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Abstract Placenta chorionic surface vascular networks differ in individuals at-
risk for autism compared to controls in terms of longer, straighter, thicker vessels;
less branching; smaller changes in flow directions; and better coverage to the
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146 C. Anghel et al.

placental boundary. What mechanism(s) could drive these differences and how these
mechanisms would impact blood transport has not been widely investigated. We
used a Monte-Carlo simulation to mimic three mechanisms for controlling vascular
growth: vessels grow faster and longer, terminate more frequently before branching,
and flow directions are more tightly controlled in the at-risk simulations. For each
mechanism, we analyzed simulated vascular networks based on structural properties
and blood flow, assuming Poiseuille’s law and distensible vessels. Our simulations
showed that none of these mechanisms alone could reproduce all structural proper-
ties of vascular networks in placentas identified as at-risk for autism. Terminating
vessels more frequently or growing longer vessels could each reproduce longer
vessels and less branching, but not greater boundary coverage or smaller changes
in flow directions. As for their influence on blood flow, longer vessels and less
branching have large, opposing effects on network function. Networks with longer
vessels are less efficient in terms of slower flow rates and higher total network
volume; in contrast, networks with less branching are more efficient. Our results
suggest either these mechanisms work together to drive observed differences in
vascular networks of at-risk individuals by balancing their impacts on network
function; or another mechanism not considered here might drive these differences.

Keywords Placentas · Autism · Vascular networks · Blood flow · Simulations

1 Introduction

Biomarkers of autism spectrum disorder (ASD) are believed to be a linchpin in
understanding what causes ASD, by pointing to specific biological pathways that
are involved [1]. Such biomarkers are found as early on in a childhood development
as pregnancy and frequently traced to the placenta, the locus of maternal–fetal
interactions. Placentas differ in morphology and structure in individuals with ASD
and/or at-risk for ASD compared to controls [4, 16, 18, 19] and may be modified by
maternal stress and illness, well-known factors in ASD [2]. While the placenta has a
clear role in ASD, what remains unclear is whether this role is one of mediator, root
cause, by-product, and/or association. Simply put, do placental changes contribute
to the development of ASD or are these changes simply indicative of some other
factor that contributes to ASD? A small step towards answering these questions is
determining how the placenta could function as a mediator or a root cause.

Placental function centers on a fetal vascular network of veins and arteries which
transfers oxygen, nutrients, and biochemicals from the maternal blood into the
fetal blood. The fetal vascular network in the placenta begins and ends where the
umbilical cord, made up of two primary arteries and a vein, inserts into the placenta.
Following the primary arteries leads to successively smaller branches throughout the
chorionic plate (the region in the placenta near the fetus) and culminates in chorionic
villi or villous trees, where oxygen and nutrients are transferred. Substrates are then
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carried back to the umbilical cord along veins that approximately mirror the arterial
network.

Broadly, a placenta could cause ASD, if it was unable to transport enough oxygen
(hypoxia), nutrients, and biochemicals for the fetal brain to grow and develop
properly. Placental-derived serotonin, for example, is hypothesized to be lower in
individuals with ASD at a critical time in fetal brain growth and development [20].
A placenta could mediate ASD, if other factors were to limit the placenta’s ability to
transport oxygen and nutrients. Inflammation from maternal illness, a prime suspect
in ASD [11, 14, 15], is known to impact vascular growth in general [6] and hence,
may impact the placental vascular network in particular. Moreover, a placenta’s
function is tied to its structure and morphology, which has known distinctive
features in individuals with ASD or at-risk for ASD compared to controls, such
as a more constrained chorionic plate [19] and fetal vascular networks with thicker
and straighter vessels that branch less frequently than the controls [4].

In what follows, we examine the potential role for the placenta as a cause or a
mediator of ASD. Through mathematical and computational approaches, we first
explore simple mechanisms for growing placental vascular networks and altering
overall network structure in Sect. 2. Then in Sect. 3, we use our simulated networks
to study how changes in vascular networks impact fetal blood flow in the placenta
and subsequently, to relate our simple mechanisms to a placenta’s ability to transfer
oxygen and nutrients from the mother to the fetus. We conclude by relating
our insights back to ASD and proposing specific testable hypotheses about the
placenta’s role in ASD. Ultimately, we aim to identify potential mechanisms by
which the placenta may influence the behavioral abnormalities clinically observed
within the autistic spectrum. Numerical implementations were done in MATLAB
without special packages, and all of the simulations were rendered in real-time on
typical notebook computers. Interested readers are encouraged to contact the authors
for the codes.

2 Mechanisms for Placental Vascular Growth

In this section, we investigate simple mechanisms for growing placental vascular
networks, with an emphasis on identifying mechanisms that could reproduce empir-
ical properties of placental vascular networks in ASD. Empirical properties reported
in this study were computed from placentas sampled from two independently
collected cohorts, the Early Autism Risk Longitudinal Investigation (EARLI) [13]
and the National Children’s Study (NCS). Protocols were approved by the pertinent
Institutional Review Boards and this study deals with de-identified data only. EARLI
is an autism enriched-risk pregnancy cohort that focuses on prenatal and early
life periods of children who have biological siblings already diagnosed with ASD.
EARLI children are at an increased risk for ASD, thereby denoted as an at-risk
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Table 1 Left: parameters and constants used to simulate vascular networks. Right: seven sets
of parameter combinations chosen to systematically examine how certain parameters influence
vascular growth and function

Symbol Description Value(s)

R Placenta radius 9.25 cm

L1 Mean first generation growth
length

1.4 cm

L2 Mean second generation
growth length

1.8 cm

c No. of first generation
vessels

2

Ng No. of generations 8–10

x0 Umbilical cord insertion (0, 0)

θ Restriction angle
[

π
4 , π

2

]

t Growth fraction, generation
g > 1

[0.2, 0.6]

Lg Growth length, generation
g > 1

Eq. (1)–(2)

f Angle reduction factor [0, 1]
α Termination fraction [0.5, 0.7]
dg Vessel diameter, generation

g ≥ 1
Eq. (3)–(4)

Set t Lg f α dg

Baseline 0.4 N/A 0.6 0.5 Eq. (3)

2 0.5 N/A 0.6 0.6 Eq. (3)

3 N/A Eq. (1) 0.6 0.5 Eq. (3)

4 N/A Eq. (2) 0.6 0.5 Eq. (3)

5 0.4 N/A 1.0 0.5 Eq. (3)

6 0.4 N/A 0.6 0.7 Eq. (3)

7 0.4 N/A 0.6 0.5 Eq. (4)

cohort. On the other hand, NCS is a population-based cohort with pregnancies at
unknown risk for ASD. NCS was designed to study environmental influences on
child health and development and it enlisted participants without a bias towards
risks and diagnoses of autism. Placentas in NCS are used here as an unselected
normal-risk baseline, thereby denoted as a control cohort. We used a total of 201
NCS placentas and 89 EARLI placentas in our simulations.

Our approach is to use simple algorithms and a few key parameters to simulate
and control the growth process in theoretical vascular networks. To simulate the
growth process, we built upon a Monte-Carlo algorithm described by Wang et
al. [22] which was applied to placentas in the work of Clark et al. [5]. To control the
growth process, we modified (1) vessel growth speed, (2) angles between connected
vessels, and (3) termination of vessel growth. These three features are represented
by key parameters, controlled within a biological range. Other parameters such as
placenta radius were fixed throughout the simulations. See Table 1 for the values
selected in the experiments. Each theoretical network assessed in Sect. 2.4 includes
(1) the locations where two or more vessels connect (branching points), (2) locations
where vessels end (terminal points), and (3) descriptive information on vessels
(e.g., radii and lengths). We then measured properties of our theoretical vascular
networks, such as average distance from terminated vessels to the placenta boundary
and total rotation angle along vascular trajectories, to determine how changes in the
growth process could give rise to placental vascular networks characteristic of ASD.
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2.1 A Simple Mechanism for Vascular Growth

Following Wang et al. [22] and Clark et al. [5], we simulated the growth of a
placental vascular network under the guiding principle that vessels should cover the
maternal side of the placenta, so oxygen and nutrients can be transferred throughout
this area. This area is represented mathematically by a set of seed points A(0, 0)

drawn uniformly at random to cover a two-dimensional circular region with radius
R. A circular region is chosen for its simplicity.

The first step of generating vessels begins, similarly to the real process, with
the insertion of the umbilical chord. We denote the insertion point by x0 and for
simplicity, assume it is the center/origin (0, 0) of the circular region. At the insertion
point, the umbilical cord most often branches into two vessels. Hence, the first two
vessels are specified to grow from the insertion point with a distance L. The angle
between the parent and children vessels is set to be a uniform random variable in
[60◦, 180◦]. The endpoints of the two vessels are denoted by x(1, 1) and x(1, 2).
Each point in the seed set, A(0, 0), is then placed into one of the two sets, A(1, 1)

and A(1, 2), based on which endpoint is closer.
The second step of generating vessels is to use the line connecting the origin x0

to the branch x(1, 1) to partition the seed set A(1, 1) into two new sets A(2, 1) and
A(2, 2). Similarly, the line connecting the origin x0 to x(1, 2) is used to partition
A(1, 2) into two subsets A(2, 3) and A(2, 4). We then grow four new vessels from
the first generation branches: two vessels from x(1, 1) towards the centroids of the
seed sets A(2, 1) and A(2, 2) and two vessels from x(1, 2) towards the centroids of
A(2, 3) and A(2, 4). In general, step g of the generative vessels is defined iteratively:
for k = 1, . . . , 2g ,

1. Partition A(g − 1, k) into two sets A(g, 2k − 1) and A(g, 2k) using the line
connecting x(g − 1, k) to the centroid of A(g − 1, k);

2. Grow two new vessels from x(g − 1, k) to the centroids of A(g, 2k − 1) and
A(g, 2k);

3. Stop growth of vessels at points x(g, 2k − 1) and x(g, 2k) that lie a distance L

away from x(g − 1, k).

We continue to grow vessels for a fixed number of generations Ng . The branching
process is illustrated in Fig. 1.

2.2 Vascular Network Model Parameters

We now turn to investigate how growth mechanisms influenced the overall structure
of the simulated vascular network. The empirical data was used to define some
parameters of interest, some parameters were varied, and other parameters were
measured as outcomes from the simulations. Our key parameters were allowed to
vary within ranges and rules informed by the empirical data. We used different
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Fig. 1 Illustration of a simple growth model. Stars represent seed points. Left: Branches of the
first generation. The dark grey stars represent the seed set corresponding to the left branch A(1, 1).
Center: Branches of the first and second generation. The seed set has been split in two with the top
left branch growing towards the centroid marked by the black circle. Right: Completed tree with
eight generations

invariant measures to characterize the system which we simulated based on the
key parameters. We studied the dependence of these measures on the primary
parameters, and we compared with empirically driven hypotheses. All predefined
parameters and constants are detailed in Table 1.

When possible, parameters were derived from the data (Fig. 2). For example,
three parameters: placenta radius R, average first generation vessel length L1, and
average second generation vessel length L2 were chosen to be the average between
the corresponding measures for at-risk individuals and controls. The number of first
generation branches was set to 2, since about 70% of the placentas in our data sets
have two branches in their fist generation. Parameter Lg (g > 2) was chosen to
depend linearly on g, and was therefore fitted to the best fit line (in a least-squares
sense) to either curve from generations 3–10 in Fig. 2c for vessel length in controls
(Eq. (1)) and at-risk (Eq. (2)) individuals, respectively:

Lg := (−0.09g + 2.12) cm (1)

and

Lg := (−0.10g + 2.30) cm (2)

Similarly, a vessel diameter dg for generation g ≥ 1 was determined by fitting
a fourth-degree polynomial in generation g to either curve in Fig. 2g for vessel
diameter in controls (Eq. (3)) and at-risk (Eq. (4)) individuals, respectively:

dg = 8.19 × 10−5g4 − 0.00256g3 + 0.0302g2 − 0.168g + 0.483; (3)

and

dg = 7.13 × 10−5g4 − 0.00230g3 + 0.0285g2 − 0.166g + 0.499. (4)
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Fig. 2 Placenta data from at-risk and controls. (a) average placenta radius, (b) distance from
terminated vessels to placenta boundary, (c) vessel length, (d) angle between branching vessels,
(e) number of vessels, (f) percentage of vessels terminated, (g) vessel diameter, and (h) number of
placentas with a specific number of first generation vessels. The control group are represented by
the solid lines, and the at-risk group by the dashed line. Averages are taken within a generation and
individual placentas and then averaged over each risk cohort. Error bars represent standard errors
for a participant group
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Many curves could be used to model and achieve comparable results; fourth-degree
polynomials were used here for their accuracy (r2 > 0.99).

2.3 Candidate Mechanisms for Vascular Growth in ASD

We further modified the simple growth mechanism, described in Sect. 2.1, to better
represent actual placentas and to introduce three ways vascular growth might be
modified in ASD.

Vessels Grow Faster The simple growth mechanism uses a fixed length for
every vessel in the vascular network, a feature which does not accurately capture
real placentas. Vessels that grow at different speeds, defined as vessel length per
generation, could lead to vascular networks with different properties. We considered
two possible growth mechanisms to introduce variable vessel lengths for generations
g > 1. The first is to grow a vessel for a fraction t of the distance from the original
branching point towards the centroid of its respective seed set. The second is to grow
each vessel within a generation step g for a uniform random length with mean Lg

and range 0.4Lg . In each of the two approaches, first generation vessels grow for a
uniform random distance of mean L1 and range 0.4L1.

Vessels Terminate More Frequently Vessel growth often terminates before
branching in a real placenta. This termination could be an important factor in
vascular growth, reflecting, say, limited resources in one particular area of the
placenta. Therefore, we terminated the branching process for a vessel that either
left the convex hull of its corresponding seed points or had a corresponding seed
set with a ratio of branches to seed points that exceeded 1/8. In addition, we
randomly terminated the branching process with a probability α/(1 + e−(g−5)) at
each generation step g > 1, where ĝ = 5 in the exponent −(g − ĝ) is the average
simulated number of generations. With this logistic function, termination would
have little impact at the start of the branching process and the amount of the growth
near the end is also limited. Parameter α ∈ [0, 1] is referred to as the “termination
fraction.” This will force the remaining vessels to redirect, affecting the general
geometry of the vascular tree. The centroids are then updated to accommodate the
new seed points. The addition of seed points does result in some seed sets that have
concave polygon shapes, or that span branches from previous branch generations.
This may not be realistic, making this aspect of the research an area for future
development.

Angles Between Connected Vessels Are More Tightly Controlled The simple
growth model determines branching angles based on the centroid locations, but a
real placenta may be more restricted in its branching angles. For example, we would
not expect an angle larger than 90◦ between a vessel and any of its branching vessels
so that blood flow does not make such a sudden turn. The density of the tissue
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surrounding the vascular tree could also limit the branching angle, whereby higher-
density tissue produces shallower (more acute) branching angles compared to lower-
density tissue which allows more freedom for wider branching angles. If ϕ is the
angle between the flow direction in a parent vessel and the flow direction in either
one of the children vessels at a branching point, then we simulated the control effect
by decreasing ϕ to ϕ − f (ϕ − θ) for any ϕ ≥ θ , where θ ∈ [0, 2π ] and f ∈ [0, 1]
are constants/parameters. The threshold θ is called the “restriction angle” and the
factor f is called the “angle reduction factor.”

Based on these candidate mechanisms, certain key parameters were varied to
measure their influence on vascular growth with those ranges given in Table 1. To
this end, we simulated 50 networks for each of the seven sets of parameters/growth
rules (right panel of Table 1). For each set, we measured average distance of termi-
nated vessels to placenta boundary, vessel length, branching angle, and percentage
of vessels terminated at each generation step. The significance and effects of these
parameters are described and illustrated in the rest of this section. The simulated
network invariants will be compared against the empirical at-risk and control cases
illustrated in Fig. 2. One of our aims is to understand which key parameters such
as branch length and control angle account for which of the network differences
which are significantly different between the two empirical groups. Note that the
vessel diameter does not influence the growth process; however, it is important when
analyzing blood flow and pressure in Sect. 3.

2.4 Results of the Impact of Vascular Growth on Network
Structure

Here we present the results of varying key parameters in the simulation, such as
vessel number, vessel growth speed (measured via a growth factor or the vessel
lengths), branching angle, and termination fraction on network invariants, such as
average distance of terminated vessels to the boundary and global rotation angle (a
measure of the tortuosity in the network). Example simulated vascular networks are
shown in Fig. 3. Figure 4 shows the impact of controlling vessel growth speed, and
Fig. 5 shows the impact of controlling the angle between branching vessels and the
frequency of vessel termination.

Growth Factor t Our first growth mechanism—branch length depends on distance
to its seed set’s centroid—benefits from having only a few parameters and simple
explanations for why certain branches are longer: they grow faster per generation
and/or start farther from the seed set. This growth mechanism also provides a
way to illustrate how placenta growth and vascular growth are coupled. Namely,
one can use the convex hull of the centroids of seed sets at generation step g to
simulate the boundary of the growing placenta (See Appendix 1). In this case, the
boundary of the placenta is redefined by the centroids of the new partition of the
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Fig. 3 Comparing properties of the simulated vascular tree between parameter values (growth
speed and angle restriction). The top row shows vascular trees for slow growth (t = 0.2), for more
restricted angles (θ = π/4, left) and for less restricted angles (θ = π/2, right). The bottom row
shows vascular trees for faster growth (t = 0.5), for more restricted angles (θ = π/4, left) and for
less restricted angles (θ = π/2, right). In all cases, φ was used as a sharp threshold (i.e., f = 1)

seed set and approaches the boundary of the a priori given seed set over generation
steps. Meanwhile, new vessels grow out in the direction of this boundary (the new
generation of centroids), but may branch before reaching the boundary.

Notice that a higher growth fraction leads to a vascular network with vessels that
are longer and offering increased coverage to the placenta boundary compared to
a lower growth fraction. This phenomenon is evidenced in Figs. 3 and 4. Notably,
both features are empirical characteristic of at-risk individuals (Fig. 2b, c); hence, a
bigger growth fraction could explain why these two features are observed. However,
in Fig. 4, we also observe that a higher growth fraction leads to larger branching
angles and fewer terminated vessels, contrary to what is observed for empirical at-
risk individuals in Fig. 2d, f. Furthermore, this growth mechanism fails to capture the
general trend in vessel length by generation of both controls and at-risk individuals.
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different sets of parameters to estimate average vessel length, branching angles, number of vessels,
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growth mechanism with the growth fraction, t = 0.5, is used

Thus, a larger growth fraction alone cannot explain all the structural features of
placental vascular networks in at-risk individuals.

Vessel Lengths Lg Our second growth mechanism uses average vessel lengths
chosen to empirically match at-risk and control groups, and so by design, agrees
with the data for average vessel lengths (compare vessel lengths in Fig. 4 against
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Fig. 2c). However, unlike our previous growth mechanism, longer vessel lengths in
the at-risk group increases the percentage of branches terminated at early gener-
ations, leading to fewer vessels in the entire network. This additional termination
arises because longer vessels are more likely to leave the convex hull of its seed
set, thereby terminating the branching process. In other words, when vessel length
is independent from its distance to a seed set’s centroid, longer branches can cause
early termination, a feature characteristic of at-risk individuals. At the same time,
longer branches led to slightly wider branching angles and little difference in the
distance from terminated vessels to placenta boundary, contrary to what is observed
in at-risk individuals. So, like the previous growth mechanism, longer vessels alone
cannot explain all the structural features of placental vascular networks in at-risk
individuals.

Vessel Angles The angle between a vessel and each of its branches could be
controlled by either the restriction angle θ or the angle reduction factor f . As
illustrated in Fig. 3, networks with different restriction thresholds (left versus right)
appear to have few visible changes for lower growth factors (top panels). Different
restriction thresholds for higher growth factors, however, do appear to produce
larger total rotation angles along any path through the network. For example, in
the bottom left panel, the maximum total rotation angle can be visually estimated
to be around 2π , while in the bottom right panel, there are many instances in which
branches build up a total rotation of over 3π .

Using f to restrict the angle between a vessel and its branches also had little
impact on either vessel length or branching angles in our analysis of averages
over 50 networks (Fig. 5). This restriction did, however, have a slight impact on
terminating the branching process, whereby more control of the branching angle
(f = 1) leads to more terminated vessels and fewer vessels in total compared to
less control (f = 0.6) cases. More angle control forces a vessel to deviate from
its path to its seed set centroid. Similar to the case of longer vessels, additional
termination arises because vessels are more likely to leave the convex hull of their
seed sets.

Termination Clearly, a higher termination fraction α increases the number of
vessels that are terminated (Fig. 5); However, a higher termination fraction α

also increases vessel lengths at later generations in the case of our first growth
mechanism. Longer vessels help compensate for the additional termination by
allowing the vascular network to reach seed points that the terminated branches were
supposed to reach. Note that terminating branches would not impact vessel length in
the case of our second growth mechanism, since vessel lengths are set independently
from the rest of the growth process. Unfortunately, a higher termination fraction led
to little changes in branching angles, larger distances from the terminated vessels to
the boundary, and vessel lengths at early generations. Therefore, termination alone
cannot explain all the structural features of the placental vascular networks in the
at-risk individuals.
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3 Modeling Blood Flow in Placental Vascular Networks

We follow up the preceding section by exploring how a vascular network’s structure
influences its ability to transport blood. For simplicity, we consider the network to
be an arterial vascular network and assume the venous network grows parallel to
it, connecting the arterial network to the venous network at their terminal points.
Hence, terminal points in the theoretical network becomes branching points and
the new network has only one inlet and one outlet. We further assume the original
terminal points mark approximate locations of the chorionic villi, where oxygen
is transferred from maternal blood to fetal blood. This idealization allows us to
dramatically reduce the number of boundary conditions needed to model blood flow
and pressure. We then compared blood flow and pressure in these networks to study
how parameters that influenced network structure, in turn, influenced blood flow
and pressure. Section 3.1 introduces our mathematical model of the blood flow and
pressure through the network and Sect. 3.2 shows our measures for quantifying the
network’s efficiency. Lastly, Sect. 3.3 presents numerical results from different types
of simulated vascular networks.

3.1 Blood Flow and Pressure in a Vascular Network

For a single vessel, we relate volumetric blood flow rate F to pressure Pa and Pb at
the vessel’s ends. Assuming blood is a Newtonian fluid and flow is laminar, Krenz
et al. [10] used Poiseuille’s law to derive a simple relation between pressure and
flow:

B(Pa) − B(Pb) = rF, (5)

where B(P ) is the anti-derivative of h(P )4 with h(P ) determining how much a
vessel distends, or expands, as a function of the pressure P (see Appendix 2 for
details). Specifically, function h(P ) relates vessel diameter d under pressure P and
vessel diameter d0 under no pressure:

d = d0h(P ). (6)

The constant r is a constant called the resistance coefficient and is given by

r := 128μL

πd4
0

,

where L is vessel length, and μ = 2.084 mPa·s (or 15.6 × 10−6 mmHg · s) is blood
viscosity. Lastly, we assume vessels share a simple distensibility function h(P ):

h(P ) := 1 + βP, (7)
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Fig. 6 Relationship between blood flow and pressure for a labeled branch point. The number
inside the circle is the index for the node. The number next to the arrow is the index for the
vessel. Generation number, G, is used to imply the flow direction; blood flows from lower to higher
generation. In this case, the blood flow always flows from vessels with generation 2 to vessels with
generation 3

for constant β = 0.02 mmHg−1.
We extend this model to a vascular network with n nodes and m vessels. Denote

the pressure at the ith node by Pi and the blood flow rates in each of the m vessels by
Fj . From Eq. (5), we have a linear equation in B(P1), . . . ,B(Pn) and F1, . . . , Fm

for each of the m vessels. Our one-inlet-one-outlet network model implies that flow
is conserved at every node except the two nodes representing the inlet and outlet,
providing an additional n − 2 linear equations. With two boundary conditions for
pressure: one at the inlet node and another at the outlet node, we can establish a
linear system of m + n equations in m + n unknowns

Ax = b, (8)

where

x = [B(P1),B(P2), · · · ,B(Pn), F1, F2, · · · , Fm]T .

Upon solving Eq. (8) for x, we recover flows F1, . . . , Fm through each vessel
immediately. We can use the inverse of B(P ) = 1

5β
(1 + βP )5:

P = B−1(B(P )) = (5βB(P ))
1
5 − 1

β
,

to recover pressures P1, . . . , Pn from B(P1), · · · ,B(Pn).
To illustrate how to obtain the equations in (8), consider, for example, a localized

structure in Fig. 6. For node 20, flow is conserved which yields the equation:

F11 − F13 − F17 = 0.
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For vessels 13 and 17, applying Eq. (5) gives

B(P20) − B(P10) = r13F13, and

B(P20) − B(P6) = r17F17.

3.2 Measures of Network Efficiency

With a model for blood flow and pressure, we want to measure a network’s efficiency
in transporting oxygen and nutrients from maternal blood to the fetus. To this end,
we consider the following three measurements:

Total flow rate through the network F :=
∑

i∈Iin

Fi,

Average flow rate per “capillary” Fcap := F/N, and

Total volume of the network V :=
m
∑

i=1

Vi.

Here, Iin is the set of indices for vessels connected to the inlet node, Vi is the volume
of the ith vessel, and N is the number of terminal nodes in the arterial network
before mirroring, where we assume the number of terminal nodes approximates the
number of capillaries. Because vessels distend under pressure, the volume of each
vessel also increases under pressure. Under the same assumptions used to derive
our linear equations for blood flow and pressure, we can derive an expression of the
volume of vessel i (see Appendix 2 for the derivation):

Vi = πd2
0L

4

[

1
7 (1 + βPai

)7 − 1
7 (1 + βPbi

)7
]

[

1
5 (1 + βPai

)5 − 1
5 (1 + βPbi

)5
] ,

where Pai
and Pbi

are pressures at the ends of vessel i. Note, volume is expressed
as the volume under no pressure scaled by a dimensionless term that increases with
increasing pressure.

We naturally consider the total flow rate F as a measure of interest, since
a greater flow rate is generally expected to translate to a greater rate of oxygen
and other nutrients transferred from the maternal blood to the fetus. However, the
transfer of oxygen and other nutrients depends on other aspects of the vascular
network as well. Particularly, the vessels we considered in the networks would be
connected to smaller vessels (capillaries) in a real placenta, called villi trees, where
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the transfer of oxygen and nutrients actually occurs. Since we do not model villi
trees explicitly, we make the simplifying assumption that these villi trees occur
around the terminal nodes, or ends, of our arterial network. We also reason that
the transfer of oxygen at each of these locations depends on the local flow rate.
For this reason, we also consider the average flow rate per “capillary,” Fcap, as a
measure of local flow rates and a proxy for network efficiency as a whole.

Finally, we also consider the total volume V of the network, since the metabolic
power required to maintain the network is usually considered to be proportional to
its volume. The use of volume in evaluating a vessel’s efficiency can be traced back
to the seminal work of Murray [12], who related the radii of a parent vessel to its
children vessels by assuming a vessel is designed to minimize work. Considering
volume in addition to flow rates helps us evaluate the trade-off between transporting
more blood easily versus meeting metabolic needs.

3.3 Results of the Impact of Vascular Growth on Blood Flow
and Pressure

To examine how vascular growth influences blood flow, we constructed one-inlet-
one-outlet networks using the same 50 networks generated for each of the seven
parameter sets in Table 1 of Sect. 2.4. We then simulated blood flow through the
network keeping the pressure Pout at the outlet node at zero and varying the pressure
Pin at the inlet node. We found that total flow rate F increased nonlinearly with
increasing pressure Pin applied to the inlet of each vascular network. Figure 7
illustrates this nonlinearity for simulated networks corresponding to the seven
parameter sets in Table 1. For each applied pressure Pin, the highest total flow rate
was observed in networks with at-risk diameters followed by, in decreasing order of
total flow rate, networks with greater termination (α = 0.7), greater angle reduction
(f = 1), baseline parameters, higher growth fraction (t = 0.5), control lengths, and
at-risk vessel lengths.

From this ordering, we can see that networks with longer vessels had lower
flow rates through the network. For example, four types of networks targeted vessel
length: baseline (a growth fraction of t = 0.4), a growth fraction of t = 0.5, control
vessel lengths, and at-risk vessel lengths. Total flow decreased in these four network
types in the same order of increasing vessel length. From Eq. (5), we observe that
longer vessels impact flow rates by increasing the resistance (r) in each vessel,
thereby decreasing the flow in each vessel and subsequently, the total flow through
the network. Put differently, since we impose the same difference in pressure across
the whole network, the pressure difference per unit length is lower in networks with
longer vessels, leading to slower flow rates.

In contrast to vessel length, increasing vessel diameter increased total flow rate
through the network. This feature can be seen by comparing networks with vessel
diameters determined from individuals at-risk for ASD to our baseline networks
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Fig. 7 Total flow rate in the
seven simulated networks
with inlet pressure Pin ranged
from 5 to 35. The network
types are distinguished in the
legend based on how they
differ from baseline
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which had diameters determined from the controls (Fig. 7). Specifically, networks
with at-risk diameters had thicker vessels and higher flow rates than networks
with control diameters. Again, Eq. (5) explains this effect: thicker vessels have
lower resistance (r) in each vessel, thereby increasing the flow in each vessel and
subsequently, the total flow through the network. Resistance, however, is inversely
proportional to vessel radius raised to the fourth power and directly proportional
to vessel length. So even though at-risk individuals differ from controls relatively
more in vessel length than vessel radius, these differences have comparable impacts
on flow rates.

Compared to vessel length and diameter, vessel termination and controlling
branching angles had a lesser impact on flow rates. In both cases, greater termination
or greater restriction of large changes in flow direction led to a slight increase
in flow. Even though branching angles do not directly impact the blood flow and
pressure model, we found in Sect. 2.4 that greater control of branching angles
led to more vessels being terminated. This result would suggest that any vessel
termination, regardless of the exact mechanism, can increase flow rates.

Figure 8 considers our second measure of network efficiency: average flow rate
per “capillary” Fcap. For this measure, we find that longer vessels also lead to
lower average flow rates Fcap. Namely, average flow rates Fcap decreased in the
four network types targeting vessel length in the same order of increasing vessel
length. We had already seen that vessel length can impact vessel termination, which
in turn determines how many terminal nodes are in the arterial network. Thus, the
impact of vessel length on total flow outweighs its impact on the number of terminal
nodes, so that longer vessels lead to larger average flow rates, Fcap. Thicker vessels
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Fig. 8 Average flow per
capillary in the seven
simulated networks with inlet
pressure Pin varied from 5 to
35
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also increase average flow rates, Fcap; because again, this feature’s impact on total
flow rate outweighs its impact on the number of terminal nodes which is nil.

Vessel termination also has a large impact on average flow rates, Fcap. In this
case, greater vessel termination (α = 0.7) leads to both fewer terminal nodes and
a minimal increase in total flow, F , which when taken together leads to higher
average flow rates. Similarly, greater control of branching angles (f = 1) leads
to slightly fewer terminal nodes and a minimal increase in total flow, F , thereby
leading to higher average flow rates. Since these higher average flow rates arise by
ways of greater termination, greater control of branching angles does not have the
same level of impact on average flow rates as simply increasing vessel termination
directly.

Lastly, Fig. 9 shows the results on the total volume of the network, V . As
was expected, both longer and thicker vessels lead to a larger network volume,
V , indicating that networks with these features are more difficult to maintain
metabolically. Early vessel termination, on the other hand, leads to a smaller
network volume, making such network easier to maintain metabolically. When
considering the volume along with the total flow, we observe that vessel termination
and vessel radius could both be modified to balance an increase in total flow rates
with an increase in network volume. Increasing vessel length, however, increases
network volume while decreasing total flow, raising questions as to whether a
network benefits from longer vessels. One possible benefit is that longer vessels
had better network coverage to the boundary of the placenta, as we saw in the
section on vascular growth. Perhaps, better coverage could mean less competition
between branches for resources and more efficient oxygen transfer. Alternatively,
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Fig. 9 Total volume in the
seven simulated networks
with Pin varied from 5 to 35
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longer vessels are accompanied by thicker vessels in individuals associated with
an enriched risk for ASD; each feature could compensate for the other by having
opposite effects on total flow, and if compensated correctly, could balance the
increase in total volume. These hypotheses, among others, should be studied further.

4 Discussion

In this project, we used mathematical modeling to explore how certain conditions
during fetal development could increase the risk for autism in the newborn, via
abnormal growth and function of placenta chorionic surface vascular networks.
We first investigated potential mechanisms for growing vascular networks that
are characteristic of at-risk for ASD, focusing on three candidate mechanisms:
vessels grow longer/faster, vessel terminate more frequently before branching, or
angles between connected vessels are more tightly controlled. We aimed to identify
mechanism(s) that could reproduce empirical differences between individuals at-
risk for ASD and controls including higher termination rates of vessels, longer
vessels, lower total rotation angles along a vessel trajectory (to mimic tortuosity),
and greater distances from terminals to the placental boundary. We then studied how
structural properties of vascular networks impact blood flow through the network
to determine if overall ability of the placenta to deliver appropriate oxygen and
nutrients to the fetus is weakened in networks more characteristic of at-risk for ASD.
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On the one hand, we noted that vessels grown more quickly, represented in
our model by a higher growth fraction, led to networks with longer vessels and
increased coverage to the placenta boundary (consistent with that observed in
at-risk individuals), but also with wider branching angles and fewer terminated
vessels (contrary to what is observed for at-risk individuals). On the other hand,
we found that directly growing vessels longer leads to greater termination rates and
fewer vessels, but also wider branching angles and little change to distances from
terminated vessels to placenta boundary. Hence neither growth mechanism could
explain in and of itself the observed differences between at-risk and control placental
vascular networks. Meanwhile, tighter control of branching angles between vessels
was found to both decrease total rotation (tortuous aspect) of the vessels to
various degrees depending on other factors (such as growth speed) and to increase
termination rates caused by increasing the number of vessels forced to leave the seed
convex hull, but had little impact on other structural properties. So, while controlling
branching angles may still be a crucial contributor, our results suggest that this
mechanism also cannot be solely held accountable for the differences between at-
risk and control placentas.

We conclude that a combination of these mechanisms or possibly others not
considered in this study, rather than any of them in isolation, are needed to
accurately capture empirical differences between individuals at-risk for ASD and
controls. For example, placental tissue that is too stiff or fibrous could lead vessels
to grow longer before finding tissue that is suitable for terminating or branching in
ways that barely change flow directions since fibrous tissues often have preferential
directions. This example shows how different mechanisms in vascular growth, via a
common factor–tissue stiffness–could combine to generate vascular networks more
characteristic of at-risk for ASD. Alternatively, vessel thickness may be a driving
mechanism during vascular growth for similar reasons: thicker vessels could be
more resistant to branching, so they terminate early or branch in ways that change
very little in flow directions. Interestingly, vessel thickness is the only structural
property we considered that differs significantly in the first generation of vascular
networks between at-risk individuals and controls.

Regarding network function, our results showed that structural properties of
at-risk individuals are able to compensate for each other’s impact on network effi-
ciency. That is, certain properties such as vessel length weaken network efficiency,
whereas others such as termination rates improve network efficiency. In sum, we
cannot definitely say whether vascular networks characteristic of at-risk individuals
have a weaker ability to deliver appropriate oxygen and nutrients to the fetus.
As such, it is unclear from our analysis alone if impaired network function is a
contributing factor for being at-risk for ASD.

To arrive at these conclusions, we compared statistical measures related to blood
flow and pressure in one-inlet-one-outlet vascular networks obtained by mirroring
simulated vascular networks and connecting the two networks at their terminated
vessels. These one-inlet-one-outlet networks were designed to capture a venous
network that is parallel to an arterial network. We considered the impact of vascular
growth and structural properties on three specific measures of network efficiency.
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First, network flow rate was measured, since it is likely to be associated with
rates of oxygen and nutrient transfer to the fetus. Second, average flow rate per
“capillary” (terminated vessel) was measured to serve as a proxy for local flow rates
in villi trees. These villi trees were not explicitly modeled, but are locations where
oxygen and nutrients actually transfer from maternal blood to fetal blood, hence
should depend on local flow rates. Third, total volume of blood in the network
was measured due to its connection to metabolic cost for maintaining the entire
vasculature. Indeed, the seminal work by Murray [12] balanced total volume in a
vessel with transport power to determine optimal rules for radii of branching vessels.

From this analysis on blood flow, we found that with respect to all three measures
longer branches led to less efficient networks, i.e., slower flow rates, measured in
total and per capillary, but greater blood volume. Greater termination rates of vessels
either captured directly in our growth model or indirectly through tighter control on
branching angles, led to faster flow rates, especially average flow rates per capillary,
and lower volumes—possibly acting to compensate for decreased flow rates due
to longer vessels in high risk individuals. Meanwhile, thicker vessels, particularly
those from at-risk individuals, have opposing impacts on network efficiency: greater
flow rates, but lower volumes. In sum, termination rates, vessel length, and vessel
thickness can be modified together to balance higher costs (greater blood volume)
with better benefits (faster flow rates) in both controls and at-risk individuals,
despite structural differences in their placentas. Put differently, some of the observed
structural differences could arise to prevent changes in network efficiency.

In the current study, we made a number of simplifying assumptions, providing
opportunities to further explore structural and functional properties of placental
vascular networks. We focused primarily on only two branches in the first generation
of vascular growth and on a centrally inserted umbilical cord, but these two
properties may be crucial for the development of a vascular network. Umbilical cord
position relative to the placenta is determined by the folding process of the fetus and
by its position at the time of attachment to the wall of the placenta [8]. Moreover,
vessels in actual placentas almost always branch into two vessels, except in the first
generation step of the branching process, which can lead to anywhere from one to
four branches. A centrally inserted umbilical cord is a reasonable assumption based
on research studies in [3, 26], but in the future, it would be interesting to investigate
these assumptions more carefully, as evidenced by [17, 27]. We also modeled the
placenta as a disc and point an interested reader to papers [7, 24] for an investigation
into how the region’s shape affects network structure during vascular growth.

In addition to exploring other mechanisms of vascular growth, future work could
also consider other ways to evaluate network efficiency [9, 21, 23]. Gill et al. [9]
suggest rates of oxygen and nutrient transport depend on both local flow rates and
local geometry (e.g. cross-sectional area of vessels). Consequently, thicker vessels
may lose some of their efficiency. We could also model villi trees explicitly such
as done in [21] and elsewhere, since oxygen and nutrient transport occurs in these
trees. Alternatively, Xia et al. [25] used a mathematical approach known as optimal
transport to explain how structural changes in at-risk individuals could lead to
inefficient transport of oxygen, nutrients, and biochemicals to the fetus. Another
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possibility is to evaluate the spatial distribution of terminated vessels, e.g., using
diffusion models, since more evenly distributed terminated vessels may diminish
competition for resources between branches. Vessels that grew more quickly, for
instance, had greater coverage to the placenta boundary and diminished competition
during vascular growth in our model. Subsequently, these networks could have
reduced competition for resources, leading to greater network efficiency. Finally,
once the more refined selection of candidate key parameters, network measures, and
candidate mechanisms relating these are in place, one could be developing efficient
algorithms to perform a global sensitivity analysis of the system’s behavior on these
parameters.

While we are far from a single cohesive explanation for the role of placenta
chorionic surface vascular networks in ASD risk, we provided an extensive and
systematic investigation of candidate mechanisms for vascular growth in ASD risk,
linking vascular growth to network structure and network structure to function.
Our modeling framework provides a foundation for future endeavors on placental
vascular networks in ASD risk. We highlighted a few hypotheses to examine more
closely and a few ways to extend our work.
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Appendix 1: Coupled Growth of Placenta and Chorionic
Vascular Tree

Figure 10 simulates the boundary of a growing placenta.

Appendix 2: Derivation of Vessel Volume

Poiseuille equation gives the following relation:

dP

dL
= −128μ

πd4
F. (9)

If we assume all vessels share the common diameter-pressure relationship (vessel
distensibility relationship):

d

d0
= h(P ),
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Fig. 10 Coupled growth of placenta and chorionic vascular tree. Left to right: generations 1, 4,
6, and 9 of the growth algorithm, with the diameter of the placenta gradually covering more of
the given seed set. With this construction, the final distance between the vascular terminals and
the boundary of the placenta is controlled by the growth rate t. The top versus the bottom panels
illustrate the process for a central versus a random insertion of the umbilical cord, respectively. For
the bottom panels, the growth algorithm was slightly altered to be initiated with a step of linear
growth towards the centroid (aimed to reduce the distance caused by lack of centrality), preceding
the first branching step

then integrating Poiseuille equation (9) from the start point to the end point of the
vessel gives

∫ Pb

Pa

(h(P ))4dP = −rF and r = 128μL

πd4
0

.

For convenience, define B(P ) as the anti-derivative of h(P )4. The equation above
can be reduced as a linear drop of transformed pressure through the vessel [10].

B(Pa) − B(Pb) = rF. (10)

In this paper, we consider the special case when h(P ) = 1 + βP so that B(P ) =
1

5β
(1 + βP )5. Using this form of B(P ), the vessel volume for each vessel, Vi , can

be derived as follows:

Vi =
∫ L

0

1

4
πd2dL

=
∫ Pb

Pa

− π2d6

4 × 128μF
dP

=
∫ Pb

Pa

−Lπd2
0

rF
h6(P )dP
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= Lπd2
0

4rF

1

7β
[(1 + βPa)

7 − (1 + βPb)
7]

= Lπd2
0

4

1
7 [(1 + βPa)

7 − (1 + βPb)
7]

1
5 [(1 + βPa)5 − (1 + βPb)5] .

Notice that we substituted in Eq. (9) in the second step and Eq. (10) was used in the
last step.
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