically stable when there is no delay in system (1), i.e., when τ = 0. Based
on Theorem 1, we compute ω0 = 0.209336 and we obtain the critical value of
the time delay for the occurrence of a Hopf bifurcation: τ+0 = 0.08416. In Figs.
2 and 3, the trajectories of system (1) are shown for two different values of the
time-delay: τ = 0 and τ = 0.1 (after the Hopf bifurcation). The appearance
of a stable limit cycle is observed numerically, suggesting a supercritical Hopf
bifurcation. A theoretical investigation of the criticality of the Hopf bifurcation
and the stability of the resulting limit cycle will be provided in a future paper.

5 Conclusions

Dopamine reactivity is a crucially determinant factor of prefrontal-limbic sys-
temic behavior, and subsequently of emotional regulation. The timing factor
involved in dopamine-regulated pathways seems to have in particular a strong
effect on the regulation efficiency. This effect could only be captured by a theoret-
ical model incorporating dopamine reactivity as a time delay, and was invisible
in a classical nonlinear model of prefrontal-limbic interactions.

For the considered nonlinear mathematical model of dopamine-modulated
prefrontal-limbic interactions in schizophrenia with time delay, we performed a
thorough local asymptotic stability and bifurcation analysis. The critical value
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Fig. 2. Trajectories of system (1) when τ = 0 (left) and τ = 0.1 (right). When τ = 0
(shown on the left), the solution of (1) converges to the asymptotically stable equi-
librium state E. In the second case, τ = 0.1 (shown on the right), the solution of (1)
converges to the stable limit cycle, occurring due to the Hopf bifurcation which takes
place at τ = τ+

0 = 0.08416.

Fig. 3. Evolution of the trajectories of system (1) in the phase-plane (a, p) when τ = 0
(left) and τ = 0.1 (right). When τ = 0 (shown on the left), the solution of (1) converges
to the asymptotically stable equilibrium state E. In the second case, τ = 0.1 (shown
on the right), the solution of (1) converges to the stable limit cycle, occurring due to
the Hopf bifurcation which takes place at τ = τ+

0 = 0.08416.
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of the time delay corresponding to a Hopf bifurcation in a neighborhood of
the equilibrium point has been determined theoretically. Numerical simulations
have been presented to substantiate the theoretical results, which show that the
resulting limit cycle due to the Hopf bifurcation is asymptotically stable. The
theoretical analysis of the stability of this limit cycle will be explored in a future
work. Moreover, the effect of different types of distributed time delays on the
system’s dynamics will also be investigated.
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