
ARTICLE Communicated by Erika Camacho

Neural Network Spectral Robustness under Perturbations
of the Underlying Graph

Anca Rǎdulescu
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Recent studies have been using graph-theoretical approaches to model
complex networks (such as social, infrastructural, or biological networks)
and how their hardwired circuitry relates to their dynamic evolution in
time. Understanding how configuration reflects on the coupled behavior
in a system of dynamic nodes can be of great importance, for example,
in the context of how the brain connectome is affecting brain function.
However, the effect of connectivity patterns on network dynamics is far
from being fully understood. We study the connections between edge
configuration and dynamics in a simple oriented network composed of
two interconnected cliques (representative of brain feedback regulatory
circuitry). In this article our main goal is to study the spectra of the
graph adjacency and Laplacian matrices, with a focus on three aspects in
particular: (1) the sensitivity and robustness of the spectrum in response
to varying the intra- and intermodular edge density, (2) the effects on
the spectrum of perturbing the edge configuration while keeping the
densities fixed, and (3) the effects of increasing the network size. We
study some tractable aspects analytically, then simulate more general
results numerically, thus aiming to motivate and explain our further work
on the effect of these patterns on the network temporal dynamics and
phase transitions. We discuss the implications of such results to modeling
brain connectomics. We suggest potential applications to understanding
synaptic restructuring in learning networks and the effects of network
configuration on function of regulatory neural circuits.

1 Introduction

1.1 Network Architecture and Dynamics. The study of networks has
been the subject of great interest in recent research. Many natural systems
are organized as networks, in which the nodes (be they cells, individuals,
or web servers) interact in a time-dependent fashion.

One of the particular points of interest has been the question of how
the hardwired structure of a network (its underlying graph) affects its
function, for example, in the context of optimal information storage or
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transmission between nodes along time (Bullmore & Sporns, 2009). It has
been hypothesized that there are two key conditions for optimal function
in such networks: a well-balanced adjacency matrix (the underlying graph
should appropriately combine robust features and random edges) and well-
balanced connection strengths, driving optimal dynamics in the system. A
subsequent line of study is to understand the effects of connectivity patterns
on the temporal behavior of the network, seen as a dynamical system in
which the node variables are coupled according to a connectivity scheme
that obeys certain deterministic constraints but also incorporates random
aspects. One can then investigate how the phase space dynamics (and the
phase transitions that the system undergoes under perturbation) are af-
fected when perturbing the underlying adjacency graph.

While the general aim of our work is to study the relationship between a
network’s hardwired circuitry and its dynamics, this article focuses primar-
ily on understanding the robustness of certain graph-theoretical features as
the network is perturbed or as its size increases—and, to a lesser extent, dis-
cusses their potential to further affect the vulnerability or robustness of the
system’s dynamics (the subject of a related paper: Rǎdulescu & Verduzco-
Flores, 2015). To fix out ideas, we investigate here a bimodular, oriented
graph, in which the nodes of two modules connect through fixed numbers
of random edges within each module, as well as across modules. Using
analytical and numerical computations, we aim to establish whether and
why, when fixing the number of both intra- and intermodular edges, the
adjacency spectrum of the network remains in general sufficiently robust
under particular edge configurations (geometries). This is important, since
it would suggest that certain dynamic algorithms in this type of networks
may also remain unaffected by such constrained geometry changes.

A very large body of work addresses properties of random matrices (Tao,
2012), that is, matrices whose entries are drawn independently out of a
given (typically normal) probability distribution. If, in addition, the matrix
represents the adjacency of a random graph, so that each entry equals 1
with a given probability, there are classical methods used when looking
for properties of the spectrum (e.g., spectral radius or spectral density).
For example, a popular and well-known generative model developed in
the early 1980s (Holland, Laskey, & Leinhardt, 1983), whose extensions
for directed and weighted edges are still widely used, is the stochastic
block model (SBM; Aicher, Jacobs, & Clauset, 2013; Larremore, Clauset, &
Jacobs, 2014). SBMs are a powerful way of encoding specific assumptions
about the way unknown parameters interact to create edges, and offer
many advantageous features. We argue, however, that generative models
do not account (mathematically or realistically) for all potential network
connectivity schemes that arise in natural systems.

A lot remains to be clarified in terms of how individual (rather than
stochastic) changes in simple parameters affect the properties of a graph.
Such deterministic constraints are important, since they are likely to appear
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in natural systems in conjunction with the stochastic aspects controlling the
particular edge distribution. Our model differs from most of the generative
approaches in that it conserves the number of edges within and between
modules rather than fixing independently the probability of having an
edge that connects two given nodes in the same or different modules. We
chose the edge density as our parameter of interest, since fixing the total
number of node-to-node connections represents a typical normalization
condition in networked systems (e.g., a constant sum of weighted edges is
a popular normalization scheme in the context of synaptic updating in a
neural network (von der Malsburg, 1973)).

While classical results (such as Wigner’s semicircle law) apply in the
stochastic case with independent and identically distributed edges, various
extensions have been worked out for models that do not necessarily abide by
these properties. Consider, for example, the configuration model (Farkas,
Derényi, Barabási, & Vicsek, 2001), whose spectral properties have been
addressed by numerous studies. Since its edges are not statistically inde-
pendent, a direct analytical approach is very difficult; existing results range
from approximating the full spectrum (Dorogovtsev, Goltsev, Mendes, &
Samukhin, 2003) to formally deriving the expected values of the leading
eigenvalue, but only in the large N limit (Chung, Lu, & Vu, 2003). In a
recent paper, Nadakuditi and Newman (2013) took an indirect approach:
they considered a model with the same degree sequence as the configura-
tion model, but in which the number of edges between any two nodes was
drawn independently from a Poisson distribution. Then the spectra of the
two models was shown to agree in the large N limit. In section 4, we apply
this idea in our case by carrying out a large N limit comparison between
our model and its probabilistic counterpart, with independent, stochastic
edges, as Nadakuditi and Newman (2012) considered.

1.2 Brain Function from Graph Theory to the Connectome. In the
context of the brain, a network of nodes connected by oriented weighted
edges may constitute a valid representation of neural architecture at more
than one spatiotemporal scale (the brain “fractal” possibly reusing similar
organizational and optimization principles at multiple complexity levels).
For example, one may think of the nodes as individual neurons connected
by synapses, whose activity (e.g., measured as variations in membrane
potential of single cells) is determined by the external input together with
the pattern and strengths of synaptic coupling. At a coarser level, one may
view a node as a synchronized population of neurons, whose activity (e.g.,
measured as mean field firing rate) is determined by the external input, as
well as its mean field connections from other—excitatory or inhibitory—
populations. At the macroscopic level, consistent with imaging techniques
such as MRI or EEG, one may think of the nodes as anatomical brain regions
(e.g., amygdala, prefrontal cortex) whose activity (e.g., measured as event-
related potentials or blood-oxygen-level dependent signals) is determined
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by the external stimulus and the interregional connectivity patterns and
connection strengths. The way in which various parts of the brain (from
the microscale of neurons to the macroscale of functional regions) are wired
together is one of the great scientific challenges of this century, currently
being addressed by large-scale research collaborations, such as the Human
Connectome Project (Toga, Clark, Thompson, Shattuck, & Van Horn, 2012;
Craddock et al., 2013).

Recent studies have used graph-theoretical approaches to investigate
brain networks, not only in the context of learning, memory formation,
and cognitive performance, but also to understand more general organiza-
tional and functional principles used by the brain and interpret the effects
of different connectivity patterns between the brain’s coupled components
(Bullmore & Sporns, 2009; Sporns, 2002, 2011). With nodes and edges de-
fined at various scales, according to different empirical modalities (Sporns,
2010), these studies support certain generic topological properties of brain
architecture, such as modularity, small worldness, the existence of hubs,
and other connectivity density patterns (He & Evans, 2010). These proper-
ties, if proven consistent with physiological, behavioral, or genetic factors,
may provide us with a better understanding of neural processes and may be
effective as biomarkers for behavioral traits or neuropsychiatric conditions.

One thought of potential importance to us is that while the brain it-
self is a gigantic and relatively densely connected network of billions of
neuron nodes (each receiving and providing input to tens of thousands of
other nodes), it may be both realistic and computationally advantageous
to view the brain as a highly hierarchic network in which the behavior
of each “node” at a certain complexity level integrates the behavior of a
collection of lower-level nodes. Hence, at each complexity level, the size of
the networks we need to study experimentally, represent theoretically, or
simulate numerically may be in fact relatively small (a few hundred nodes).
For example, at the macroscopic level, compatible with imaging techniques
in humans, a small region such as the amygdala is (within typical fMRI
acquisitions parameters) as large as 100 to 200 voxel-nodes. For relatively
small networks, the traditional large size limit results obtained in random
graph theory may no longer apply directly, and new approaches need to be
created to extend the results (see section 4.1 for a more detailed discussion).

A recent trend in human imaging research has been oriented toward
developing and using graph-theoretical network measures in conjunction
with empirical data in order to identify the effects of abnormal connectivity
patterns on the efficiency of brain function. By inferring graph-theoretical
information from tractography data and temporal time series, various stud-
ies have been investigating the sensitivity of systems to removing or adding
nodes or edges to different places in the network structure. Data sets have
been mined for global (e.g., characteristic path length, clustering coeffi-
cient, small-world ratio parameter) and local (e.g., nodal-betweenness cen-
trality, nodal path length, nodal clustering coefficient) network measures
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that would optimally differentiate between subject behavioral profiles
(GadElkarim et al., 2014; Ajilore et al., 2013). For example, both resting-state
tractography-derived measures have been used to understand behavioral
impairments in subjects with compromised connectivity due to existing le-
sions (Corbetta, 2012) or group differences between healthy controls and
patients with mental illnesses associated with abnormal feedback circuitry
(Fekete et al., 2013; Leow et al., 2013).

However, no matter how well designed or statistically powerful, purely
empirically based analyses cannot explain in and of themselves the mech-
anisms by which connectivity patterns actually act to change the system’s
dynamics, and thus the observed behavior. Substantial research effort is
being directed toward constructing an underlying network model that is
tractable theoretically or numerically and could therefore be used in con-
junction with the data toward interpreting the empirical results and making
further predictions. To this aim, the theoretical dependence of dynamics on
connectivity (e.g., in the context of stability and synchronization in networks
of coupled neural populations) has been investigated both analytically and
numerically, in a variety of contexts—from biophysical models (Gray &
Robinson, 2009) to simplified systems (Siri, Quoy, Delord, Cessac, & Berry,
2007). These analyses revealed a rich range of potential dynamic regimes
and transitions (Brunel, 2000), shown to depend as much on the coupling
parameters of the network as on the arrangement of the excitatory and
inhibitory connections (Gray & Robinson, 2009).

The successful construction of a useful (biophysical) computational
model seems therefore contingent on our understanding of the control
that a network’s architecture exercises on its functional dynamic regime.
In our work, we are trying to address this question starting with simpler
networks and investigating which properties are preserved or emerge in
increasingly complex systems. A relatively simple yet general example that
we have been considering in previous work is that of an oriented network of
two interconnected cliques. For this type of graph geometry and for nodes
acting as nonlinear oscillators, we studied how the two intermodular edge
densities affect dynamics (Rǎdulescu & Verduzco-Flores, 2015).

We used this architecture because it is representative of two interacting
excitatory and inhibitory densely packed populations, a feedback scheme
that provides the underlying control for many brain regulatory loops. For
example, this setup successfully informed our human imaging results in
the amygdala-prefrontal circuit regulating human emotion (Rǎdulescu &
Mujica-Parodi, 2013). Also, while there are clearly better measures of archi-
tecture complexity in a network than edge density, our work was directly
motivated by existing hypotheses that relate network functional efficiency
precisely to the density of projections between subsets of network nodes.
Our analysis is an attempt to provide a formal framework for existing empir-
ical studies, with the potential to reconcile results that may otherwise seem
counterintuitive, even mutually contradictory. For example, some studies
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found that a lack of adequate amygdalar projections to prefrontal regions
may be responsible for trait anxiety (Kim & Whalen, 2009; Kim et al., 2011),
while other studies correlated the same phenomenon with major depres-
sion (Dannlowski et al., 2009). A formal model investigating the effects of
density on dynamics seemed therefore an appropriate starting point for
addressing these ambiguities in a quantifiable framework.

While our dynamic results have been promising and clinically infor-
mative, one important step (and the centerstone of this work) is to better
understand their source. In our two related papers (one studying the graph
properties for fixed edge densities, and the other studying their relationship
with network dynamics; Rǎdulescu & Verduzco-Flores, 2015), we investi-
gate the underpinnings of the observed robustness of coupled dynamics to
certain changes in the network architecture and its vulnerability to others,
as well as the differences between updating connection strengths versus
perturbing connection density or geometry. We aim to clarify that this ro-
bustness is not a parameter-dependent property or a numerical artifact but
rather an intrinsic feature based on network hardwiring. It is the robustness
of certain network architectural features (in this case, the narrow distribu-
tion of the adjacency spectrum) that reflects the robustness of the temporal
systemic dynamics.

Although there are clearly more complex generative models discussed
in the literature on random graphs, random matrices, and complex systems,
we found our model interesting to analyze and discuss for a few reasons.
While its simple structure may lead to understating its mathematical be-
havior, we found that understanding spectral properties of configurations
with fixed-edge density poses, even in this simple case, an interesting ana-
lytical problem and numerical challenges that increase with the size of the
network. The question has surfaced before in the literature in a very similar
form (Juhasz, 1990) but has been dismissed with partial results that do not
completely explain our observations, presented here with systematic sim-
ulations and additional analytic justifications. In light of natural systems’
predilection for choosing simple schemes to produce complex behavior, we
hypothesize that such a setup may contribute, possibly in conjunction with
stochastic components, to computational algorithms performed in complex
networks such as human brain circuits. Especially in light of our incomplete
knowledge of how plastic brain networks perform normalization, it seems
as likely to have a global normalization scheme (choosing one network con-
figuration from a distribution of possible options with a certain property)
as it is to have local normalization (e.g., assigning a certain probability for
each pair of nodes to be joined by an edge).

Even in its simplest form, the model opens questions on the dependence
of dynamics on coupling parameters in a network with variable architec-
ture (addressed primarily in Rǎdulescu & Verduzco-Flores, 2015) and the
properties of a bimodular graph with variable edge geometry (e.g, the distri-
bution of adjacency and Laplacian spectra, addressed in this article). In our
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work, we continue to study more complex architectures (connected hubs
and strong components) and other types of coupled dynamic schemes (e.g.,
discrete map iterations).

1.3 Network Dynamics from Spectral Measures

1.3.1 The Adjacency Spectrum. A variety of studies have examined ran-
dom graphs with a general given expected degree distribution and have
established bounds or other descriptions of their adjacency spectra. While
it is well known that the largest eigenvalue of a graph’s adjacency matrix is
determined by its maximum degree m together with the weighted average
d̃ of the squares of the expected degrees (Chung & Lu, 2006), work on ran-
dom matrices has delivered more accurate estimates. For example, Chung
et al. (2003) investigated an ensemble of random uncorrelated, nonoriented
networks and found that in the large N limit, the expected largest eigen-
value is determined by the ratio of the second to first moment of the average
degree distribution 〈d2〉/〈d〉, together with the expected largest degree dmax.
More generally, for directed (oriented) networks without edge degree cor-
relations, a first-order approximation to the leading eigenvalue is given by
〈dindout〉/〈d〉, where din and dout are, respectively, the in- and out-degrees of
the graph, and 〈din〉 = 〈dout〉 = 〈d〉 (Restrepo, Ott, & Hunt, 2007).

It is therefore clear that the in- and out-degrees, as well as their cor-
relations, have crucial effects on the leading eigenvalue. In general, a
graph’s defining feature is its distribution of edges. Among other proper-
ties, edge density, edge clustering, and presence of hubs have been intensely
studied. Detecting and interpreting the modularity of a network (i.e., the
presence of community structures within the graph, defined as densely con-
nected groups of nodes, with sparser inter-group connections) has been of
particular interest recently (Mucha, Richardson, Macon, Porter, & Onnela,
2010; Chauhan, Girvan, & Ott, 2009; Nadakuditi & Newman, 2012, 2013;
Sarkar, Henderson, & Robinson, 2013). Whether the graph represents the
architecture of a social (Gilbert, Simonetto, Zaidi, Jourdan, & Bourqui, 2011),
climate (Donges, Zou, Marwan, & Kurths, 2009), transportation (Zanin &
Lillo, 2013) or disease (Barabási, Gulbahce, & Loscalzo, 2011; Van Mieghem,
2011; Supekar, Menon, Rubin, Musen, & Greicius, 2008) network, modular-
ity reflects into adjacency properties of the network, controlling the struc-
tural and functional properties, and implicitly the temporal behavior of the
system.

1.3.2 The Graph Laplacian Spectrum. The Laplacian matrix L of a graph is
defined as the difference between the node degree matrix and the adjacency
matrix. In the case of directed graphs, either the in-degree or out-degree
can be used, depending on the application. Laplacian dynamics is perhaps
the most studied representation of networked systems and is also known
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as the consensus protocol (Olfati-Saber, Fax, & Murray, 2007), in which the
network aims to reach agreement on a certain quantity of interest. Although
this model has been explored in more elaborate contexts (Olfati-Saber &
Murray, 2004; Rahmani, Ji, Mesbahi, & Egerstedt, 2009), in its simplest form,
the dynamics of each node is driven by the sum of differences between its
own state and its neighbors’ states, as defined by the adjacency graph. Then
the dynamic evolution of the entire system can be appropriately captured
by the linear equation: ẋ(t) = −Lx(t).

While the consensus protocol has attracted a lot of attention and effort
(Wu, 2013), it is not a complete representation of all the recent work on
networked dynamic systems. For example, relative sensing networks are
an important class of systems whose control has been described using both
their incidence matrix (Smith & Hadaegh, 2007), as well as more completely
in terms of spanning trees in the connection topology (Sandhu, Mesbahi,
& Tsukamaki, 2005). In fact, the dynamical stability of certain networks
seems to remain most successfully defined in terms of quantities derived
from the eigenspectrum of the adjacency matrix (Small, Judd, & Stemler,
2012).

In our own work, we considered a bimodal oriented network of coupled
nodes, each acting as a Wilson-Cowan–type nonlinear oscillator (Rǎdulescu
& Verduzco-Flores, 2015). Even for such a network, one cannot expect either
adjacency or the Laplacian spectrum to be fully predictive of the system’s
dynamics. Indeed, both cospectral graphs and Laplacian cospectral graphs
may produce different phase and parameters-space behavior in the corre-
sponding system (examples of this correspondence are shown in appendix
A). A stronger requirement for the graphs to be isomorphic would most
likely lead to identical coupled dynamics, but while isomorphic graphs are
cospectral and Laplacian cospectral respectively, the converse is not true in
either case (Barghi & Ponomarenko, 2009; Zelazo, 2008). These being said,
however, both adjacency and graph Laplacian matrices have properties that
reflect into the network dynamic behavior.

Throughout this article, we will be working with oriented graphs com-
posed of two interconnected modules X and Y, each composed in turn of N
nodes. Within both X and Y, the edge density is fixed to the same fraction
γ (out of the possible maximum of N2). The density of the X-to-Y edges is
fixed to a fraction α of the N2 possible X-to-Y connections and the density
of the Y-to-X edges is fixed to β of the N2 possible Y-to-X connections.
The parameters α, β, and γ can take any values of the form k

N2 ∈ [0, 1],
where k is an integer between zero and N2 (not necessarily requiring that
γ > α, β). In this setup, when γ = 0, the modules are totally disconnected,
and when γ = 1, the modules are fully connected (cliques). Most of this
article is dedicated to studying interconnected cliques.

As discussed in section 1.2, this graph structure was used in previous
work as a schematic architectural representation of a neural circuit, in which
X and Y represent the excitatory (resp. inhibitory) modules of a neural
feedback loop, so that X projects to Y through a fraction α of excitatory
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connections, and Y in turn modulates X through a fraction β of feedback, in-
hibitory connections. In such a circuit, the overall connectivity density may
remain constant during a cognitive process such as learning, even though
the network may exhibit high plasticity and constantly inspect a variety
of edge geometry combinations. Throughout the process, the connectivity
profile is constantly remodeled, with existing connections being silenced or
disappearing, while new connections are being created or activated.

The adjacency matrix of such an oriented graph is a 2N × 2N binary

block matrix of the form T =
[

P A
B Q

]
, where the blocks P and Q have a

fixed fraction γ of 1 versus 0 entries (i.e., edge density), while A and B have
densities α and β, respectively. Here, we study the sensitivity and robust-
ness properties of the adjacency and Laplacian spectra for our specific class
of oriented graphs. We focus in particular on understanding, for increasing
size N, how the eigenvalues are perturbed when changing the density pro-
file (α, β, γ ) and when changing only the edge distribution while keeping
densities fixed. We use a combination of analytical and numerical methods
to understand the distribution (mean and standard deviation) of each eigen-
value in the adjacency and Laplacian eigenspectrum. In a separate paper
(briefly previewed in section 4.2), we investigate the connections between
graph properties and the dynamics of a corresponding system of coupled
node oscillators.

1.4 Organization of the Article. Our work is organized as follows.
In the following two sections, we study properties of the adjacency and
the Laplacian matrix of the graph. In section 2, we focus on the behavior
and robustness of the adjacency spectrum when changing the edge density
and configuration. (In the text, we restrict ourselves to the case of two
interconnected cliques, γ = 1. However, in appendix B, we relax the full
connectedness requirement to γ ≤ 1 and analyze how the properties of the
spectrum change with the trimming of intramodular edges.) In section 3,
we investigate numerically, by looking at increasing network sizes and
variable edge densities, whether the same robustness is characteristic to
the spectrum of the graph Laplacian. In section 4, we put our results in the
context of the existing work on eigenspectra of random graphs. As a preview
to our subsequent work in Rǎdulescu and Verduzco-Flores (2015), we briefly
explore connections with the temporal behavior of a coupled dynamical
system and discuss the feasibility of dynamic classification based on classes
of adjacency or Laplacian spectra. Finally, we discuss the significance of our
results in light of neural connectivity and learning plasticity.

2 Dependence of Adjacency Spectrum of Edge Density
and Network Size

When considering the case of fully connected cliques X and Y (see Figure 1),
the diagonal blocks of the adjacency matrix T are P = Q = M (where M is
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Figure 1: Schematic representation of the network for N = 5 nodes per module,
as used in our application. Module X is shown on the left; module Y is shown
on the right. Both are fully connected, local subgraphs of the full network. The
dotted red arrows represent the X-to-Y connections, and the dotted blue arrows
represent the Y-to-X connections, generated randomly for low-connectivity den-
sities α = β = 5/25 = 0.2, to maintain the clarity of the illustration (Rǎdulescu
& Verduzco-Flores, 2015).

the appropriate size matrix with all entries equal to one). Note that this
scenario includes self-loops at all nodes; eliminating loops is equivalent
to subtracting the identity from the adjacency matrix, with the only effect
of shifting all the eigenvalues, and preserving the eigenvectors. The off-
diagonal N × N blocks A and B are binary matrices, with fractions α and,
respectively, β of ones.

By discussing the effects of edge density we mean analyzing how the
spectrum of T changes when the values of α and β are varied; we will
represent these changes in the form of surface plots with respect to pairs
(α, β) ∈ [0, 1]2. By discussing the effects of geometry, we mean understand-
ing the effects on the spectrum of the edge configuration, under the con-
straint of fixed densities α and β. We measure these effects by estimating
the mean and standard deviation of the eigenvalues of T over the edge
geometries admissible by any fixed density pair (α, β). We call λ j, j = 1, 2N
the eigenvalues of T, ordered in decreasing order of their magnitudes:
|λ1| ≥ |λ2| ≥ . . . ≥ |λ2N|.

Let us notice here that λ1 is guaranteed to be real by an extended version
of the Perron-Frobenius theorem, for matrices with nonnegative entries.
It is easy to see that the graph with adjacency T is strongly connected,
with every two nodes connected by at least one oriented path (unless α =
0 or β = 0, i.e., if there are no X-to-Y or Y-to-X connections). Hence the
matrix T is irreducible anywhere except on the boundary of the density
square (α, β). Moreover, since the length of the shortest path between two
nodes is 1, it follows that the matrix is also aperiodic. An extension of
Perron-Frobenius for irreducible matrices guarantees that there is a unique
real positive eigenvalue equal to the spectral radius and that the other

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-000.jpg&w=280&h=98
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eigenvalues are complex. We will be referring to λ1 and λ2 as the two
leading eigenvalues of T.

Definition 1. For fixed 0 ≤ α, β ≤ 1, we call Dα,β the distribution of 2N × 2N
adjacency matrices T with off-diagonal blocks A and B having densities α and β,
respectively. We call Lα,β

j the corresponding distribution of each of the eigenvalue
real parts Re(λ j ) (with j = 1, 2N).

It is easy to see that the cardinality |Dα,β | = CαN2

N2 CβN2

N2 . While in general the
exact eigenvalues of T depend on the representative T ∈ Dα,β (i.e., on the
actual exact positions of the 1s within the blocks A and B), all Lα,β

j are trivial
on the boundary (i.e., for α or β in {0, 1}).

Lemma 1. Fixing α = 1 fixes the eigenvalues of T , so that |L1,β

j | = 1, for all
j = 1, 2N. More precisely, the eigenvalues of any T ∈ D1,β are given by (from
largest to smallest in absolute value) λ1 = N + N

√
β, λ2 = N − N

√
β, and λ3 =

. . . = λ2N = 0. Similarly, for β = 1, the eigenvalues of any T ∈ Dα,1 are given by
λ1 = N + N

√
α, λ2 = N − N

√
α, and λ3 = . . . = λ2N = 0.

Proof. We calculate directly, for T ∈ D1,β , the eigenvalues λ and eigenvec-

tors
[

V
W

]
(where V = [v1, . . . , vN]t and W = [w1, . . . , wN]t):

[
M M
B M

] [
V
W

]
= λ

[
V
W

]
.

Call �v = ∑N
j=1 v j and �w = ∑N

j=1 w j, and B j= the jth row of the block
matrix B, with ϕ j(B) being the number of 1s in that row. We then have
that

�v + �w = λv j, for all j = 1, N,

B jV + �w = λw j, for all j = 1, N.

If λ 	= 0, then v1 = v2 = . . . = vN = v, implying that �w = (λ − N)v. It fol-
lows that ϕ j(B)v + �w = λw j for all j = 1, N. By summing up and using the

fact that
∑N

j=1 ϕ j(B) = N2β, we get

N2βv + N(λ − N)v = λ(λ − N)v.

Clearly v 	= 0; otherwise, w j = 0 for all j, and
[

V
W

]
=

[
0
0

]
. We then have

that (λ − N)2 = N2β, hence λ = N ± N
√

β.
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Figure 2: Mean and standard deviation for the leading eigenvalue of T for
N = 3, as functions of the densities α and β. (A) For each pair (α, β), the mean
of the leading eigenvalue real part was calculated over all T ∈ Dα,β (i.e., over
all possible combinatorial configurations with the given densities). (B) For each
pair (α, β), the corresponding standard deviation was calculated over all com-
binatorial configurations in each Dα,β . (C) For each pair (α, β), the standard
deviation of the leading eigenvalue was also calculated using a sample of the
distribution, obtained by choosing randomly 2500 configurations for T.

In conclusion, any matrix T ∈ D1,β has one largest eigenvalue λ1 = N +
N

√
β, with eigenvector given by v j = v = N + N

√
β, w j = ϕ j(B) + √

β, and
a second largest eigenvalue λ2 = N − N

√
β, with eigenvector given by v j =

v = N − N
√

β, w j = ϕ j(B) − √
β. The rest of 2N − 2 eigenvalues are zero.

Note that in the case of β = 1, then λ1 = 2N and λ2 = 0 as well.

Lemma 2. Fixing α = 0 fixes the eigenvalues of T so that |L0,β

j | = 1 for all j. The
eigenvalues of any T ∈ D0,β are given by λ1 = N, λ2 = . . . = λ2N = 0. Similarly,
for β = 0, the eigenvalues of any T ∈ Dα,0 are given by λ1 = N, λ2 = . . . = λ2N = 0.

Proof. The proof is similar to that of lemma 1.

Clearly, the distributions Lα,β

j are not trivial in general. If we re-
stricted our interest to finding only the leading eigenvalue of the matrix

T =
[

M A
B M

]
, a variety of existing tools can assist us. However, even the

computations involved in a task such as expanding the powers Tk (equiva-
lent to finding all paths of length exactly k in the graph) or in approximat-
ing the leading eigenvalue using perturbation theory become very complex
quite fast (see section 2.2 and appendix B). It is in this light that we now
proceed numerically to support a few conjectures.

Our goal is to obtain descriptions of Lα,β

j for all values of α, β ∈ (0, 1);
in particular, we want to estimate their means and standard deviations
and observe how these depend on the values of α and β and on the size
N of the network. For small network sizes (N ≤ 4), the mean and standard
deviation of the entire distributionLα,β

j , for each α, β, and j, can be computed
directly quite efficiently (see Figures 2A and 2B). However, for larger values
of N, the factorial increase in the distribution size makes inspecting all

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-001.jpg&w=311&h=66
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configurations computationally very expensive (e.g., for N = 5 and α =
β = 12/25, we have |Dα,β | = (C12

25 )2 ∼ 1013 configurations, although some
will produce identical spectra). So for larger Ns, we estimated the means
and standard deviations based on a sample S ⊂ Dα,β of the distribution.
Figures 2B and 2C show a comparison between the whole-distribution
and sample-based computations of the standard deviation for Lα,β

1 for N =
3. Even for larger values of N, considering samples of size |S | = 500, or
|S | = 2500 produced numerically consistent results (as explained later in
this section).

2.1 Numerical Estimates of Eigenvalue Distributions. A few contexts
in the literature on eigenspectra of random graphs relate to our problem.
The eigenspectrum of the adjacency matrix of a network with communities
is known to have leading eigenvalues that are well separated from the rest
of the spectrum (Chauhan et al., 2009).

A result more qualitatively related to our question is due to Juhász
(1990). Viewed in Juhász’s general framework, the adjacency matrix T is

a block matrix with (weighted) density matrix D =
[

1 α

β 1

]
, whose eigen-

values are μ1,2 = 1 ± √
αβ. According to the main theorem in Juhász’s,

T has two eigenvalues λ1,2 that are large (of order N) in magnitude; the other
eigenvalues are close to zero. More precisely, λ1,2 = N ± N

√
αβ + o(N1/2+ε )

in probability, while the other eigenvalues are of order o(N1/2+ε ) in proba-
bility (for any ε > 0).

A first thought is that N ± N
√

αβ may provide in our case the exact for-
mal expressions for the means E(|λ1,2|) in terms of the densities α and β.
The formulas look particularly promising, since they seem to naturally ex-
tend the boundary expressions obtained in the two lemmas (for α ∈ {0, 1} or
β ∈ {0, 1}) and since they match tightly our numerical results (as shown in
Figures 2A and 3A). Simple direct computations of the spectra for N = 3, 4
immediately reveal, however, that the formulas N ± N

√
αβ do not give the

exact means for the leading eigenvalue magnitudes, although this may be
the case only for finite sizes N and the estimates may be in fact improving
with increasing size and may become exact in the limit N → ∞. An inter-
esting question to address is that of understanding not only the shape of the
leading eigenvalue distributions but also the source of the error terms in
their means compared to N ± N

√
αβ, and their own behavior with respect

to the size N.
For the rest of the section, we gain a numerical insight, for size up to

N = 20, and provide a few numerically based conjectures on the behavior
of the spectrum as the size increases. In section 2.2, we back up analytically
some of the conjectures speculated in this section, based on our simulations.

Figure 2 illustrates, for size N = 3, the standard deviation of Lα,β

1 as a
function of the densities. For each pair (α, β), we computed the standard
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Figure 3: Mean and standard deviation of eigenvalue magnitudes for N = 8,
estimated numerically for each pair of densities (α, β) by considering a random
sample of 2500 matrices T. (A) The mean eigenvalue real parts are represented
as surfaces with respect to (α, β). The two top surfaces fit very closely the
expressions N ± N

√
αβ; the other surfaces are all close to zero. For each of the

first (panel B), second (panel C), and third (panel D) leading eigenvalues (in
magnitude), we represent the corresponding standard deviation as a surface
with respect to (α, β).

deviation of Lα,β

1 over all configurations in Dα,β (see Figure 2B), as well as
over a random sample of 2500 representatives for T. Figures 3B to 3D show
similar results for N = 8; for each pair (α, β), we used 2500 samples for T
to estimate numerically the standard deviations of Lα,β

1 , Lα,β

2 and Lα,β

3 . In
all cases, the surfaces decrease toward the edges, illustrating the narrowing
of the corresponding distributions when (α, β) gets closer to the boundary
of the unit square. We point out the possible confound that the numerical
scheme may be introducing by considering the same cardinality (2500)
for sampling the larger distributions in the center, as well as the slimmer
distributions near the boundary (i.e., the underestimation due to sampling
may be more pronounced around the center of the surface than towards the
boundary).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-002.jpg&w=311&h=247


Network Spectrum under Graph Perturbations 15

For a fixed N, the distribution Lα,β

j for each eigenvalue λ j is clearly
largest at intermediate values of α and β. Following the same logic (“higher
cardinality likely produces higher variance”), one would expect standard
deviations to increase when the size N is increased (recall that |Dα,β | =
CαN2

N2 CβN2

N2 , which increases factorially with N). Juhász’s estimate goes along
the same lines, claiming an almost everywhere correction term of magnitude
o(N1/2+ε ), which increases with N. This means that there are almost no
outliers out of the Juhász range, even though the spread of eachLα,β

j remains
quite large, of order o(N), as discussed in section 2.2.

In Figure 4, we illustrate specifically the outcome of our numerical sim-
ulations of how the standard deviations behave with increasing N (with
approximation algorithms based on sample distributions). In Figures 4A to
4C, we show, for 2 ≤ N ≤ 20, the standard deviations for the three leading
eigenvalues, each represented as a surface with respect to density pairs
(α, β). Figure 4D tracks the behavior of the maximum of the surface corre-
sponding to each of the first four eigenvalues over the unit (α, β) square.
Our estimates suggest that for j = 3, 4, the standard deviations of Lα,β

j in-
crease as a power function of N (with the power ∼ 1/2). This is not surpris-
ing in light of the existing results already described. However, interestingly,
the simulations suggest a decreasing power rule ∼ N−1/2 for the standard
deviation of Lα,β

1 and a logarithmic increase for the standard deviation of
Lα,β

2 , implying that for the two large eigenvalues, Juhász’s result can be
greatly refined in terms of standard deviations. This is a useful fact to in-
vestigate, since narrowness of the distributions Lα,β

1,2 with N ensures better
separation between the leading eigenvalues and the rest of the spectrum,
and subsequently more “recognizable” modularity properties (as discussed
in section 4.1). This feature can become quite important when the graph op-
erates as a functional network (e.g., as a brain feedback circuit).

We summarize our initial theoretical and numerical observations in the
case of two connected cliques in the form of a conjecture, which remains
open to a more rigorous investigation:

Conjecture 1. In the case of fully connected modules γ = 1 (i.e., S = R =
M), the spectrum of the matrix T varies with respect to the intermodular
densities α and β of the blocks A and B as follows:

1. For (α, β) 	= (1, 1), the spectrum has two eigenvalues λ1 and λ2 whose
mean magnitudes are large, while the other 2N − 2 have small mean
magnitudes (close to zero). As (α, β) → (1, 1), the second largest
eigenvalue λ2 → 0 as well.

2. For each size N and each density pair (α, β), the mean real parts
of the two leading eigenvalues (over all adjacency configurations
corresponding to (α, β)), are given approximately by N ± N

√
αβ,

with error terms approaching zero as N → ∞.
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Figure 4: Illustration of the evolution of the standard deviation of Lα,β

j when in-
creasing the network size N. (A) Each surface represents the standard deviation
of Lα,β

1 with respect to (α, β), for a different size N; from top to bottom: N = 2,
N = 3, N = 5, and N = 10. (B) Each surface represents the standard deviation
of Lα,β

2 for a different size N; from lowest to highest: N = 4, N = 6, and N = 10.
(C) Each surface represents the standard deviation of Lα,β

3 , for a different size
N; from top to bottom: N = 2, N = 3, N = 5, and N = 10. In order to make all
surfaces visible, the figure is vertically flipped (we show minus the standard
deviation). (D) The dotted plots show how the global maximum value of each
surface evolves when increasing the size up to N = 20. For each curve, we used
a Levenberg-Marquardt algorithm to determine the best functional fit, shown
as a solid line (in some cases, the solid line is hard to see because of its almost
perfect overlap with the simulation data). Top: The maximum of Lα,β

1 decreases
with N (dotted green curve), as ∼ N−0.47 (yellow solid curve), with residuals
norm ε = 0.0048. Middle: The maximum of Lα,β

2 increases with N (dotted blue
curve), as ∼ log(N) (cyan solid curve), with residuals norm ε= 0.0013. Bottom:
The maxima of Lα,β

3 (dotted red curve) and Lα,β

4 (dotted black curve) increase as
∼ N0.59 (solid pink) and ∼ N0.51 (solid purple), with residual norms ε = 0.0034
and 0.0014, respectively. The estimates for panels A, B, and C are based on
samples of size 2500. The estimates for panel D are based on samples of size
400.

3. For any size N, the standard deviation of each eigenvalue’s real part
is a “unimodal” surface, with a point of maximum in the open square
(0, 1)2, and which is zero when α ∈ {0, 1} or β ∈ {0, 1}.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-003.jpg&w=311&h=223


Network Spectrum under Graph Perturbations 17

4. For the leading eigenvalue λ1, the standard deviations for all
(α, β) ∈ [0, 1] are very small. Moreover, the standard deviation of
Lα,β

1 decreases monotonically with N for each fixed pair (α, β). The
maximum attainable standard deviation of Lα,β

1 over (α, β) ∈ [0, 1]
decreases approximately as N−1/2. (This transcends qualitatively the
corresponding Juhász estimate.)

5. For the second eigenvalue λ2, the maximum attainable stan-
dard deviation of Lα,β

2 over (α, β) ∈ [0, 1] increases logarithmically
with N. (This transcends quantitatively the corresponding Juhász
estimate.)

6. For the rest of the eigenvalues λ j, j ≥ 3, the maximum attainable stan-
dard deviation of Lα,β

j over (α, β) ∈ [0, 1] increases approximately as
N1/2. (This is the same as the rate of the almost everywhere error term
previously obtained by Juhász.)

Remark 1. We are in particular interested in understanding the robustness
of the leading eigenvalues to changes in configuration once the densities
have been fixed. First, one might suspect that this robustness is due to a
large extent to the existence of the two fully connected cliques in our graph.
In appendix B, we investigate how results change when we relax the fully
connectedness condition. Second, recall that we are ultimately interested
in whether robust features in the adjacency spectrum translate into robust-
ness in dynamics (if we consider the corresponding network of coupled
oscillators). In our follow-up paper (briefly previewed in section 4.2 and in
appendix A), we discuss this aspect further, and the potential connections
between adjacency and dynamics classes.

2.2 Estimating the Maximal Eigenvalue. One of our goals is to under-
stand the source of the standard deviation of the maximal eigenvalue when
considered over the matrix distribution Dα,β . There are a few ways in which
one typically proceeds to approximate the maximal eigenvalue of a matrix.
In this technical section, we present what two such methods entail in our
case and justify our preference for a numerical approach to computing the
mean and standard deviation. First, we use Taylor series to expand the
eigenvalue and corresponding eigenvector around their values for a matrix
with simple known spectrum. Second, we use the power method, initiated
at the vector v0 = 1, to obtain the leading eigenvector and then compute
the corresponding eigenvalue.

Throughout this section, M denotes the N × N matrix with all entries
equal to 1, 1 denotes the N × 1 column vector with all entries 1, and ϕ

denotes the function that computes the sum of all entries, for any arbitrary
size matrix.



18 A. Rǎdulescu

2.2.1 Taylor Expansion Approach. The adjacency matrix T for our graph

is of the form
[

M A
B M

]
, where ϕ(A) = αN2 and ϕ(B) = βN2. At the start of

section 2, we found the spectrum of T when (α, β) is on the boundary of the

unit square. The spectrum is also easy to find for the matrix C =
[

M αM
βM M

]
,

a nonbinary matrix that averages out all configurations T for a fixed pair
(α, β).

Lemma 3. The matrix C =
[

M αM
βM M

]
has eigenvalues:

• λ1 = N + N
√

αβ, with corresponding eigenvector u1 =
[√

a1√
b1

]

• λ2 = N − N
√

αβ, with corresponding eigenvector u2 =
[ √

a1
−√

b1

]

• λ3 = . . . = λ2N = 0, with corresponding eigenspace spanned by the vectors

uk =
[

tk
sk

]
, where tk and sk are N × 1 column vectors with ϕ(tk) = ϕ(sk) =

0, for k ≥ 3.

Proof. The proof is direct, and will be omitted.

We are interested in the spectrum of the matrix T, which we write in

the form T = C + Z, where the difference Z = T − C =
[

0 U
V 0

]
has ϕ(U) =

ϕ(V) = 0. More generally, we consider the matrix family Tε = C + εZ (so
that T = Tε, for ε = 1). The leading eigenvalue λ1(ε) (and its corresponding
eigenvector) of Tε can then be expanded as a Taylor series around the
original leading eigenvalue λ1 = λ1(0) of C (with corresponding original
eigenvector u1):

Tε(u1 + εx + ε2y + . . .) = (λ1 + εμ + ε2ν + . . .)(u1 + εx + ε2y + . . .)

(2.1)

(we can assume, without loss of generality, that x is perpendicular to u1, y
is perpendicular to both x and u1, and so on). One can easily compute the
first term (of order ε) in the expansion of λ1(ε) by considering the terms
O(ε):

Tε(u1 + εx) = (λ1 + εμ)(u1 + εx). (2.2)

Expanding with respect to ε and identifying the coefficients of ε, we get

Zu1 + Cx = λ1x + μu1.
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In the basis (uk)k=1,2N of eigenvectors of C, one can write x = ∑
xkuk and the

matrix Z as (z jk)i, j=1,2N, so that Zu j = ∑
z jkuk. Then our equation becomes

∑
xkλkuk +

∑
z1kuk = λ1

∑
xkuk + μu1.

Solving in components, this gives us:

• μ = z11, for k = 1

• xk = z1k

λ1 − λk
, for k ≥ 2

Given the form of the eigenvectors in the basis (uk)k=1,2N, we easily can
calculate some of the zjks that are most useful to continue our computation.
For example, on one hand,

Zu1 =
[

0 U
V 0

] [√
a1√
b1

]
=

[√
bU1√
aV1

]
,

and on the other hand, in components,

Zu1 = z11

[√
a1√
b1

]
+ z12

[ √
a1

−√
b1

]
+

∑
k≥3

z1k

[
tk
sk

]
.

Recall that ϕ(tk) = ϕ(sk) = 0, for all k ≥ 3. Applying the operator ϕ sepa-
rately over the first the top and bottom N entries, we get, respectively,

N
√

a(z11 + z12) =
∑
k≥3

z1kϕ(tk) = 0,

N
√

b(z11 − z12) =
∑
k≥3

z1kϕ(sk) = 0.

This implies that z11 = z12 = 0, and subsequently μ = 0. Hence the order one
Taylor polynomial in ε of the leading eigenvalue of Tε is P1(ε) = N + N

√
αβ

(the same as the leading eigenvalue of C). One can continue computing
higher-order terms. For example, we can include terms of order ε2 in the
expansions of both eigenvalue and eigenvector from equation 2.1, and aim
to calculate ν:

Tε(u1 + εx + ε2y) = (λ1 + εμ + ε2ν)(u1 + εx + ε2y). (2.3)
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Identifying the coefficients of ε3 and ε4 and using the fact that μ = 0, we get
two more equations, which can be used to completely determine ν and y:

Cy + Zx = λ1y + νu1, (2.4)

Zy = νx.

Writing equation 2.4 in components, we have
∑

k

λkykuk +
∑
k,l

xkzklul = λ1

∑
k

ykuk + νu1.

Projecting in the direction of u1, replacing xk = z1k
λ1−λk

, for all k ≥ 2, and also
recalling that z11 = 0, we have that

ν =
∑

k

xkzk1 =
∑
k≥2

z1kzk1

λ1 − λk
. (2.5)

We additionally know that z12 = 0 and that λk = 0, for k ≥ 3. Hence:

ν =
∑
k≥3

z1kzk1

λ1
= 1

N + N
√

αβ

∑
k≥3

z1kzk1. (2.6)

But
∑

k≥3 z1kzk1 = ∑
k≥1 z1kzk1 is in fact nothing but the first component of

the matrix Z2, written in the basis (uk)k=1,2N. In other words, if we write
in components Z2u1 = A1u1 + A2u2 + ∑

k≥3 Akuk, then
∑

k≥1 z1kzk1 = A1. To
calculate A1, we can use the fact that 〈u1, uk〉 = 〈u2, uk〉 = 0, for all k ≥ 3 and
calculate:

〈u1, Z2u1〉= A1‖u1‖ + A2〈u1, u2〉 = N(a + b)A1 + N(a − b)A2,

〈u1, Z2u1〉= A1〈u1, u2〉 + A2‖u2‖ = N(a − b)A1 + N(a + b)A2.

On the other hand, Z2 =
[

UV 0
0 VU

]
, so that

〈u1, Z2u1〉= α1TUV1 + β1TVU1,

〈u2, Z2u1〉= α1TUV1 − β1TVU1.

Combining the two, we get

N(A1 + A2)= 1TUV1,

N(A1 − A2)= 1TVU1,

hence A1 = 1
2N (1TUV1 + 1TVU1).
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In conclusion, we obtained the quadratic Taylor polynomial in ε for the
eigenvalue λ1(ε):

P2(ε) = N + N
√

αβ + ε2 1
2N

1
N + N

√
αβ

(1TUV1 + 1TVU1). (2.7)

Keep in mind, however, that the difference between P2(ε) and λ1(1) (the ex-
act leading eigenvalue of T) is the second-order Taylor remainder evaluated
at ε = 1, which we have not yet reason to believe is small (that, assuming
the Taylor series converges at ε = 1). While obtaining additional higher-
order terms could provide increasingly confident estimates Pn(ε), the mean
and standard deviation of Pn(ε) become harder to calculate (involving more
complex, mixed products of the matrices U and V). This would make an
exact analytic expression of the mean and standard deviation intractable
using this particular method. To illustrate, we study the statistics of P2(ε)

over the distributionDα,β and estimate how much of the mean and standard
deviation of λ1(ε) are captured by its quadratic “approximation” P2(ε):

Proposition 1. The mean of ϕ(UV + VU) = 1T UV1 + 1T VU1 over all matrix
configurations in Dα,β is zero.

Proof. Consider two N × N binary matrices A and B with densities α and,
respectively, β. Then E[ϕ(AB)] = N3αβ, where E represents the mean over
all configurations in Dα,β . Indeed, we have E(Ai) = αN and E(Bi) = βN,
for all 1 ≤ i ≤ N. Since the matrices A and B are independent, we can easily
compute E[ϕ(AB)] = N · αN · βN = αβN3.

Since the second correction term in the eigenvalue expansion has zero
mean, P2(ε) does not account for any of the difference between the mean of
λ1(1) and the value N + N

√
αβ, which we observed numerically and have

been investigating. This difference must be therefore entirely contained
within the higher-order terms in the expansion. This is not true for the
standard deviation σ (P2(ε)), which in fact seems to explain much of the
standard deviation of λ1(1). Indeed:

σ (P2(ε)) = ε2σ (1TUV1 + 1TVU1)

2N(N + N
√

αβ)
.

We can express σ 2(1TUV1)=E[ϕ(UVUV)]+E[ϕ(UVVU)] + E[ϕ(VUVU)].
The mean for a product of the type UVUV is nontrivial to express analyti-
cally (unlike E[ϕ(UV)] and E[ϕ(UVU)] and E[ϕ(UVVU), which are easy to
determine). We compute the standard deviation of P2(1) for N = 3 and all
pairs (α, β). In Figure 5, we compare it with the standard deviation of the
leading eigenvalue λ1(1) for all values of (α, β).
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Figure 5: Comparison between the standard deviations of the leading eigen-
value of T (left) and its quadratic Taylor polynomial (right). The computations
were done for N = 3, for all pairs (α, β) ∈ (0, 1)2 .

While the computation of the standard deviation can get complicated
fast, one can more easily calculate bounds for the leading eigenvalue around
its mean, by noticing that:

Proposition 2. −2N3αβ ≤ ϕ(UV) ≤ 2N3√αβ(1 − √
αβ).

Proof. Consider two N × N binary matrices A and B with densities of ones
α and, respectively, β, that is, ϕ(A) = αN2 and ϕ(B) = βN2. We have that

ϕ(AB) = [A1 . . . AN] ·

⎡
⎢⎣

B1
...

BN

⎤
⎥⎦ ,

where Ai is the sum of the elements in the ith column of A and Bi is the
sum of the elements in the ith row of B, hence

∑
Ai = αN2 and

∑
Bi = βN2.

Using the Cauchy-Schwartz inequality, we can see that

ϕ(AB) =
∑

AiBi ≤
√∑

(Ai)2 ·
∑

(Bi)
2.

Furthermore, each (Ai)2 = (∑
ai1

)2 ≤ ∑
a2

i1 · ∑
1 = N

∑
ai1. Similarly, each

Bi ≤ N
∑

b1i, hence
√∑

(Ai)2 · ∑
(Bi)

2 ≤ √
Nϕ(A) · Nϕ(B) = N3√αβ.

In conclusion, ϕ(AB) ≤ N3√αβ. We use finally use the fact that U =
A − αM and V = B − βM to compute ϕ(UV) = ϕ(AB − αBM − βAM +
αβM2) = ϕ(AB) − αβN3 − αβN3 + αβN3 = ϕ(AB) − αβN3.

The inequality in proposition 2 is not helpful, however, since it esti-
mates a maximal variability 1

2N
1

N+N
√

αβ
· N3 for the eigenvalue λ1(1) around

N + N
√

αβ. While we desire to narrow the estimates as N increases, this
bound increases like O(N) with size (a similar problem as with Juhasz’s
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estimate) and fails to explain our numerical observations. However, this
bound cannot be improved to a lower order of N since, for all N, one can al-
ways find outliers in the distributionLα,β

1 at a distance ∼ N from N + N
√

αβ.
An explanation that reconciles both observations, as well as Juhász’s almost
everywhere bounds, is that these outliers are less representative as N in-
creases, causing the distribution to remain narrow, with a small standard
deviation that decreases with N.

2.2.2 Power Iteration Approach. It can be shown that the recurrent se-
quence of vectors obtained from the power algorithm vk = Tkv0, initiated
at v0 = 1, converges in our case to the leading eigenvector v of T. Then

the leading eigenvalue can be computed as the Rayleigh quotient
vtTv
vtv

. To

estimate a term like vtv, we calculate powers of the matrix T =
[

M A
B M

]

and then compute the limit of v0

(
Tk

)t
Tkv0 = ϕ[(Tk)tTk] . As with the Tay-

lor method, this computation quickly becomes intractable when facing the
combinatorial problem of evaluating the function ϕ for mixed products of
the blocks A, B and their transposes.

2.2.3 Numerical Approach. Due to these apparent difficulties to support
the conjectured statements with analytic results for the standard devia-
tion, we resorted to numerical illustrations. These present different but
surmountable difficulties, such as the increased potential for inaccuracy
in computing the standard deviation based on fixed-size sample distribu-
tions. Indeed, recall that the size of Lα,β

1 increases factorially with N, mak-
ing it unrealistic to explore all configurations in this distribution. Hence
any computationally tractable approach based on sample distributions can
only increase the sample sizes with N at a much slower rate than the rate
at which the actual size of Lα,β

1 increases, making these samples potentially
less and less reliable with larger sizes. For a brief illustration of the appro-
priateness of our sample-based computations, we compare in Figure 6 the
histogram of Lα,β

1 (containing, for N = 4 and α = β = 8, a total of 12, 8702

configurations) with that produced by a sample of 1002 configurations.

3 Dependence of Laplacian Spectrum of Network Size
and Edge Densities

For our oriented graph with adjacency matrix T =
[

M A
B M

]
, we consider

the in-node degree diagonal matrix �, with

� j j = ϕ j(T) for all j = 1, 2N

so that the corresponding Laplacian matrix is given by L = � − T.



24 A. Rǎdulescu

Figure 6: Comparison between the distribution Lα,β

1 and a sample-based dis-
tribution. (A) Histogram of the distribution Lα,β

1 , for N = 4, α = 8, β = 8.
(B) Histogram for a random subset of values in Lα,β

1 , for N = 4, α = 8, β = 8,
computed based on a sample of size 104 configurations out of the total of 12,8702

configurations.

Figure 7: Mean of Laplacian eigenvalue real parts for N = 8, estimated numer-
ically for each pair of densities (α, β) by considering the same random sample
of 2500 adjacency configurations as in Figure 3A. Ordered by their magnitude:
(A) The leading N − 1 eigenvalues (1–6), (B) The following N − 1 eigenvalues
(7–14). (C) The two smallest eigenvalue (15 and 16). The smallest eigenvalue is
zero (the Laplacian matrix is always rank degenerate).

The Laplacian eigenvalue spectrum has been used as a measure of system
dynamics. For example, the algebraic connectivity, defined as the second
smallest eigenvalue μN−1 of the discrete Laplacian matrix, is known to play
an important role on synchronization dynamics and network robustness.
In an effort to study the effect of interdependent topologies on the mutual
synchronization of networks, Martin-Hernandez, Wang, Van Mieghem, and
D’Agostino (2013) focused on computing and approximating the algebraic
connectivity of two interdependent networks and on showing that it expe-
riences a phase transition with the addition of a sufficient number of links
among two interdependent networks. Here, we study the dependence of
the Laplacian eigenvalues on the densities (α, β).

Following the same numerical scheme as in section 2, we computed
the Laplacian eigenvalues for a sample of configurations, chosen randomly
from the large distribution of all configurations corresponding to any fixed
density pair (α, β). Based on this sample, we estimated for each (α, β) the

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-005.jpg&w=311&h=83
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-006.jpg&w=311&h=68
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Figure 8: Standard deviations of Laplacian eigenvalue real parts for N = 8. The
panels represent, from top to bottom and left to right, the standard deviations
for the eigenvalues 1, 2, 3, 7, 10, and 14 (ordered by magnitudes).

mean and standard deviation of the real part of the spectrum, as illustrated
in Figures 7 and 8 for N = 8.

The behavior of the standard deviations for the real parts of the Lapla-
cian eigenvalues with respect to the density pair (α, β) is very different
from that of the standard deviations for the adjacency spectrum. While
the adjacency standard deviation surfaces were unimodal on the domain
[0, 1]2, decreasing from a central peak toward the boundary, in the case of
the Laplacian, the surfaces are rippled (Figure 8), with the amplitude and
distribution of the ripples depending on a variety of factors (as illustrated
in Figure 10 and discussed below).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-007.jpg&w=311&h=336
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Figure 9: Illustration of the evolution of the standard deviation of the Laplacian
eigenvalue real parts, when increasing network size N. (A) Surfaces for the first
eigenvalue, computed for N = 5 (lower surface) and N = 8 (higher surface).
(B) Surfaces for the second eigenvalue, for N = 5 (lower surface) and N = 8
(higher surface).

Such variability in the standard deviation values makes it easier for
the system to switch from robust regimes (with a narrow distribution of
eigenvalues) to more scattered regimes (with a wider distribution of po-
tential eigenvalues) by introducing a small change in the density (α, β).
Scattered regimes are more sensitive to configuration, since wide changes
in the Laplacian spectrum (and implicitly in Laplacian-driven dynamics)
are accessible even under the same density pair by slightly altering the
configuration. This could be in principle viewed as an adaptability feature
that makes Laplacian driven a desirable type of dynamics.

However, the emergent robustness observed in the case of the adjacency
leading eigenvalue (standard deviation of the real part decreasing with the
size N) does not hold in the case of the leading Laplacian eigenvalue. In fact,
the maximim standard deviations over the (α, β) domain seem to increase
as powers of N for all the eigenvalues in the Laplacian spectrum after an
initial transient phase for very small N (see Figures 9, 10, and 11). As N
increases, the central regions of the surface, which raise with N, smoothen
out and in the process push the ripples toward the borders.

If comparing the behavior of the two (adjacency and Laplacian) spectra
when changing (α, β) and increasing N, one could say that the desirable
feature of the adjacency model is robustness of the leading eigenvalue,
which increases with size, while the feature of the Laplacian model is swift-
ness between robust and loose regimes, which degrades with increasing
size.

4 Discussion

4.1 Comparison with Random Graphs Approaches to Modular-
ity. Nadakuditi and Newman (2012) considered a stochastic, nonoriented

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-008.jpg&w=311&h=102
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Figure 10: Illustration of the evolution of the standard deviation of the Lapla-
cian eigenvalue real parts when increasing the network size N. The surfaces for
the first second and third eigenvalues are shown top to bottom as pcolor plots
for N = 5 (left), N = 10 (center), and N = 20 (right).

network with two communities and computed the ensemble means for the
two large eigenvalues of its symmetric adjacency matrix in the large N limit.
The method involved first finding the eigenvalues of the modularity matrix,
then showing that these are identical in the large N limit to the eigenval-
ues of the adjacency matrix. Their asymptotic expressions z1 and z2 were
computed in terms of cin = npin and cout = npout (where the notations in the
original text are n for the matrix size, pin for the probability of two nodes
within a module to be directly connected, and pout for the probability of
two nodes that are not in the same module to be directly connected). More

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-009.jpg&w=311&h=321
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Figure 11: Curve fitting that illustrates the evolution of the Laplacian eigen-
value standard deviation as the size increases. The dotted plots show how the
global maximum value of each surface evolves when increasing the size up to
N = 20. For each curve, we used a Levenberg-Marquardt algorithm to deter-
mine the best functional fit, shown as a solid line. Top: The maximum mean
real part for the first eigenvalue increases with N ≥ 3 (dotted green curve), as
∼ N0.42 (yellow solid curve), with residuals norm ε ∼ 10−3. Middle: The max-
imum for the second eigenvalue increases with N ≥ 6 (dotted blue curve), as
∼ N0.52 (cyan solid curve), with residuals norm ε ∼ 10−4. Bottom: The maxima
for the third (dotted red curve) and fourth eigenvalues (dotted black curve)
increase as ∼ N0.69 (solid pink) and ∼ N0.33 (solid purple) for N ≥ 8 and N ≥ 10
respectively, with residual norms ε ∼ 10−4. The estimates are based on samples
of size 500.

precisely:

z1 = 1
2
(cin + cout) + 1,

z2 = 1
2
(cin − cout) + cin + cout

cin − cout
.

With our notation, cin = 2N, cout = 2αN and the adjacency matrix is sym-
metric (β = α). Accounting for the presence of loops for all the nodes in our
network (which were excluded in the Nadakuditi-Newman model), we get:

z1 = N + αN,

z2 = N(1 − α) + 1 + α

1 − α
− 1,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-010.jpg&w=249&h=178
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Figure 12: Comparison between our results and those of Nadakuditi and New-
man (2012) in the case of a bimodular, nonoriented graph. We compare the val-
ues of z1,2 computed by Nadakuditi and Newman (solid curves in purple and
brown, respectively) with the formal means E(λ1,2) (dotted curves in blue and
green) and their close approximations N ± αN (solid curves in yellow and cyan).
(A) Comparison for N = 4. (B) Comparison for N = 100. Here, we used only the
approximations λ̂1,2 = N ± αN, since the formal means are computationally too
expensive.

so that z1 > z2 if α < 1 − 1
N . In Figure 12, we show a comparison between our

results and those of Nadakuditi and Newman (2012) when applied to a non-
oriented graph with two fully connected communities by illustrating on the
same axes as z1,2 the formal means E(λ1,2), and their close approximations
obtained earlier as λ̂1,2 = N ± αN. The approximations approach exactness

in the large N limit, at least for values of α < 1 −
√

2
N (this is the density

where z1 has its global minimum, after which it shoots up, detaching from
the graph of E(|λ2|)).

Finally, the reference (Nadakuditi & Newman, 2012) investigated the
spectral distribution of the modularity matrix (i.e., whose spectral radius
is, in the large N limit, also the spectral radius for the adjacency matrix
of the original nonoriented graph). The spectrum consisted of a continu-
ous semicircular band of eigenvalues and an additional, unique leading
eigenvalue. As long as the leading eigenvalue is well separated from the
semicircular band, there is evidence of community structure in the network.
When the leading eigenvalue passes the edge of the band (z = √

cin + cout),
the community structure is no longer detectable. As we will suggest in sec-
tion 4.3, the property appears to extend to the case of the oriented random
graph that constitutes our study case. In Figure 13 we show, for N = 4, a
sample (100 configurations) of the spectrum, observing the separation be-
tween eigenvalues, as the modularity of the network changes. Since the
adjacency matrix is no longer symmetric, the eigenvalues are plotted in
the complex plane. All eigenvalues are distributed within the unit disc ex-
cept the first two largest in absolute value, which for γ = 1 are real and

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-011.jpg&w=311&h=102
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Figure 13: Illustration of separation of eigenvalues, when changing the com-
munity structure. The eigenvalues are plotted in the complex plane. The leading
eigenvalue in absolute value is shown in red, the second largest in green, the rest
in blue. All plots are for N = 4 and are based on samples of 100 matrix configura-
tions under the following restrictions: (A) α = 1/4, β = 3/4, γ = 1, 3/4, 1/2, 1/4
(from top to bottom). (B) α = 1/2, β = 1/2, γ = 1, 3/4, 1/2, 1/4 (from top to
bottom).

significantly larger than 1. When beginning to decrease the “community
structure,” (i.e., γ decreases), the second leading eigenvalue collides into
the unit disc and starts diffusing around its boundary. If we continue de-
creasing γ , the first leading eigenvalue will also become indistinguishable
from the pool distribution.

4.2 Adjacency to Dynamics: Strengthening versus Restructuring. The
main interest of our current work lies in studying the consequences of
spectral robustness under fixed-edge densities on the network’s coupled
dynamics. We focus primarily on finding the measures of architecture and
dynamics that are optimal for quantifying their relationship. For our node-
wise dynamics, we have been using both discrete iterated maps and contin-
uous time nonlinear oscillators. For our first coupled system (Rǎdulescu &
Verduzco-Flores, 2015), we chose one of the most studied historical models
in theoretical neuroscience, which has inspired many other analytical and
modeling efforts (Av-Ron, Parnas, & Segel, 1993; Borisyuk, Borisyuk, Khib-
nik, & Roose, 1995): the Wilson-Cowan model (Wilson & Cowan, 1972). This
is a variation of the two-dimensional Fitzhugh-Nagumo system in which
the coupled variables represent the fraction of neurons active at any specific
time in a pair of interacting excitatory and inhibitory neural populations.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-012.jpg&w=311&h=184


Network Spectrum under Graph Perturbations 31

The model was shown to exhibit hysteresis and Hopf bifurcations with
bistability windows (in which the system has both an attracting equilibrium
and an attracting limit cycle, separated by an unstable cycle). It was later
shown (Borisyuk et al., 1995) that by varying the strength of the symmetric
weak coupling between two Wilson-Cowan excitatory and inhibitory units,
one can produce very rich four-dimensional phase-space transitions (bifur-
cations between symmetric, antisymmetric, and nonsymmetric attractors
like equilibria, cycles, and invariant tori).

One interesting direction we investigate is to compare how dynamic
behavior depends on architecture (viewed as a system parameter) versus
how it depends on other parameters (see Rǎdulescu & Verduzco-Flores,
2015, as well as appendix A). For example, consider two alternative ways to
increase information diffusion between the two modules of our case study
network: one by increasing the intermodular edge weights and the other
by increasing their density. Both actions lead to “increasing connectivity”
between X and Y and to similar effects on the spectrum of the connectivity
matrix, so one may suspect that they also lead to similar changes in the
temporal behavior of the corresponding dynamic network. However, our
work suggests that this is not the case and that the effects obtained when
perturbing these two different aspects of the network connectivity can be
very similar in some instances but qualitatively different in others.

Choosing the appropriate interplay between perturbing the configura-
tion of the network and changing the coupling strengths seems to be an
important part of the continuous choices a complex system like the brain
needs to make to maintain optimal function. Under some circumstances,
local configuration perturbations to the network may have more substan-
tial dynamic effects than those obtained by a global change in the system’s
weights. In the context of optimal dynamics in a functional network, this
may be seen as a vulnerability (simple addition of a few edges may drasti-
cally affect the function) but also as an adaptability feature (the system can
more easily obtain the optimal flexibility that triggers efficient responses to
the outside world).

4.3 Edge Updating and Learning Algorithms. Many different models
describe, qualitatively or quantitatively, the synaptic adjustments that may
take place in a network of neurons during learning. Since the oriented graph
in this article may be viewed as a model network of coupled neurons (with
each edge representing a weighted synapse), we discuss briefly how the
results reflect on our knowledge of synaptic update mechanisms and their
consequence to learning.

In general, the process of synaptic updating is assumed to involve not
only weight changes of existing synapses but also activation of “silent” sites
(thus creating new connections), and silencing, or pruning of active sites
(thus deleting existing synapses). In terms of our model, this means that
not only the edge weights but also the edge distribution is likely to change
during learning. A clear biological restriction on synaptic updating has to
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be that the connections are somehow prevented from increasing without
bound, which is why most models incorporate a normalization scheme.
Although it is important to understand the different consequences of using
different normalization mechanisms when modeling synaptic updating and
rewiring, the manner in which a normalization step may actually be imple-
mented by the brain is not at all clear and has been the subject of scientific
controversy. Some rules assume the process to be local—subtractive nor-
malization rules (Oja, 1982; Goodhill, 1993; Willshaw & von der Malsburg,
1976; Miller & MacKay, 1994), weight-dependent rules (Elliott & Shadbolt,
2002), or BCM rules (Cooper, 2004)), but one can imagine various other
ways of ensuring stability, possibly involving “homeostasis” or “synaptic
scaling” (Turrigiano, Leslie, Desai, Rutherford, & Nelson, 1998; Turrigiano
& Nelson, 2004). Many models support a global normalization, for which
the state of the whole network is assessed at each updating step and a
specific norm is imposed at each weight update.

Hence, while most models of learning introduce the updates into the
weights themselves, another (additional) theoretically acceptable scheme
could be to“normalize” (at least in the short term) by simply maintaining the
overall number of active network connections approximately constant, so
that in the updating process, in the long-term average, one synapse will turn
off whenever a new site is activated. One would then want to understand
how these architectural dynamics may promote/influence learning, and
how the effects of geometry updating complement or compare with the
effects of weight updating.

We finally note that the local mechanism of adding or deleting edges
based on a probabilistic process (as described in section 4.1), even though
equivalent to our model in the large N limit, produces substantially dif-
ferent spectra from our alternative normalization scheme for finite N (see
Figure 12B for N = 100). Since many brain networks appear to operate with
hundreds of nodes, it is important to understand the apparent distinctions
between the two models for relatively large but finite values of N.

Knowledge of the geometry of the network is very important when
determining which connectivity schemes are plausible to use for models
of learning. The choices currently used in modeling range from consid-
ering fully connected to fully disconnected interacting modules or layers
(O’Reilly & Frank, 2006). Our results suggest that convergence (learning) is
not a priori prevented in either case. In developing future iterations of this
model, it will also be important to explore how the learning process itself
shapes the connectivity scheme. Siri et al. (2007) suggest that the structure
emerging during learning breaks down into different numbers of hublike
subnetworks, which is very likely to affect the spectral robustness demon-
strated in our modular network. Understanding the source and limits of
this robustness is an instrument that could be used to investigate which
architectures favor convergence under particular learning algorithms, and
which do not.
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Appendix A: Correspondence between Adjacency Spectra

A.1 Laplacian Spectra and Network Dynamics. In Rǎdulescu and
Verduzco-Flores (2015), we considered the following 2N-dimensional sys-
tem of coupled nonlinear oscillators:

ẋk =−xk + (1 − xk) · Sbx,θx

⎛
⎝−

N∑
p=1

gyxakpyp +
N∑

p=1

gxxxp + P

⎞
⎠ ,

ẏk =−yk + (1 − yk) · Sby,θy

⎛
⎝ N∑

p=1

gxybkpxp +
N∑

p=1

gyyyp + Q

⎞
⎠ (A.1)

with 1 ≤ k ≤ N. Each node is driven by external sources (P for the nodes xk
in the module X and Q for the nodes yk in the module Y). In addition, each
node receives input from all other nodes that are connected to it through
incoming edges, with weights g (with the corresponding subscripts). The
coefficients akp, bkp ∈ {0, 1} are the binary entries of the adjacency blocks A
and B. The effective input to each node is the sum of all such external and
internal sources, modulated by the sigmoidal:

Sb,θ [Z] = 1
1 + exp(−b[Z − θ ])

− 1
1 + exp(bθ )

, (A.2)

with parameters in the range used in the original Wilson-Cowan model
(Wilson & Cowan, 1972), as well as in subsequent papers (Borisyuk et al.,
1995).

In Rǎdulescu and Verduzco-Flores (2015), we considered as an appli-
cation networks of size 4 (i.e., N = 2) and inspected the dynamic behav-
ior of the system for every possible theoretical configuration of the ad-
jacency matrix corresponding to a fixed pair of edge densities (α, β). To
quantify the changes in dynamics produced by varying system parame-
ters (such as the intermodular connectivity weights gxy and gyx), we used
bifurcation diagrams in the (gxy, gyx) parameter plane. Then we observed
how these diagrams changed when perturbing the underlying adjacency
graph. We constructed all possible (gxy, gyx) parameter planes that can
be obtained for N = 2 for each of two density pairs: (α, β) = (3/4, 3/4)

and (α, β) = (1/2, 3/4), respectively. All 16 combinatorial configurations
in D3/4,3/4 produced only four distinct dynamic parameter planes (which
we labeled i through iv). Similarly, all 24 combinatorial configurations in
D1/2,3/4 produced only six dynamic classes (which we labeled i through vi).

In Tables 1 and 2 we illustrate for these two examples to what extent
cospectral and Laplacian cospectral graphs lead to the same dynamics.
In the case of (α, β) = (3/4, 3/4), there are three classes of adjacency
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Table 1: Classes of Adjacency and Laplacian Spectra in Correspondence with
Dynamic Classes, for N = 2, Density Type (α, β) = (3/4, 3/4).

⎡
⎢⎢⎣

1 1
1 0

1 1
1 0

⎤
⎥⎥⎦ (A, I)iii

⎡
⎢⎢⎣

1 1
0 1

1 1
1 0

⎤
⎥⎥⎦ (B, II)iv

⎡
⎢⎢⎣

1 0
1 1

1 1
1 0

⎤
⎥⎥⎦ (B, II)ii

⎡
⎢⎢⎣

0 1
1 1

1 1
1 0

⎤
⎥⎥⎦ (C, III)i

⎡
⎢⎢⎣

1 1
1 0

1 1
0 1

⎤
⎥⎥⎦ (B, II)ii

⎡
⎢⎢⎣

1 1
0 1

1 1
0 1

⎤
⎥⎥⎦ (C, III)i

⎡
⎢⎢⎣

1 0
1 1

1 1
0 1

⎤
⎥⎥⎦ (A, I)iii

⎡
⎢⎢⎣

0 1
1 1

1 1
0 1

⎤
⎥⎥⎦ (B, II)iv

⎡
⎢⎢⎣

1 1
1 0

1 0
1 1

⎤
⎥⎥⎦ (B, II)iv

⎡
⎢⎢⎣

1 1
0 1

1 0
1 1

⎤
⎥⎥⎦ (A, I)iii

⎡
⎢⎢⎣

1 0
1 1

1 0
1 1

⎤
⎥⎥⎦ (C, III)i

⎡
⎢⎢⎣

0 1
1 1

1 0
1 1

⎤
⎥⎥⎦ (B, II)ii

⎡
⎢⎢⎣

1 1
1 0

0 1
1 1

⎤
⎥⎥⎦ (C, III)i

⎡
⎢⎢⎣

1 1
0 1

0 1
1 1

⎤
⎥⎥⎦ (B, II)ii

⎡
⎢⎢⎣

1 0
1 1

0 1
1 1

⎤
⎥⎥⎦ (B, II)iv

⎡
⎢⎢⎣

0 1
1 1

0 1
1 1

⎤
⎥⎥⎦ (A, I)iii

Note: Adjacency classes are designated as A–C, Laplacian classes as I–III, and dynamics
classes by subscripts i–iv.

eigenspectra (designated by the letters A through C), which in this case
are also the three classes for Laplacian eigenspectra (designated I to III).
The four distinct dynamics classes (designated by indices i through iv) are
mapped to the spectral classes in a well-defined but not surjective way: that
is, no dynamics can be obtained from multiple adjacency classes but some
adjacency classes can lead to multiple dynamics.

Similarly, Table 2 shows how the six dynamic classes accessible to D1/2,3/4

are mapped to the adjacency and Laplacian spectral classes. In this case, the
adjacency spectral classes (A through D) do not coincide with the Laplacian
classes (I–III). Dynamics is once again well mapped to both adjacency and
Laplacian spectral classes, although not surgectively (in fact, the many-to-
one convergence is higher for Laplacian classes).

This suggests that while the adjacency and Laplacian spectra, together
with the density type, clearly have a contribution to dynamics, neither
cannot be directly used to predict these dynamics. In fact, in this case, it
is likely that the spectrum of the Laplacian gives less information on the
dynamics than the spectum of the adjacency matrix.
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Table 2: Spectral and Dynamics Classes for N = 2, Density Type (α, β) =
(1/2, 3/4).

⎡
⎢⎢⎣

1 1
0 0

1 1
1 0

⎤
⎥⎥⎦ (A, I)

v

⎡
⎢⎢⎣

1 1
0 0

1 1
0 1

⎤
⎥⎥⎦ (B, III)

vi

⎡
⎢⎢⎣

1 1
0 0

1 0
1 1

⎤
⎥⎥⎦ (A, I)

v

⎡
⎢⎢⎣

1 1
0 0

0 1
1 1

⎤
⎥⎥⎦ (B, III)

vi

⎡
⎢⎢⎣

1 0
1 0

1 1
1 0

⎤
⎥⎥⎦ (A, II)i

⎡
⎢⎢⎣

1 0
1 0

1 1
0 1

⎤
⎥⎥⎦ (A, II)i

⎡
⎢⎢⎣

1 0
1 0

1 0
1 1

⎤
⎥⎥⎦ (B, I)ii

⎡
⎢⎢⎣

1 0
1 0

0 1
1 1

⎤
⎥⎥⎦ (B, I)ii

⎡
⎢⎢⎣

1 0
0 1

1 1
1 0

⎤
⎥⎥⎦ (C, III)iv

⎡
⎢⎢⎣

1 0
0 1

1 1
0 1

⎤
⎥⎥⎦ (D, I)iii

⎡
⎢⎢⎣

1 0
0 1

1 0
1 1

⎤
⎥⎥⎦ (D, I)iii

⎡
⎢⎢⎣

1 0
0 1

0 1
1 1

⎤
⎥⎥⎦ (C, III)iv

⎡
⎢⎢⎣

0 1
1 0

1 1
1 0

⎤
⎥⎥⎦ (D, I)iii

⎡
⎢⎢⎣

0 1
1 0

1 1
0 1

⎤
⎥⎥⎦ (C, III)iv

⎡
⎢⎢⎣

0 1
1 0

1 0
1 1

⎤
⎥⎥⎦ (C, III)iv

⎡
⎢⎢⎣

0 1
1 0

0 1
1 1

⎤
⎥⎥⎦ (D, I)iii

⎡
⎢⎢⎣

0 1
0 1

1 1
1 0

⎤
⎥⎥⎦ (B, I)ii

⎡
⎢⎢⎣

0 1
0 1

1 1
0 1

⎤
⎥⎥⎦ (B, I)ii

⎡
⎢⎢⎣

0 1
0 1

1 0
1 1

⎤
⎥⎥⎦ (A, II)i

⎡
⎢⎢⎣

0 1
0 1

0 1
1 1

⎤
⎥⎥⎦ (A, II)i

⎡
⎢⎢⎣

0 0
1 1

1 1
1 0

⎤
⎥⎥⎦ (B, III)

vi

⎡
⎢⎢⎣

0 0
1 1

1 1
0 1

⎤
⎥⎥⎦ (A, I)

v

⎡
⎢⎢⎣

0 0
1 1

1 0
1 1

⎤
⎥⎥⎦ (B, III)

vi

⎡
⎢⎢⎣

0 0
1 1

0 1
1 1

⎤
⎥⎥⎦ (A, I)

v

Note: Adjacency classes are denoted A–D, Laplacian classes are denoted I–III, and dy-
namics classes are denoted as indeces as i–vi.

Appendix B: Connecting Sparser Modules

To investigate more general networks, we want to relax the full-
connectedness condition of the two modules and explore other intramodu-
lar edge configurations, more realistic in the context of brain connectivity. It
is well known that the eigenspectrum of the adjacency matrix of a network
organized in communities has leading eigenvalues that are well separated
from the rest of the eigenvalues (Chauhan et al., 2009). If our bimodular
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Figure 14: Behavior of eigenvalues of T as γ decreases from 1 to 0. Here, N =
4 and α = 1/2. In each panel: γ = 1 (panel A), γ = 1/2, (panel B), γ = 1/4
(panel C), and γ = 0 (panel D). The mean values of each eigenvalue magnitude
are represented along each curve together with the corresponding standard
deviation (as error bars): the largest eigenvalue in red, the second largest in
blue, and the remaining (footnotesize) eigenvalues in green.

graph is thought of as describing the underlying coupling scheme for a
dynamical system, the position and overlap of the distributions Lα,β

j will
automatically reflect in the spectral properties of the network connectivity
matrix (see section 4.2) and implicitly in the system’s Jacobian matrix, thus
affecting local dynamics around its equilibria.

In this section, we illustrate in our specific case how the eigenvalue distri-
butions and the distance between them evolve as the modularity structure
is gradually lost (how the leading eigenvalues approach the distribution of
the remaining eigenvalues, as γ decreases).

Figure 14 shows the means and standard deviations of Lα,β

j for four
levels of intramodular connectivity (each panel corresponds to a different
value of γ , with α fixed and β varied along the x-axis). When γ = 1 (see Fig-
ure 14A), we recover the fully connected modules studied in section 2: the
values of the standard deviations are small, and the first and second eigen-
values (whose means are well approximated in magnitude by N ± N

√
αβ)

remain to a large extent separated from the other small eigenvalues. As γ

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-013.jpg&w=311&h=218
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decreases from 1, this situation gradually changes, and the large expected
eigenvalues decay in mean approximately as Nγ ± N

√
αβ respectively (see

Figures 14B and 14C), to eventually completely collapse only when γ = 0
(see Figure 14D).

To understand why the leading eigenvalues are close to Nγ ± N
√

αβ

in mean, one can use a similar Taylor expansion computation to the one
carried out in equation 2.7, as follows:

Lemma 4. The matrix C =
[

γ M αM
βM γ M

]
has eigenvalues:

• λ1 = γ N + N
√

αβ, with corresponding eigenvector u1 =
[√

a1√
b1

]

• λ2 = γ N − N
√

αβ, with corresponding eigenvector u2 =
[ √

a1
−√

b1

]

• λ3 = . . . = λ2N = 0, with corresponding eigenspace spanned by the vectors

uk =
[

tk
sk

]
, where tk and sk are N × 1 column vectors with ϕ(tk) = ϕ(sk) =

0, for k ≥ 3.

Proof. The proof follows directly from lemma 3.

Proposition 3. The leading (real) eigenvalue of a binary matrix T =
[

P A
B Q

]
,

with ϕ(A) = αN2, ϕ(B) = βN2 and ϕ(R) = ϕ(S) = γ N2 is of the form:

γ N + N
√

αβ +
1

2N
1

N + N
√

αβ
1TW1 + O(1)

with

W = R2 + S2 + UV + VU +
α

β
(V R + SV ) +

β

α
(RU + US),

where U = A − αM, V = B − βM, R = P − γ M and S = Q − γ M are all matri-
ces with ϕ(U) = ϕ(V ) = ϕ(R) = ϕ(S) = 0.

Proof. The proof follows the same steps as equation 2.7. As before, we

consider a perturbation Tε = C + εZ of C, where Z =
[

R U
V S

]
has ϕ(U) =

ϕ(V) = ϕ(R) = ϕ(S) = 0. We then similarly compute correction terms in
the expansion of λ1:

Tε(u1 + εx) = (λ1 + εμ1)(u1 + εx) (B.1)
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with x perpendicular to u1. Expanding with respect to ε and identifying the
coefficients of ε, we get

Zu1 + Cx = λ1x + μ1u1.

Expanding x = ∑
xkuk, and Zu j = ∑

z jkuk in the C eigenvector basis
(uk)k=1,2N of eigenvectors of C and rewriting equation B.2 in components,
we obtain that μ1 = z11 and xk = z1k

λ1−λk
for k ≥ 2.

We then calculate

Zu1 =
[

R U
V S

] [√
a1√
b1

]
=

[
(
√

aR + √
bU)1

(
√

aV + √
bS)1

]

and, in components:

Zu1 = z11

[√
a1√
b1

]
+ z12

[ √
a1

−√
b1

]
+

∑
k≥3

z1k

[
tk
sk

]
.

Summing separately over the top and bottom N entries, we get, respectively,

N
√

a(z11 + z12)=
∑
k≥3

z1kϕ(tk) = 0,

N
√

b(z11 − z12)=
∑
k≥3

z1kϕ(sk) = 0,

implying that z11 = z12 = 0 and subsequently μ1 = 0.
We continue for an O(ε2) approximation:

Tε(u1 + εx + ε2y) = (λ1 + ε2ν1)(u1 + εx + ε2y) (B.2)

with y perpendicular to u1. Identifying the coefficients of ε3, we get

Cy + Zx = λ1y + ν1u1,

and, projected along the u1 component,

ν1 =
∑

k

xkzk1 =
∑
k≥2

z1kzk1

λ1 − λk
.

Since z12 = 0 and λk = 0, for k ≥ 3, this becomes
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ν1 =
∑
k≥3

z1kzk1

λ1
= 1

N + N
√

αβ

∑
k≥3

z1kzk1. (B.3)

If we expand Z2 in components as Z2u1 = A1u1 + A2u2 + ∑
k≥3 Akuk, then∑

k≥3 z1kzk1 = A1. To calculate A1, we calculate

〈u1, Z2u1〉= A1‖u1‖ + A2〈u1, u2〉 = N(a + b)A1 + N(a − b)A2,

〈u1, Z2u1〉= A1〈u1, u2〉 + A2‖u2‖ = N(a − b)A1 + N(a + b)A2. (B.4)

Since Z2 =
[

R2 + UV RU + US
VS + SV VU + S2

]
, we also have

〈u1, Z2u1〉= 1T [α(R2 + UV) +
√

αβ(RU + US + VR + SV)

+ β(VU + S2)]1,

〈u2, Z2u1〉= 1T [α(R2 + UV) +
√

αβ(RU + US − VR − SV)

− β(VU + S2)]1. (B.5)

Combining equations B.4 and B.5, we get:

A1 = 1
2N

1T
[

UV + VU + R2 + S2 + α

β
(VR + SV) + β

α
(RU + US)

]
1;

hence,

ν1 = 1
2N

1
γ N + N

√
αβ

1T

[
UV + VU + R2 + S2 + α

β
(VR + SV) + β

α
(RU + US)

]
1.

As before, however, this computation does not directly estimate the mean
or the standard deviation of the eigenvalue distributions, which we instead
explore numerically next.

In Figure 15, we illustrate the dependence of the standard deviations si-
multaneously on the intermodular edge densities α and β (represented on
the x- and y-axes) and on the intramodular density γ (different plots in each
panel correspond to different values of γ ∈ [0, 1]). The figure shows the stan-
dard deviation ofLα,β

1 for N = 5, as a function of (α, β) for all discrete values
γ ≤ 1. We notice first that although the surfaces do not generally exhibit the
same shape and unique “central” maximum as in the particular case of sec-
tion 2, the unimodality still holds in cross-sections. Moreover, as γ decreases,
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Figure 15: Illustration, for N = 5, of the standard deviation of Lα,β

1 for all values
of intramodular connectivity γ . (A) Each surface represents the standard devi-
ation of Lα,β

1 for one value of γ ∈ [0, 1] (low to high surfaces as γ decreases).
For better visualization of the surfaces, we omitted the boundaries (α, 1) and
(1, β). (B) The panel shows the same surfaces as in panel A, except for the top
surface, corresponding to γ = 0; this was excluded to better illustrate that for all
other values of γ , the standard deviations remain small, even with increasing
N. (C) The surface corresponding to γ = 1 (shown in this panel) recovers the re-
sults in section 2 (compare with Figure 2C, for N = 3; with Figure 3B, for N = 8;
and with Figure 4A, for multiple N values). The computations were based on
sample distributions obtained by considering for each γ a sample of size 100
pairs (P, Q) and samples of size 10 for A and for B for each fixed α and β.

Figure 16: Behavior of the standard deviations when increasing the size N.
Shown in blue are the curves for N = 3, corresponding to all possible values
of γ = k/9 for 0 ≤ k ≤ 9. In red are the curves for N = 4, corresponding to
γ = 2k/16, for 0 ≤ k ≤ 8. In green are the curves for N = 5, corresponding to
γ = 5k/25, for 0 ≤ k ≤ 5 . For Lα,β

1 and Lα,β

2 (panels A and B), the standard
deviations are low, except in the extreme case γ = 0 (top curve of each color).
ForLα,β

3 , the standard deviations remain low for all γ , with a slight increase with
N for values of γ close to zero (top two curves of each color). The computations
were based on the same sample distributions used for Figure 15.

the standard deviation surfaces rise higher, corresponding to an expectable
loss of the system’s robustness when decreasing modular cohesion.

However, while the standard deviation values do change with γ , the
changes do not appear to be all that significant until γ actually approaches 0.
The values are instead bounded by a relatively small upper bound until γ =
0, when this robustness breaks down. In the case of the leading eigenvalue,
the depreciation is monotonous: the standard deviations, very small when

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-014.jpg&w=311&h=67
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00798&iName=master.img-015.jpg&w=311&h=67
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γ = 1, increase slowly as γ decreases from 1, then faster as the values of γ

get close to 0, with a complete crash occurring at γ = 0 (also see Figure 14).
For intermodular connectivity close to saturation (i.e., pairs (α, β) close
to the corner (1, 1)), the surfaces are barely affected by the intramodular
density γ as long as γ > 0. If one had speculated that the intramodular full
connectedness confers robustness to the network eigenvalue spectrum, one
would now notice that this robustness is surprisingly well preserved as the
full connectedness is gradually loosened by pruning out random edges and
thus lowering the intramodular density. The property is completely lost
only when the two moduli remain totally disconnected.

The next natural question is to ask, as before, how the robustness of the
distributions changes with the size N. In Figures 16B to 16D we show cross-
sections of the surfaces introduced in Figure 15 (obtained by fixing one
density α), compared for increasing values of N, suggesting that robustness
is not substantially affected when the network increases in size, except for
values of γ close to zero.
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