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As an extension of prior work, we studied inspecific Hebbian learning
using the classical Oja model. We used a combination of analytical tools
and numerical simulations to investigate how the effects of synaptic
cross talk (which we also refer to as synaptic inspecificity) depend on
the input statistics. We investigated a variety of patterns that appear in
dimensions higher than two (and classified them based on covariance
type and input bias). We found that the effects of cross talk on learning
dynamics and outcome is highly dependent on the input statistics and
that cross talk may lead in some cases to catastrophic effects on learning
or development. Arbitrarily small levels of cross talk are able to trigger
bifurcations in learning dynamics, or bring the system in close enough
proximity to a critical state, to make the effects indistinguishable from
a real bifurcation. We also investigated how cross talk behaves toward
unbiased (“competitive”) inputs and in which circumstances it can help
the system productively resolve the competition. Finally, we discuss the
idea that sophisticated neocortical learning requires accurate synaptic up-
dates (similar to polynucleotide copying, which requires highly accurate
replication). Since it is unlikely that the brain can completely eliminate
cross talk, we support the proposal that is uses a neural mechanism that
“proofreads” the accuracy of the updates, much as DNA proofreading
lowers copying error rate.

1 Introduction

1.1 Synaptic Plasticity and Cross Talk. It is generally believed that
synaptic plasticity (i.e., activity-dependent adjustments of synaptic connec-
tion strengths) is the basis of most processes in the nervous system, such as
development, learning, creation and storage of memories, cognition, and
ultimately behavior (Katz & Shatz, 1996). The term plasticity may reflect a
variety of phenomena, from actual new synapse creation and deletion, to
silencing and unsilencing of existing synapses, to only changes in existing
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Input Statistics and Hebbian Cross-Talk Effects 655

synapse strengths. In 1949, Hebb proposed that learning occurs in response
to local signals, such as the conjoint activity of pre- and postsynaptic neu-
rons: “When an axon of cell A is near enough to excite cell B or repeatedly or
consistently takes part in firing it, some growth or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B,
is increased” (Hebb, 2002).

Those who interpret and use Hebb’s rule generally assume that synaptic
modifications act in a local, connection-specific manner (i.e., only synapses
between the neurons presenting correlated activity are modified, indepen-
dent of activity at other synaptic sites). In the literature, the most represen-
tative models for long-term changes in synaptic efficacy ( Malenka & Bear,
2004; Elliott, 2012) are long-term potentiation (LTP; Bliss & Lømo, 1973) and
long-term depression (LTD; Lynch, Dunwiddie, & Gribkoff, 1977). A variety
of initial studies of long-term potentiation and depression initially reported
synapses updates to be local (i.e., “specific”) (Isaac, Nicoll, & Malenka, 1995;
Dudek & Bear, 1992). However, ulterior data failed to replicate synaptic
specificity (Chevaleyre & Castillo, 2004; Matsuzaki, Honkura, Ellis-Davies,
& Kasai, 2004). Rather, they started to suggest that there is “cross talk” that
likely occurs during Hebbian plasticity (Kossel, Bonhoeffer, & Bolz, 1990;
Bonhoeffer, Staiger, & Aertsen, 1989; Engert & Bonhoeffer, 1997; Schuman
& Madison, 1994; Bi, 2002; Bi & Poo, 2001)—that activity-induced synaptic
modification may trigger changes in other, unstimulated synapses (possi-
bly the ones that are geometrically close to or adjacent to the target ones).
More recent experimental work (Harvey & Svoboda, 2007) has shown quite
unequivocally that induction of LTP at one synapse increases the likelihood
of LTP to be induced at closely neighboring synapses.

This source of “error,” or noise, is believed to be due to the imperfection
of chemical synaptic transmission, in which some degree of diffusion of
neuromessengers combines with the high synapse density (especially for
highly connected neurons), making it difficult, or even impossible, for a
triggered synaptic change to remain completely connection specific.

A proposed list of such factors that contribute to cross talk (Elliott,
2012) includes early-phase LTP/LTD presynaptic (Bonhoeffer et al., 1989;
Kossel et al., 1990; Schuman & Madison, 1994) or postsynaptic (Engert
& Bonhoeffer, 1997; Harvey & Svoboda, 2007) diffusion of intracellular
(Harvey & Svoboda, 2007; Harvey, Yasuda, Zhong, & Svoboda, 2008) and
extracellular messengers (Lemann, Gottmann, & Heumann, 1994; Korte
et al., 1995; Levine, Dreyfus, Black, & Plummer, 1995), as well as late-
phase LTP and LTD factors, on longer timescales (Frey & Morris, 1998;
Navakkode, Sajikumar, & Frey, 2004; see also section 4). The necessity
for close synaptic packing (DeFelipe, Marco, Busturia, & Merchán-Pérez,
1999) creates a geometric conflict. In NMDA-mediated sites, for exam-
ple, the spine neck must be sufficiently narrow to reduce Ca escape to
other sites (Koch & Zador, 1993; Sabatini, Oertner, & Svoboda, 2002), but
also sufficiently wide to allow synaptic currents through. In this light,
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656 A. Rădulescu

complete chemical isolation and accuracy seem, and may indeed be, im-
possible to achieve in the brain.

1.2 Plasticity Models and the Effects of Cross Talk. A variety of models
have been used to investigate the effects of synaptic cross talk on brain
function. Since many different models can produce the same behavior, it
is not possible to use behavior to test whether a model is correct; rather,
models can be used to determine whether certain types of interactions are
capable of replicating certain outcomes, generating testable hypotheses. In
our context, modeling is used to predict in principle whether and when
cross talk can lead to a complete breakdown in the outcome otherwise
obtained in the synapse-specific case.

In most mathematical models of synaptic plasticity, the system develops,
or learns, one or more patterns of synaptic configurations, which are typ-
ically stable equilibria but could also be cycles or more complex invariant
sets in the case of nonlinear models (Wiskott & Sejnowski, 1998; Elliott,
2003). In this framework, synaptic cross talk can be regarded as an internal
noise parameter, whose increase may not only alter performance but, past
a critical value, may trigger radical crashes (bifurcations) in the system’s
dynamics, actually destroying its capacity to reach the stable states (the
desired developmental or learning outcomes). It has been argued that in
order to avoid such crashes, very accurate connection strength adjustments
must be required but that such levels of accuracy are biophysically impos-
sible (Cox & Adams, 2009). Furthermore, it has been shown that the critical
level of cross talk sufficient to induce bifurcations in these models is very
sensitive to the input statistics and postsynaptic connectivity, and in some
cases, it can be made arbitrarily small (Elliott, 2012). Either way, many non-
linear models of synaptic plasticity are fatally compromised by even tiny
amounts of cross talk (Elliott, 2012), supporting the idea that some parallel
circuitry (proofreading) might be necessary to boost robustness to synaptic
inspecificity, and thus permit or facilitate useful development and learning,
even in the presence of cross talk (see section 4.3 for additional comments
on proofreading).

The possibility that synaptic cross talk can have such catastrophic effects
makes it very important for us to assess its impact on nonlinear models
of synaptic plasticity as a way toward understanding its actual impact in
the brain. One cannot expect, however, a generic proof of principle for all
learning models, especially given the vastness of the field; rather, one can
point out relevant examples of such behavior in models that are biologically
plausible.

We study here the effect of cross talk in the Oja rule, a very simple, multi-
plicative normalization of Hebbian learning. Oja’s model is driven only by
second-order statistics, hence works as a principal component (PCA) rather
than an independent component analyzer (ICA; Cox & Adams, 2009). We
are not proposing that the brain actually does PCA, but we consider this
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Input Statistics and Hebbian Cross-Talk Effects 657

very simple particular case of the general unsupervised learning prob-
lem because it is completely tractable by a combination of analytical and
numerical tools. While our approach incorporates some aspects of biolog-
ical realism, many simplifications are made along the way (described in
the following sections) with the goal to investigate cross talk in a simple
and relevant context rather than to propose a detailed model of biologi-
cal learning. Although the existence of stable equilibria relates here only
to second-order input statistics, this model captures a feature observed in
other nonlinear, more elaborate models: synaptic cross talk is able to induce
catastrophic breakdowns in learning in a manner that is highly idiosyn-
cratic, depending in a very input-specific and model-specific manner on
the learning rule.

The rest of the letter is organized as follows. In section 2, we present
the model (the Oja rule in the presence of cross-talk, or “inspecificity”) and
some properties of the input patterns to be learned, and we provide an
overview of the basics of the rule’s dynamic behavior. In section 3.1 we in-
vestigate numerically the three-dimensional Oja inspecific network; we fo-
cus in particular on how it processes different classes of input distributions,
preserving some of the dynamical aspects found in the two-dimensional
phase plane (Rădulescu & Adams, 2013), but also introducing new features
specific to higher dimensions. In section 3.2, we study analytically, in an
n-dimensional example, the behavior observed numerically in the previous
section. In section 4, we put the numerical and analytical results in the bi-
ological context of a learning cortical network. Section 4.1 focuses on the
meaning and importance of input bias and on its effects in conjunction with
cross talk. Section 4.2 discusses the biological plausibility of an Oja-type
learning model and reviews a possible biophysical implementation of the
rule, as described in the literature. Section 4.3 briefly discusses the analogy
between neural cross talk and DNA copying errors, and the necessity of a
proofreading mechanism in both cases.

2 Methods

2.1 The Oja Model with Synaptic Cross Talk. Oja (1982) showed that a
simple neuronal model can perform unsupervised learning based on Heb-
bian synaptic weight updates incorporating an implicit “multiplicative”
weight normalization to prevent unlimited weight growth (von der Mals-
burg, 1973). Oja’s rule has been extensively studied and used (Hertz, Krogh
& Palmer, 1991; Taylor & Coombes, 1993) in its original or modified forms
(Oja & Karhunen, 1985; Diamantaras & Kung, 1996).

Our focus is on studying a single-output network, learning an input dis-
tribution according to Oja’s rule (Oja, 1982). More precisely, the output neu-
ron receives, through a set of n input neurons, n signals x = (x1, . . . , xn)T

drawn from an input distribution P(x), x ∈ R
n, transmitted via synaptic

connections of strengths ω = (ω1, . . . , ωn)T . The resulting scalar output y is
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658 A. Rădulescu

generated as the weighted sum of the inputs y = xTω. The synaptic weights
ωi are modified by implementing first a Hebb-like strengthening propor-
tional to the product of xi and y (�wi = γ yxi), followed by an approximate
“normalization” step, maintaining the Euclidean norm of the weight vector
close to one,

ωi(t + 1) = ωi(t) + γ y(xi − yωi), (2.1)

where yxi is the effective change in the synaptic strength wi, while y2ωi
can be interpreted as a “decay,” or “forgetting,” term. The input covariance
matrix C = 〈xxT〉 can be used as an appropriate long-term characterization
of the inputs to study the asymptotic convergence of the expected weight
vector w(t) = 〈ω(t + 1)|ω(t)〉. Then equation 2.1 becomes

w(t + 1) = w(t) + γ [Cw − (wTCw)w] (2.2)

or, in continuous time, the case studied in this letter,

dw
dt

= γ [Cw − (wTCw)w]. (2.3)

Since it depends only on second-order statistics of the incoming input, this
model acts as a principal component analyzer for the input distribution (Oja,
1982), one simplified way of modeling data compression and transmission
in the brain. Although the normalization is implemented in this equation via
an o(γ ) approximation, one can easily check that d‖w‖2

dt = 0 when ‖w‖ = 1, so
that the n-dimensional sphere ‖w‖ = 1 is an attracting hypersurface for the
system (in particular, the stable equilibria are the two normalized principal
eigenvectors of C, which lie on this sphere).

In previous work, we (Rădulescu, Cox, & Adams, 2009; Rădulescu &
Adams, 2013) and others (Botelho & Jamison, 2002, 2004) have examined
how cross talk affects the Oja model. We formalized the effects of synap-
tic cross talk via a time-dependent (but not input or weight-dependent)
error matrix E = E (t), whose elements reflect at each time t the fractional
contribution that the activity across weight ωi makes to the update of ω j.

When introducing this matrix in the original Hebbian updating rule
(�wi = γ y[Ex]i) and performing the same normalization steps as in the
error-free rule, one would obtain the order o(γ ) approximation for each
component ωi:

ωi(t + 1) = ωi(t) + γ y
(
[Ex]i − ωT [Ex]ωi

)
. (2.4)

The subtractive term is one way of implementing an approximate nonlo-
cal normalization as part of a local online rule. However, the presence of
the same error matrix E in the forgetting term implies biologically that the
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Input Statistics and Hebbian Cross-Talk Effects 659

normalizing component “knows” ahead the pattern-to-pattern form of E ,
which is highly implausible. One should rather consider the Hebbian and
normalizing steps to have different error matrices, reflecting their different
physical implementation. Here, we assume LTD to be triggered presynap-
tically by a retrograde messenger, so that diffusion to different synapses
located on the same output neuron does not matter, and subsequently the
normalizing step is error free, requiring only the calculation of the square
of the output y2 and its multiplication by ω (see section 4.2 for a more ex-
tensive discussion of the biophysical implementation of these steps). The
average (mean field) form of the rule becomes (since E is input and weight
independent)

dw
dt

= γ [ECw − (wTCw)w], (2.5)

where, as before, w(t) = 〈ω(t + 1)|ω(t)〉. The average error matrix E = 〈E〉 ∈
Mn(R) has positive entries, and is symmetric and equal to the identity
matrix I ∈ Mn(R) for zero cross talk. To fix our ideas, we considered the
error matrix E to be isotropic, that is, of the form

E =

⎡
⎢⎢⎢⎣

q ε · · · ε

ε q · · · ε
...

. . .
...

ε ε · · · q

⎤
⎥⎥⎥⎦ , (2.6)

where 0 ≤ ε ≤ 1
n represents synaptic cross talk, or “error,” and 1

n ≤ q ≤ 1 is
the synaptic “quality,” satisfying q + (n − 1)ε = 1.

One can easily show that equation 2.5 preserves the dot product 〈·, ·〉C
(where 〈v, u〉C = vTCu, for all u, v ∈ R

n). Furthermore, an equilibrium for
equation 2.5 is an eigenvector of EC, normalized so that ‖w‖2

C = λw, where
λw is its corresponding eigenvalue of EC.

Notice that equation 2.5 has equilibria that are tightly related to those
of the averaged corresponding form of equation 2.4; our working form is,
however, simpler computationally, in the sense that stability of equilibria
is more easily tractable. We have shown that the eigenvalues of the Jaco-
bian matrix at an equilibrium w are given by −2γ λw and −γ [λw − λvj

],
where λw and λvj

,∀ j = 1, n − 1 are the n eigenvalues of EC (noting first that
Bw = {w, v1, . . . vn−1}, the completion of w to a basis of eigenvectors of EC,
orthogonal with respect to the dot product 〈·, ·〉C, also forms an eigenvec-
tor basis for the Jacobian). We concluded that if EC has a unique largest
eigenvalue (which is generically true), then a normalized eigenvector w is
a local hyperbolic attracting equilibrium for equation 2.5 iff it corresponds
to this maximal eigenvalue. If EC has a multiple largest eigenvalue, the
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660 A. Rădulescu

system will have a set of nonisolated, neutrally attracting equilibria (all
normalized eigenvectors spanning the principal eigenspace in this case of
dimension ≥2). Some of the computations are summarized in appendix A
(e.g., a description of the attraction basins, supporting the absence of cycles
in the phase space) and are expanded in more detail in our previous work
(Rădulescu et al., 2009; Rădulescu & Adams, 2013).

Since the nature and position of the equilibria depend on the spectral
properties of EC, the next task is to study the spectral changes of EC when
perturbing the system by increasing cross talk. In our previous work on the
model, we investigated the effects of cross talk on the system’s dynamics
and their dependence on the characteristics of the input distribution (cor-
relation sign, degree of bias). However, in our first study, we considered
learning only of positively correlated n-dimensional input distributions; we
found a smooth degradation of the learning outcome with increasing error
but no sudden changes in dynamics (Rădulescu et al., 2009). In our second
study, we showed that negatively correlated inputs can induce a bifurcation
(stability swap of equilibria, through a critical stage) when increasing the
error, even in a case as simple as a two-dimensional system. This bifur-
cation occurred only in the case of unbiased inputs (Rădulescu & Adams,
2013), and we interpreted it in the context of ocular dominance and input
segregation.

One would expect that increasing the dimension of the system would
bring out interesting new phenomena induced by cross talk. With this goal
in mind, we want to extend our existing work and investigate the effects of
cross talk in higher-dimensional networks, learning different classes of neg-
atively correlated inputs. We consider the input distribution to be centered
(mean zero) and the mutual correlations to be identical. More precisely, we
will consider covariance matrices of the form

C =

⎡
⎢⎢⎢⎣

v + δ1 ±c · · · ±c
±c v + δ2 · · · ±c
...

. . .
...

±c ±c · · · v + δn

⎤
⎥⎥⎥⎦ . (2.7)

For our general computations, we assume that the inputs have mutual
covariances c uniform in absolute value, and small with respect to the
diagonal variances. More precisely, we assume v + δn > (n − 1)|c|, making
the matrix diagonally dominant (see section 2.2 for considerations on the
input statistics). Throughout the letter, δi will be called the input biases.
Without loss of generality, we set δ1 ≥ δ2 ≥ · · · ≥ δn ≥ 0. For any k ≤ n, we
say that the input has bias loss of order k if δ1 = · · · = δk > 0. In particular,
we say that the input is unbiased if it has bias loss of order n, that is,
if δ1 = · · · = δn = 0. Although the background covariance ±c is taken for
simplicity to be uniform in absolute value, we expect the inspecific learning
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Input Statistics and Hebbian Cross-Talk Effects 661

rule to lead to interesting dynamics, in particular when the inputs exhibit a
certain degree of mutual correlation.

2.2 Oja’s Rule and the Input Statistics. The goal of this work is to
investigate the effects of one particular aspect of biological realism (cross
talk) in the context of a model that is otherwise as transparent as possible. We
chose the Oja principal component analyzer as a widely known and simple
example of a Hebbian model of unsupervised learning, important in cortical
processing (Hinton & Sejnowski, 1999) and involving repeated adjustment
driven only by statistical properties of the input. While a connectionist
model may capture some of the desired basic aspects of learning dynamics,
the situation in the brain is far from being this simple.

To begin the Oja model may appear rather unbiological by its very use
of a rate-coding scheme and a simple multiplicative Hebbian learning rule,
in conjunction with a local (and controversially plausible) normalization
procedure (section 4.2 gives more detail on possible empirical bases of
the rule and their implementation). While in our approach we incorpo-
rated cross talk, we neglected many other biological aspects inherent in
synaptic transmission (e.g., timed spikes, external noise, temporal corre-
lations, synaptic homeostasis; Cox & Adams, 2009); a more biologically
realistic model would use spike-timing-dependent plasticity and natural
inputs (Hyvärinen, Hurri, & Hoyer, 2009). We simply used positive or
negative continuous-time activations and weights (one can interpret nega-
tive weights as disconnections), and we assumed the input patterns to be
zero mean and have identical mutual correlations (Rădulescu et al., 2009).
More elaborate models, incorporating detailed spiking patterns, may auto-
matically learn the principal component of the zero-mean inputs, without
explicit centering or normalization. Gerstner and Kistler (2002) have de-
veloped a model that assumes an Oja-type rate-coding scheme, with Pois-
son spikes and spike-time-dependent plasticity with LTP and LTD lobes,
and postsynaptic spikes triggered by presynaptically generated EPSPs. One
could in principle study the effects of cross talk on such a model by applying
an error matrix to the LTP or LTD parts; a direct analysis, however, might
turn out to be much more difficult than in the case at hand here.

Since our analysis focuses on symmetric matrices C with positive or
negative off-diagonal elements, we have to ask whether and when such
a matrix can constitute the covariance matrix of a centered n-dimensional
distribution. While establishing equivalent conditions may be difficult even
for small dimensions (Vasudeva, 1998), one can find sufficient criteria (e.g.,
any positive semidefinite C is a covariant matrix).1

In our initial computations, we assumed sufficiently weak pairwise
correlations to make C diagonally dominant (in this case, equivalent

1If X is an n × 1 column vector-valued random variable whose covariance matrix is
the n × n identity matrix, then cov (

√
CX) = √

C cov(X)
√

C = C.
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662 A. Rădulescu

to v + δn > (n − 1)|c|). Any symmetric diagonally dominant matrix with
nonnegative diagonal entries is automatically positive semidefinite, hence
a covariance matrix. Such segregated inputs can be found in a variety of
contexts in the brain. For example, studies of cortico-striate projections
(Yim, Aertsen, & Kumar, 2011) have observed weak pairwise correlations
within the pool of inputs to individual striatal neurons, which are believed
to enhance the saliency of signal representation in the striatum. On the
other hand, C will not remain diagonally dominant for strong pairwise cor-
relations, which are also likely to occur biologically. A known example of
cells with strongly correlated activity is that of retinal ganglion cells, placed
in topographic proximity of each other and innervating the same cell in
the LGN (Mastronarde, 1989; Trong & Rieke, 2008). Our work in sections
3.1 and 3.2 assumes diagonal dominance (as a mathematical convenient
assumption that allows us to establish a useful classification and illustrate
typical behaviors that can occur in the system). In appendix C, we complete
our analysis with a numerical approach to a larger collection of matrices,
with extended parameter ranges.

2.3 The Error Matrix. Together with the uniform magnitude of input
cross-correlations (i.e, uniform absolute value |c| of the off-diagonal ele-
ments of C), we also assumed, for simplicity, uniform error (the Hebbian
adjustment of any weight was equally affected by error and did not depend
on either the strength of that weight or on geometry). Such “isotropicity”
seems like a reasonable basic assumption and has been discussed in our
previous work (Rădulescu et al., 2009; Rădulescu & Adams, 2013). Further-
more, it allowed us to identify other features of the input distribution, cru-
cially consequential on the learning dynamics and outcome: the sign of the
mutual correlations and the input bias. However, cross talk has been docu-
mented experimentally, for technical reasons, mostly between synapses that
are anatomically neighboring each other (Harvey & Svoboda, 2007; Bi, 2002;
Bonhoeffer et al., 1989). In previous work (Rădulescu et al., 2009), we have
justified isotropicity based on the fact that individual cortical connections
are composed of multiple synapses scattered over the dendritic tree (Varga,
Jia, Sakmann, & Konnerth, 2011; Chen, Leischner, Rochefort, Nelken, &
Konnerth, 2011; Jia, Rochefort, Chen, & Konnerth, 2010), but we have also
considered other (more metric-dependent although all symmetric) forms of
E. Cross-talk effects could probably be captured when using more general,
nonisotropic forms for E without affecting the main conclusions. In this let-
ter, the distinction between local and global cross talk is not that relevant,
since our main results concern a low- (three-)dimensional network.

3 Results

3.1 Classes of Inputs and Bias Effects on Three-Dimensional Dyna-
mics. In this section, we study how input patterns can influence the effects
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Input Statistics and Hebbian Cross-Talk Effects 663

of cross talk in driving the dynamics of a three-dimensional network—
the lowest dimension for which the question applies but which seems to
capture the essence of this problem even in higher-dimensional systems.
In this section, we inspect all combinatorial possibilities of input bias and
correlation sign (as defined below) and determine the effect of increasing
cross talk on dynamics in each case. In section 3.2 and the appendixes,
we support with rigorous proofs some of the results obtained through
numerical simulations (we used Matlab software package, version 7.2.1).

We considered all combinatorial possibilities of covariance matrices of
the form

C =

⎡
⎢⎢⎣

v + δ1 ±c ±c

±c v + δ2 ±c

±c ±c v

⎤
⎥⎥⎦ , (3.1)

where δ1 ≥ δ2 ≥ 0 (i.e., allowing bias of any order). We first analyzed the case
v > 2|c|, corresponding to the diagonal dominance assumption discussed
in section 2.2. A subsequent numerical analysis extended the results to
encompass a wider variety of input distributions. In order to simplify the
notation, we assumed without loss of generality that δ3 = 0, which can be
easily justified by a change of variables.

We found that in special highly unbiased cases, cross talk has no effect
on the presence and position of the asymptotic attractors (see Figure 1E).
In other cases, the depreciation of the asymptotic outcome with error is
so slow that small levels of cross talk have virtually no effect on learning
(see Figure 1A and 1B; also see Figure 2 for a phase-space illustration).
Other significant classes of inputs, however, showed a sudden change of
the attractor states, from a reliable principal component estimator to an
almost orthogonal direction. This occurred either in the form of an eigen-
value swapping bifurcation in dynamics (producing the instantaneous loss
of learning accuracy at a critical error value; see Figures 1C and 3 for an il-
lustration of phase-space transitions) or in the milder form of an eigenvalue
“avoided crossing,” (inducing a smooth yet very steep depreciation of the
learned direction at a specific error; see Figures 1D and 1G). As discussed
in our previous work, bifurcations and avoided crossings can be practically
indistinguishable: learning works reasonably well for small enough errors.
For errors past the crash value, the outcome becomes irrelevant to the in-
put statistics, and the system is essentially encoding information on the
cross-talk pattern itself.

None of these possibilities is a priori excluded in the brain, but previous
work has suggested that nature may favor bias. Segregated outcomes (dis-
connected completely, forming wiring patterns that are then subject to more
subtle synaptic learning) are considered to be an important part of normal
development. In our previous work, we argued that cross talk seems to act
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664 A. Rădulescu

against this desymmetrizing tendency and prevent segregation, especially
for inputs close to unbiased. We viewed this as a limitation of symmetry-
breaking mechanisms that generate specific wiring, and we further argued
that other factors, such as strong mutual inhibition (large negative corre-
lations) or special specificity-enhancing circuitry (“proofreading”), might
act to overcome the equalizing effect of cross talk. The current study com-
pletes this idea with new aspects.

One can say, then, that efficient cross-talk-induced segregation happens
in our model for a balance of positive and negative correlations in the input
distribution. Since the presence, number, and strength of the negative corre-
lations appeared to be crucial in determining the behavior of the system, we
defined a formal classification of all possible correlation matrices based on
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Figure 1: Spectral changes induced by increasing inspecificity, for various in-
puts schemes. In all panels, we show, with respect to the quality q = 1 − 2ε,
the evolution of the eigenvalues, with black for the largest eigenvalue, red for
the second largest, and green for the lowest (top subplot); the cosine of the
angle between the inspecific stable vector and the correct attracting direction(s)
(bottom subplot). In all panels, v = 1, |c| = 0.2. The classification is as follows.
(A) For fully biased inputs (δ1 = 2, δ2 = 1), the three eigenvalues remain sep-
arated. For partly biased inputs (δ1 = δ2 = 1), there are three cases, depending
on the number of negative cross-correlations and on their placement: the lead-
ing eigenvalues can remain separated (B). They can cross at a critical value of
q = q∗ (C) or approach significantly for some value of q but “avoid” crossing (D).
For fully unbiased inputs, we found four cases, classified simply by the num-
ber of negative off-diagonal cross-correlations: all positive cross-correlations,
and leading eigenvalues remain separated (E); one negative cross-correlation,
where leading eigenvalues coincide only at q = 1 and immediately separate (F);
two negative cross-correlations, where leading eigenvalues may approach each
other in an avoided crossing of magnitude depending on parameters, but re-
main separated (G); all negative cross-correlations, where leading eigenvalues
coincide on a whole interval, as quality depreciates from q = 1 to a critical value
(H). In panel H, the system has a curve of half-neutral attractors, which persists
until q reaches the critical value, when a different, orthogonal eigenvector takes
over as the stable direction. (Please refer to online supplement for color version
of this figure.)

the number of negative upper-diagonal entries of C and then used the three
classes to understand the corresponding behavior with respect to cross talk.

We distinguished four combinatorial classes: Class (+,+,+), com-
prising the unique matrix configuration with all positive entries; Class
(+,+,−), made of the three matrix configurations with one negative upper-
diagonal entry; Class (+,−,−), for the three configurations with two nega-
tive upper-diagonal entries; Class (−,−,−), for the one configuration with
all negative off-diagonal entries. We studied the matrix EC, and the differ-
ences that occur in its spectrum when considering different classes of input,
in conjunction with different degrees of bias: from fully biased (δ1 > δ2 > 0)
to partly biased (δ1 = δ2 > 0) to fully unbiased (δ1 = δ2 = 0). In this section,
q will be restricted to the interval (1/3, 1] (representing quality higher than
error). Based on these combinatorial classes of input, we distinguished three
main qualitative behaviors: separated leading eigenvalues, crossing leading
eigenvalues and “avoided crossing.”2

2Since the spectra depend qualitatively on all parameter values, we present here the
results of a numerical investigation rather than a rigorous analytical study, which would
be extremely cumbersome. The only case in which the computations are more tractable
and for which we preferred an analytical approach is the fully unbiased case, presented
in appendix A.
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666 A. Rădulescu

Figure 2: Phase-Space trajectories for fully biased inputs. (A) In the absence of
error, the system converges generically to the two normalized vectors in the
principal direction wC of the covariance matrix C. The attraction basins are
separated by the subspace 〈w, wC〉 = 0 (the shaded plane). (B) For error ε = 0.2,
the system converges generically to the two normalized vectors in the principal
direction wEC of the modified covariance matrix EC. The attraction basins are
separated by the subspace 〈w, wEC〉 = 0 (the shaded plane). Parameters: v = 1,
c = 0.2, δ1 = 2, δ2 = 1. Color coding: trajectories evolve in time from darker
to lighter shades. (Please refer to online supplement for color version of this
figure.)

3.1.1 Separated Leading Eigenvalues. The largest eigenvalue remains sep-
arated from the second largest eigenvalue for the whole range of q (as
illustrated in Figure 1A, top panel), determining the corresponding leading
eigenvector to gradually drift from the direction of the principal component
of C, as q decreases (blue curve in Figure 1A, bottom panel). For any value
of q, the system has two hyperbolically attracting equilibria: the normalized
principal eigenvectors of EC, whose basins are separated by an invariant
plane. In Figure 2, we show the evolution of a set of trajectories to illustrate
convergence to the two attractors in the phase space, as well the dynamics
within the separating plane.

In the presence of cross talk, the network will process the input in a
very similar qualitative fashion as in absence of cross talk, observing the
main statistical trends, even though the quantitative outcome might be
slightly or more substantially altered, depending on the input pattern and
the degree of cross talk. Depending on parameters, the eigenvalue curves
with respect to q may exhibit a significant point of minimal separation,
where the learning outcome (leading eigenvector of EC) deteriorates very
fast (see section 3.1.3).

This case is generally associated with biased inputs (the only possible
behavior when δ1 > δ2 > 0). That is, no negative correlations are required
to maintain segregated inputs in their segregated state when cross talk is
introduced. However, this behavior can be found in conjunction with loss of
bias, provided the mutual negative correlations are limited: it also appears
in partial loss of bias (δ1 = δ2 > 0) for class (+,+,+) (see Figures 1B and 2),
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as well as in full loss of bias (δ1 = δ2 = 0) for classes (+,+,+) and (+,+,−)

(see Figures 1G, 1E, and 2).
An interesting, quite extreme case of separated eigenvalues occurs for

symmetric inputs that are fully unbiased and all positively correlated: the
leading eigenvalue is separated from the second eigenvalue (which has
multiplicity two), but neither the leading eigenvalue nor the corresponding
eigenvector of EC changes when the cross talk is increased. Hence, in this
case, the learning is fully accurate for any degree of cross talk (see Figure 1E);
one may argue that this particular class of input statistics is completely
error proof.

3.1.2 Crossing of Leading Eigenvalues. This behavior sits, in a sense, at the
opposite pole of the “separated eigenvalues” case, and in its most standard
form, it is typical to partial loss of bias (δ1 = δ2 = δ > 0) in combination
with all negative correlations, that is, class (−,−,−); see Figure 1C and
section 3.2. The term describes an instantaneous swap of the attractors from
one eigendirection to another direction that could be as much as orthog-
onal to the original principal component swap, which produces a crash
in the learning outcome. This behavior occurs when the two leading eigen-
value branches cross and switch at a critical value of the quality q∗ = v+δ+c

v+δ−c .
(We have described this phenomenon in a two-dimensional model in
Rădulescu & Adams, 2013.) Very small levels of cross talk (q > q∗) in fact
have very little effect on learning in this case. Although the leading eigen-
value changes, the direction of the leading and attracting eigenvector is
preserved, so that the system will converge to the same outcome as in the
absence of error.

This may seem like a very desirable input distribution to learn in the
presence of low cross talk; however, one has to keep in mind that if the cross-
correlations are small in absolute value |c| with respect to the variance v, then
the critical q∗ gets arbitrarily close to 1. Such perfect learning will therefore
happen only when inspecificity is infinitesimally small, which makes this
scenario lose its appeal, especially when we recall that at the end of the
“good” interval lies the bifurcation, crashing the equilibrium to a direction
completely irrelevant to the input statistics. In this light, one might expect
the network to have an additional, quite precise estimator of the degree of
cross talk involved, so that when learning an irrelevant outcome, it would
at least be aware of it. Any slight error of the system toward miscalculating
the limits for the permissible error could have dire consequences.

In Figure 3, we represent three phase-space plots: before, at, and after the
bifurcation point q = q∗. While Figures 3A and 3C illustrate the typical phase
space with two hyperbolically stable equilibria (one representing accurate,
error-free learning and the other inaccurate learning for a postcritical error),
the phase space at the bifurcation point is qualitatively different: the system
has no hyperbolic attractors but rather a closed curve (ellipse) of half-stable
equilibria (neutral along the direction of the curve). Clearly, the outcome
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Figure 3: Bifurcation in attractor dynamics for partly biased inputs, all nega-
tive cross-correlations. (A) For small error, the attractors (the two normalized
principal eigenvectors of EC) do not differ much from the correct attractors (the
two normalized principal eigenvectors of panel C). The attraction basins are
separated by the subspace 〈w, wC〉 = 0 (the shaded plane). (B) For critical error
ε = −c

v+δ−c , the system exhibits an ellipse of neutrally stable equilibria (yellow
curve contained in the shaded plane). (C) For error past the critical value, the
attractors have moved significantly far from the correct positions. Parameters:
v = 1, c = 0.2, δ = δ1 = δ2 = 1. Color coding: trajectories evolve in time from
darker to lighter shades. (Please refer to online supplement for color version of
this figure.)

of learning is in this case extremely dependent on the initial conditions
(although, as we commented in Rădulescu & Adams, 2013, the stochastic
version of the system will have noise-driven stationary solutions that drift
around this neutrally attracting ellipse).

The neutrally attracting ellipse phase-plane dynamics is not specific to
this critical bifurcation state (and thus it cannot be ignored as improbable
in the context of generic behavior). For some classes of inputs, such an
attracting-ellipse slice represents the natural state of the cross-talk free sys-
tem and persists for an entire inspecificity range (see Figure 4). This is the
case for bias of order two (δ1 = δ2 = 0) when occurring in conjunction with
substantial negative correlations, that is, classes (+,−,−) and (−,−,−).
The computations are quite simplified in the absence of any bias, so for the
case of fully unbiased inputs we carried out analytically a complete classi-
fication in theorem 1 in appendix A. We describe these two fully unbiased
cases in more detail below.
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Input Statistics and Hebbian Cross-Talk Effects 669

Figure 4: Bifurcation in attractor dynamics for partly biased inputs, all negative
cross-correlations. (A) For small error, the system has an ellipse of neutrally
stable equilibria (yellow curve). This ellipse is stable in the sense that it persists
for a whole interval of errors, from ε = 0 to ε = −c

v−c . (B) For error past the critical
value, the ellipse is destroyed, but the new attractors are significantly far from
the plane of the ellipse. Parameters: v = 1, c = 0.2, δ1 = 2 = δ2 = 0. Color coding:
trajectories evolve in time from darker to lighter shades. (Please refer to online
supplement for color version of this figure.)

We found that in instances of highly unbiased inputs, learning may lead
to an ambiguous outcome even in the absence of cross talk (see Figures
1F, 1H, and 4). Indeed, in the cross-talk-free class (+,−,−), the matrix
C has a double leading eigenvalue to begin, and the system has a whole
closed curve of neutrally attracting equilibria (in the eigenplane spanned
by the corresponding eigenvectors). When cross talk is introduced, the
two leading eigenvalues segregate, and one of the eigenvectors takes over,
which determines an immediate complete switch in the learning outcome.
In this case, even the smallest degree of inspecificity leads to favoring one
specific direction, slightly detaching off the plane that contains the curve of
accurate equilibria (notice that the cosine of the accuracy angle, represented
by the blue curve in Figure 1F, does not fall too far off the perfect value
cos(θ ) = 1).

We may interpret this as the error helping the system “make up its
mind” in the presence of too much ambiguity in the input statistics. This
is an occurrence we have not encountered in our previous, more restrictive
versions of the model, since it requires inputs with concomitant negative
cross-correlations and loss of bias of order >2. This ambiguity can be inter-
preted as the basis of a competitive process in which any input channel has
equal chances to win. Competitive dynamics has been studied at large in
developmental and learning models in the context of imposed (by means
of multiplicative or subtractive normalization) or emergent competition.
It has become clear that a linear Hebb rule, even when coupled with a
multiplicative normalization or winner-takes-all type nonlinearities, is not
able to produce segregation of positively correlated inputs (von der Mals-
burg, 1973; Goodhill & Barrow, 1994; Miller & MacKay, 1994). When used in
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conjunction with unbiased inputs, it will lead to an equal-weight outcome
(Dayan & Abbott, 2002). A variety of known nonlinear mechanisms can
break the inherent symmetry, even when the input per se does not favor
segregated outcomes (Elliott, 2003), including subtractive normalization
(Miller & MacKay, 1994; Goodhill & Barrow, 1994), the BCM rule (Bienen-
stock, Cooper, & Munro, 1982) and spike-time-dependent-plasticity (Elliott,
2008). As interpreted in one of our previous discussions on ocular domi-
nance wiring (Rădulescu & Adams, 2013), such mechanisms may lead, for
example, to ocular segregation under unbiased statistics (the two eyes are
likely receiving similar, positively correlated inputs from the visual field).
One context that permits segregation under multiplicative normalization is
having negatively correlated inputs.

Our current analysis illustrates this issue and shows that when sufficient
negative correlations are present, the fashion in which the cross talk han-
dles inherent input ambiguity or competition depends quite significantly
on the number (and, to a lesser extent, the positions) of the negative mutual
correlations within the input. In our model, at least two negative mutual
correlations are necessary for cross talk to produce segregation of symmetric
inputs. For two out of three negative correlations, even the smallest degree
of cross talk helps the system make an asymptotic selection for one particu-
lar direction in the eigenspace spanned by the multiple eigenvalue. For all
negative correlations, no small degree of cross talk can resolve this compet-
itive state. The level of critical cross talk that can finally destroy the curve of
neutrally stable equilibria also pushes the system to learn an orthogonal di-
rection, hence becomes irrelevant to the main features of the original input
statistics. Indeed, in the cross-talk-free class (−,−,−), the matrix C has a
double leading eigenvalue, and the system again has a whole ellipse of neu-
tral equilibria, contained in the corresponding eigenplane. When subject to
errors up to a critical value q∗ = v+c

v−c , the two larger eigenvalues change but
remain equal; furthermore, the subspace spanned by the two correspond-
ing eigenvectors remains unchanged, hence the learning process preserves
the original ambiguity. Past the critical error value, the eigenvalues swap,
and the eigendirection for the new leading eigenvalue (of multiplicity one)
is orthogonal to the previous plane (see Figure 1H). In other words, past
the critical error value, the system will finally choose a particular direction
to learn, but this direction will be highly inaccurate, and thus the task of
learning the input statistics will be performed very poorly.

3.1.3 “Avoided Crossing” of Leading Eigenvalues. This can be seen as a
hybrid case in which the principal eigenvalues never actually swap but get
very close (arbitrarily close, depending on the values of v and |c|), so that
learning has a significantly rapid depreciation around the critical value q∗

(which also depends on all other parameter values; see the blue curve in
Figure 1D). This situation can be observed when the input has partial bias
loss in mixed cases from classes (+,+,−) and (+,−,−).
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Figure 5: Comparison between real and fapp bifurcations and their dependence
on input patterns. We illustrate the network performance, or “sensitivity,” with
respect to q (measured as the derivative dθ

dq of the angle θ between the network
attracting direction with and without cross talk) for two types of input statistics
with order one bias loss (δ1 = δ2 = δ > 0): one of class (−,−, −) (giving rise
to eigenvalue swap bifurcations, plotted in blue) and one of class (+, −, −)

(producing fapp bifurcations, plotted in red in panel A and green in panel B,
respectively). The input base variance was fixed to v = 1 in both panels, but the
bias was δ = 1 (right panel) and δ = 0.1 (left panel). We also inspected several
values of the mutual cross-correlations: c = 0.4 (thick solid curve), c = 0.2 (thin
solid curve), and c = 0.05 (dotted curve). As c decreases, the fapp bifurcations for
the (+, −, −) input are getting arbitrarily close to q = 1, and approximate better
and better the discontinuous blow-up of the corresponding real bifurcation
obtained for the (−, −, −) input. This effect is more evident when the partial
bias is increased (from δ = 0.1 to δ = 1). (Please refer to online supplement for
color version of this figure.)

Biologically, such a “pseudobifurcation,” if occurring over a narrow
enough range of q, is indistinguishable from a real bifurcation, induced
by crossing eigenvalues; for this reason, we refer to it as a for-all-practical-
purposes (fapp) bifurcation. Since it represents a sudden (although smooth)
depreciation of the principal direction, one may consider calculating the
“susceptibility” or “sensitivity” dθ

dq of the angle θ with respect to the
quality q.

In Figure 5, we illustrate the difference between the discontinuous break-
down of the derivative dθ

dq in the case of a real bifurcation (discontinuity of

θ ) and the continuous blow-up of dθ
dq in the case of a fapp bifurcation (θ

has a significant although finite variation over a narrow interval of q).
One may regard this dichotomy to be in principle analogous to the differ-
ence between discontinuous and continuous phase transitions. Formally,
an avoided crossing can be defined to produce a fapp bifurcation if the
size of the blow-up exceeds a certain threshold (which may depend on the
particular network and the accuracy level desired for learning).

With this definition, there are circumstances in which fapp bifurcations
can occur even at arbitrarily small cross talk (q arbitrarily close to 1). For
example, Figure 5 shows the difference between the effect of cross talk in
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the case of two input distributions, both with loss of bias of degree one.
For the first type of distribution, class (−,−,−), the all-negative mutual
cross-correlations determine eigenvalue crossing (the blue curves, which
exhibit discontinuous blow-ups). The second type, class (+,−,−), can lead
to avoided crossing. We compared the behavior of the network in these two
situations, inspecting a few values of the bias δ = δ1 = δ2 > 0 (left panel ver-
sus right panel), and mutual cross-correlation values |c| (different curves in
the same panel, as explained in the caption). We found that increasing the
bias δ and decreasing the cross-correlations |c| transports the point of max-
imum sensitivity (the location of the blow-ups) closer to q = 1. Moreover,
the size of the continuous blow-up (the height of the finite peak in the case
of avoided crossing) gets larger as q migrates toward 1, so that the smaller
the values of |c|, the lower the level of cross talk sufficient to produce a
blow-up, and the more indistinguishable the fapp bifurcation looks from
the bifurcation-induced discontinuity. This reiterates the idea that a fapp
bifurcation can be as detrimental to learning as a real bifurcation, especially
since it can arise at arbitrarily small levels of cross-talk, just like an actual
bifurcation.

In appendix C, consider inputs with stronger pairwise correlations (so
that C is no longer diagonally dominant). When we consider high negative
mutual correlations, the fapp bifurcation, associated with arbitrarily small
levels of cross talk, appears in conjunction with an actual bifurcation, at very
high cross-talk levels. This suggests that for such inputs, after undergoing
the fapp degradation in outcome, the system may suddenly reverse to
accurate computation of the learning attractor at very high cross-talk levels.

3.2 An Analytical Application in Higher Dimensions. In this technical
section, we work out an analytical n-dimensional computation, with the
aim of showing that the phenomena described in section 3.1 may also
apply to describe behavior in a higher-dimensional Oja learning model
with cross talk. In previous work (Rădulescu, Cox, & Adams, 2009), we have
investigated the n-dimensional case for all positively cross-correlated inputs
and showed that it does not induce stability swapping bifurcations, even
in higher dimensions. Since negative correlations are the key ingredient for
the presence of bifurcations, we consider for our application in this section
the case of all negative cross-correlations:

C =

⎡
⎢⎢⎢⎣

v + δ1 −c · · · −c
−c v + δ2 · · · −c
...

. . .
...

−c −c · · · v + δn

⎤
⎥⎥⎥⎦ , (3.2)

where here c > 0. Our three-dimensional numerical results suggest that
combined covariance matrices that encompass other patterns of positive

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/26/4/654/910940/neco_a_00565.pdf by guest on 06 O
ctober 2021



Input Statistics and Hebbian Cross-Talk Effects 673

Figure 6: A simple example of how the characteristic polynomial � of EC
and its roots change as the quality q decreases, for dimension n = 3 and fixed
parameters v = 1, c = −0.2, δ j = j/3, for j ∈ 1, 3, so that ε∗

1 ∼ 0.091, ε∗
2 ∼ 0.107,

ε∗
3 ∼ 0.130. Each different color represents a different value of q: q = 0.98 (red),

q = 0.805 (blue), q = 0.76 (green), and q = 0.6 (pink). The continuous curves
correspond to the graph of the polynomial for different q’s, and the bullets
represent (along the x-axis) the points λ j = (q − ε)(v + δ j − c), for j = 1, 3. The
figure shows how the order of the roots of � changes with respect to the points
of the partition λ3 < λ2 < λ1 (which in turn travel down the axis as q decreases).
For q = 0.98 (i.e., ε = 0.01 < ε∗

1 ), λ1 > ξ1 > λ2 > ξ2 > λ3 > ξ3. For q = 0.805 (i.e.,
ε = 0.0975 ∈ [ε∗

1 , ε
∗
2 ]), ξ1 > λ1 > λ2 > ξ2 > λ3 > ξ3. For q = 0.76 (i.e., ε = 0.12 ∈

[ε∗
2 , ε

∗
3 ]), ξ1 > λ1 > ξ2 > λ2 > λ3 > ξ3. For q = 0.6 (where ε = 0.2 > ε∗

3 ), ξ1 > λ1 >

ξ2 > λ2 > ξ3 > λ3. (Please refer to online supplement for color version of this
figure.)

and negative mutual cross-correlations are expected to produce hybrid dy-
namics between these two extreme ends. In a higher-dimensional network,
the dynamics may depend strongly not only on the number of negative cor-
relations, but also on their distribution and geometry within the covariance
matrix. A random matrix approach may help classify the behavior for all
input patterns, but this is not within the scope of this study.

In this section, we present only the main analytical results we obtained for
our application; proofs of the statements and additional comments can be
found in appendix D. Propositions 1 and 2 differentiate between behaviors
in response to biased versus unbiased n-dimensional negatively correlated
inputs, and illustrate a situation that extends the behavior found in the
three-dimensional model. As before, in the case of biased inputs, the eigen-
values remain separated, and the attracting direction degrades smoothly
as the cross talk increases. Moreover, also similar to the three-dimensional
case, order one loss of bias is not enough to trigger an eigenvalue-crossing
bifurcation (for which bias loss of order ≥2 is required), but may be enough
to produce fapp bifurcations. Depending on the parameter values, both ac-
tual and fapp bifurcations can occur for arbitrarily small levels of cross talk
(see Figure 6).

3.2.1 Fully Biased Case. Consider the covariance biases δ j’s to be dis-
tinct: δ1 > δ2 > · · · > δn = 0. The characteristic polynomial of EC can be
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expressed as

�(λ) = det(EC − λI) =

∣∣∣∣∣∣∣∣∣

X1(λ) f2 · · · fn
f1 X2(λ) · · · fn
...

. . .
...

f1 f2 · · · Xn(λ)

∣∣∣∣∣∣∣∣∣
,

where for all j = 1, n, we called f j = ε(v + δ j − c) + c and Xj(λ) = q(v +
δ j − c) + c − λ.

We consider λ j = (q − ε)(v + δ j − c); clearly: λ1 > λ2 > · · · > λn. In ap-
pendix B, we show how these values can be used to partition the real line
and separate the roots of �. This leads to:

Proposition 1. In the biased case δ1 > δ2 > · · · > δn, the matrix EC has n real
distinct eigenvalues ξ1 > ξ2 > · · · > ξn, for any error ε ∈ (0, 1/n).

We can define, as in the two- and three-dimensional applications, the
critical error values, for which f j(ε

∗
j ) = 0, ∀ j ∈ 1, n,

ε∗
j = −c

v + δ j − c
, (3.3)

so that 0 < ε∗
1 < ε∗

2 < · · · < ε∗
n (since δ1 > δ2 > · · · > δn). Clearly, for all j ∈

1, n, we have f j > 0 iff ε > ε∗
j . As ε increases from 0 to 1/n, it traverses the

values ε = ε∗
j . When ε is in the intervals between two consecutive critical

values ε∗
j , each two consecutive roots of � are separated by at least one λ j.

When ε reaches each critical value ε j, the root ξ j crosses from one interval
to another through the stage ξ j = λ j.

3.2.2 Losing the Bias. Suppose now that for j ∈ 1, n − 1, δ j = δ j+1 + ζ j,
and allow some of the ζ j → 0; in the limit, this results in a loss of bias in the
covariance matrix C (v + δ j = v + δ j+1 for some index j). In consequence,
λ j − λ j+1 → 0. It follows that in the limit of ζ = 0 and ξ = λ1 = λ2, so that
the maximal eigenvalue of EC preserves its multiplicity =1. This situation
changes if we introduce an order two bias loss δ1 = δ2 = δ3 (i.e., if we make
both ζ1 and ζ2 approach zero simultaneously). Then λ1 − λ2 → 0 and λ2 −
λ3 → 0, so that the two leading roots collide into a double root λ3 = ξ2 =
λ2 = ξ1 = λ1. This justifies the following proposition:

Proposition 2. Suppose ε < ε∗
1 . An order k bias loss of the covariance matrix C

of the type δ1 = · · · = δk results in a leading eigenvalue of multiplicity k − 1 for the
modified covariance matrix EC.
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4 Discussion

4.1 Specific Comments on Our Model. In this study, we considered a
learning network based on the classical unsupervised learning model of Oja,
extended to incorporate synaptic cross talk; we aimed to show how different
input patterns can exacerbate or, on the contrary, efface the effects of cross
talk on the asymptotic outcome of learning. We gave central attention to
differences in second-order input statistics, studied how cross talk affected
the outcome in each case, and observed that the effects can vary widely
depending on these second-order statistics.

Efficient cross-talk-induced segregation happens in our model for a bal-
ance of positive and negative correlations. It could be argued that the model
itself may artificially impose such a condition by being linear Hebbian,
with multiplicative normalization. To address this critique, one may chose
to study an equivalent model with subtractive normalization; that would,
however, produce a different collection of issues, since subtractive nor-
malization may be less biologically plausible. A better solution would be
performing a similar cross-talk analysis on a extended nonlinear model
with multiplicative normalization. The fact that certain nonlinear Hebbian
models are reducible to linear Hebbian models (Miller, 1990; Elliott & Shad-
bolt, 2002) has led to a general belief that no Hebbian model, linear or
nonlinear, can segregate positively correlated afferents under multiplica-
tive normalization. Recently, Elliott and Shadbolt (2002) offered an explicit
counterexample.

In this letter, we focus on a rule that is based only on second-order
statistics, but the concept of unbiased distribution can be generalized for
nonlinear Hebbian rules, sensitive to a lack of bias of higher order. The
work of Elliott and others has shown that segregated outcomes are quite
typical of nonlinear Hebbian rules with unbiased statistics (Elliott, 2003),
and that cross talk can induce bifurcations in these cases (Elliott, 2012).
We have suggested before the example of radially symmetric distributions
considered by Lyu and Simoncelli (2009), with joint PDF equal density
contour lines being nested hyperspheres with nongaussian spacings. We
expect that in this setup, completely unbiased (spherical) input statistics
would favor no particular direction in the weight space, so that the outcomes
would be signed combinations of equal magnitude weights, nontrivially
determined by the higher-order correlations. The presence of enough cross
talk in the processing of such inputs may amount to suddenly switching
the outcome between two such states.

4.2 Some Biophysical Aspects of Oja’s Rule. Since our focus is on
a biological realistic phenomenon (cross talk), it may seem odd to study
a linear Hebbian model with multiplicative normalization, which may
appear to be very formal and unbiological. But as argued in Rădulescu
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676 A. Rădulescu

and Adams (2013), Oja’s rule is not as biophysically implausible as first
appears.3

In our analysis of the Oja rule, we allowed both inputs and weights to be
negative. However, if only positive patterns are allowed, the Hebbian part
of the rule would always be positive (and correspond to LTP only), and the
normalizing part of the rule would always be negative (and represent LTD
only). It seems that in the brain, the negative and positive parts of signals
are represented using different neurons, such that the two halves of the Oja
rule would operate biologically with fixed and opposite polarities (LTP and
LTD). However, the overall effect of the biological implementation would
be the same as in our version of Oja’s rule, which allows either polarity in
both parts of the rule.

Experimental studies at single synapses suggest that reliable LTP may
be implemented through repeated pairing of correctly timed pre- and post-
synaptic spikes, which occur in an all-or-none manner (Petersen, Malenka,
Nicoll, & Hopfield, 1998; Markram, Lübke, Frotscher, Roth, & Sakmann,
1997). Averaged over the many synapses comprising a connection, the over-
all outcome would be the multiplicative Hebbian rule. A simple mechanism
for such batching would be if the coincidence-induced calcium increase
at a synapse activated (by binding of Ca-Calmodulin) some fraction of its
CaMKinase molecules, as follows: after each calcium pulse, Ca-Calmodulin
would dissociate but leave some of the CaMKinase molecules phosphory-
lated; with successive pulses, enough would eventually be activated that
the entire set of CaMKinases would fully autophosphorylate, triggering
strengthening (Lisman, 1989, 1994; De Koninck & Schulman, 1998).

The normalizing (LTD) part of the Oja rule is, on the other hand, an el-
egant implementation of an approximate nonlocal normalization step that
leads to a purely local online rule. Two obvious requirements of its bio-
physical implementation are the calculation of y2 and the multiplication by
ω. Recent work in neocortex (Sjöström, Turrigiano, & Nelson, 2003, 2004)
suggests that LTD occurs in the following way: backpropagating spikes
lead to a synapse-related calcium signal that triggers endocannabinoid re-
lease from the local dendrite, which then diffuses back to the presynaptic
specialization, where it activates a G-protein-coupled endocannabinoid re-
ceptor. If there is near-simultaneous activation of presynaptic NMDARs by
spike-release glutamate, transmitter release is depressed. This dismisses a
previously favored theory (Nevian & Sakmann, 2006) that the level of the
spine calcium achieved by LTP or LTD is a sign determinant of the strength
change (Lisman, 1994; Shouval, Bear, & Cooper, 2002). This explanation of
LTD seems well suited to meet the two biophysical requirements of the
normalizing part of the Oja rule (and in this sense, the rule would be more

3Thanks to Paul Adams for the useful conversations and generous contributions to
this section.
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Input Statistics and Hebbian Cross-Talk Effects 677

than a formal description). The calcium-dependent endocannabinoid en-
zyme triggered by calcium entering through voltage-dependent channels
activated by backpropagating spikes would implement y2, and the multipli-
cation would be achieved by the requirement for simultaneous activation
of the NMDAR. The dependence on ω could be achieved in two ways: the
endocannabinoid signal might be proportional to the postsynaptic strength
of the synapse, or the extent of activation of the presynaptic NMDAR could
depend on the amount of glutamate released, which would depend on the
extent of the active zone, which is known in the long term to adjust to
match the PSD area (and hence presumably the synaptic strength). Thus,
the synaptic strength would slowly adjust, by a combination of matched but
distinct post- and presynaptic adjustments, to reflect the arriving spikes, in
the way required by the Oja rule (Rădulescu & Adams, 2013).

This background is necessary to discuss the important issue of the ac-
curacy of the normalizing part of the Oja rule. Clearly if LTD is triggered
presynaptically by a retrograde messenger, one must consider the possibil-
ity of extracellular LTD cross talk. If the LTD part of the rule is implemented
as described above, errors in the diffusion of retrograde messenger to dif-
ferent synapses on the same neuron would not matter, although diffusion to
synapses located on other neurons would matter. This problem is avoided
because the readout of the weight by the requirement for presynaptic
NMDAR activation by simultaneously released glutamate is itself depen-
dent on the occurrence of appropriately timed presynaptic spikes. If instead
(but presumably less biologically) the weight is read out postsynaptically
and the combined signal y2ω is then retrogradely back propagated to the
“correct” presynaptic structure, diffusion of the retrograde signal would
cause normalization errors. In a nutshell, this could be modeled by adding
a new error matrix F so the averaged rule would become

dw
dt

= F(F−1ECw − (wTxxTw)w).

At first glance, it appears that the normalization errors could cancel out
the Hebbian errors if F is appropriately matched to E (i.e., both “error-onto-
all” with adjustment of quality). Such cancelation would correspond to a
weight erroneously “forgetting” exactly what it erroneously learns for each
pattern. The problem is that while the averaged values of E and F are simple
and closely related, the instantaneous values E and F can be, at least locally,
quite different, because one involves intracellular diffusion and the other
extracellular diffusion. Furthermore, the stability of the algorithm will also
be affected. The observed biological implementation appears to avoid these
problems in an elegant way.

4.3 General Comments. In previous work (Rădulescu et al., 2009; Răd-
ulescu & Adams, 2013), we have suggested an analogy and between the Oja
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678 A. Rădulescu

rule (even without cross talk) and Eigen’s equation of DNA replication and
mutation. Indeed, biologically, Darwinian evolution and neural learning
are both adaptive processes, encoding inputs based on repeated interac-
tions with the environment (Baum, 2004; Volkenshteı̆, 1991; Adami, 1998),
and mathematically, both models describe normalized growth. However,
we have argued that unlike Eigen’s model, Oja’s equation shows a bifurca-
tion at a critical cross-talk value in only very narrow conditions. We have
further suggested that while there may not be an actual “isomorphism”
(Fernando & Szathmáry, 2009; Fernando, Goldstein, & Szathmáry, 2010) (or
other formal mathematical equivalence) between the two models in all pa-
rameter ranges, their analogy resides in their common need for accuracy in
the adaptation process. While biology is well known for instances in which
it affords to be inaccurate, polynucleotide copying requires superaccuracy,
and neural learning also seems to require superaccurate synaptic updates
(Elliott, 2012; Adams & Cox, 2012).

Indeed, successful and effective reproduction requires copying the en-
tire genome, with an appropriately small error per base rate. The known
“proofreading” operation of this replication process is essential in lowering
the copying error rate to acceptable levels. The proofreading mechanism
copies bases twice, and replication is allowed only when coincidence of
the two results is detected. Since proofreading seems to be in general an
effective strategy for overcoming physical limitations, it has been proposed
that the same operation is being performed in the neocortex in order to
ensure the synaptic specificity necessary for effective learning. The mech-
anism underlying “neural proofreading,” as proposed by Adams and Cox
(2012), assigns to each thalamocortical connection (responsible for the tuned
responses of cortical neurons) a corticothalamic “proofreading neuron,”
which receives and detects “coincidence” between the input and output
spikes arriving at that connection and then sends a double signal to both
sides of the connection, confirming the validity of the synaptically detected
coincidence. Other aspects, consequences, challenges, and limitations of
this elaborate neocortical proofreading circuitry are further investigated in
Adams and Cox (2012).

5 Conclusion

A lot of work has been aimed recently toward finding key biological factors
that may explain the network architectures and computational algorithms
that the brain develops to perform learning. The fact that the activity-
dependent processes that lead to synaptic strength adjustments cannot be
completely synapse specific constitutes a central problem for biological
learning. While this model considers only a very simple setup, it helps us
better illustrate an important idea, which we have formulated previously
(Rădulescu et al., 2009; Rădulescu & Adams, 2013): a performant synaptic
updating algorithm may not suffice for accurate learning, and the process
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may fail (partly or completely, depending on the input pattern to be learned)
even when faced with only infinitesimal amounts of synaptic cross talk. It
appears therefore increasingly possible that high-level (e.g., neocortical)
learning may require not only performant learning algorithms but also
special apparatus for enhancing specificity (Adams & Cox, 2006). The brain
may thus have to dedicate comparable effort to developing proofreading
for its plasticity machinery (all the more necessary in the face of inaccuracy
that seems to not merely degrade learning but rather is able to prevent it
altogether). Our model does not exclude either possibility but suggests that
learning problems (and perhaps, more generally, all problems of survival
or reproduction) are so diverse that no single algorithm can solve them all,
so that no universal or canonical cortical circuit should be expected.

Appendix A: Stability of Equilibria in the Oja Model

The symmetric, positive definite matrix C ∈ Mn(R) defines a dot product
in R

n as

〈v, w〉C = vTCw.

Although both C and E are symmetric, the product EC is not symmetric in
the Euclidean metric. However, in a new metric defined by the dot product
〈·, ·〉C, EC is symmetric. Indeed, for any pair of vectors u, v ∈ R

n, we have

〈ECu, v〉C = (ECu)tCv = utCtEtCv = utCECv = 〈u, ECv〉C.

In consequence, EC has a basis of eigenvectors, orthogonal with respect
to the dot product 〈·, ·〉C.

The following theorem, describing the equilibria of system 2.5, is
immediate.

Theorem 1. An equilibrium for the system is any vector w = (w1 . . . wn)T such
that ECw = (wTCw)w, that is, an eigenvector of EC (with corresponding eigen-
value λw), normalized with regard to the norm ‖ · ‖2

C = 〈·, ·〉C, so that ‖w‖2
C = λw:

ECw = λww,
∥∥w

∥∥2
C = λw.

If we additionally assume (generically) that EC has a strictly positive maximal
eigenvalue of multiplicity one, then the corresponding eigendirection is orthogonal
in 〈·, ·〉C to all other eigenvectors of EC.
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Take w to be an equilibrium of system (2.5)—an eigenvector of EC,
with eigenvalue λw = (wTCw) > 0. To establish stability, we calculate the
Jacobian matrix at w to be

D f E
w = γ

[
EC − 2w(Cw)T − (wTCw)I

]
.

Then we get the following:

Theorem 2. Suppose EC has multiplicity one largest eigenvalue. An equilibrium
w (i.e., by theorem 1, an eigenvector of EC with eigenvalue λw, normalized so that
‖w‖2

C = λw) is a local hyperbolic attractor for equation 2.5 iff it is an eigenvector
corresponding to the maximal eigenvalue of EC.

Proof. Fix an eigenvector w of EC, with ECw = λww. Then:

D f E
ww = −2γ λww.

Recall that the vector w can be completed to a basis B of eigenvectors,
orthogonal with respect to the dot product 〈·, ·〉C. Let v ∈ B, v �= w, be
any other arbitrary vector in this basis, so that ECv = λvv, and 〈w, v〉C =
wtCv = 0. We calculate

D f E
wv = −γ [λw − λv]v.

So B is also a basis of eigenvectors for D f E
w. The corresponding eigenvalues

are −2γ λw (for eigenvector w) and −γ [λw − λv] (for any other eigenvector
v ∈ B , v �= w). An equivalent condition for w to be a hyperbolic attractor
for system 2.5 is that all the eigenvalues of D f E

w are < 0. Since γ , λw > 0, this
condition is equivalent to having −γ (λw − λv) < 0 for all v ∈ B , v �= w. In
conclusion, an equilibrium w is a hyperbolic attractor if and only if λw >

λv for all v �= w (i.e., λw is the maximal eigenvalue—in other words, if w
is in the direction of the principal eigenvector of EC).

Such attractors always exist provided that the condition of theorem 2
is met (i.e., EC has a maximal eigenvalue of multiplicity one). Then the
network learns, depending on its initial state, one of the two stable equi-
libria, which are the two (opposite) maximal eigenvectors of the modified
input distribution, normalized so that ‖w‖2

C = λw. Next, we aim to show
that these two attractors are the system’s only hyperbolic attractors.

Theorem 3. Suppose the the modified covariance matrix EC has a unique maxi-
mal eigenvalue λ1. Then the two eigenvectors ±wEC corresponding to λ1, normal-
ized such that ‖w‖2

C = λ1, are the only two attractors of the system. More precisely,
the phase space is divided into two basins of attraction, of wEC and −wEC, respec-
tively, separated by the subspace 〈w,wEC〉 = 0.
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Proof. We make the change of variable u = √
Cw. The system then

becomes

u̇ = Au − (utu)u, (A.1)

where A = √
CE

√
C is a symmetric matrix, having the same eigenvalues as

EC. More precisely, w is an eigenvector of EC with eigenvalue μ iff
√

Cv is
an eigenvector of A with eigenvalue μ; hence, any two distinct eigenvectors
of A are orthogonal in the regular Euclidean dot product.

Consider v to be the leading eigenvector of A, and let u = u(t) be a
trajectory of the system A.1. We want to observe the evolution in time of
the angle between the variable vector u and the fixed vector v, measured as

cos θ = 〈v, u〉
‖v‖ · ‖u‖ .

We differentiate and obtain

−‖v‖ sin(θ )θ̇ = (vtu̇)‖u‖2 − (vtu)(utu)

‖u‖3 .

The numerator of this expression is

h(u) = (utu)(vtAu) − (vtu)(utAu). (A.2)

We are interested in the sign of h(u). To make our computations simpler, we
can diagonalize A in a basis of orthogonal eigenvectors A = PtDP, where D
is the diagonal matrix of eigenvalues and P is an orthogonal matrix whose
columns are the eigenvectors. Then

h(u) = (ztz)(ytDz) − (ytz)(ztDz),

where y = Pv and z = Pu, so that Dy = DPv = λ1y (where λ1 is the largest
eigenvalue of EC, assumed to have multiplicity one). Then

h(u) = (ytz)

n∑
j=2

(λ1 − λ j)z
2
j .

Hence, if ytz > 0, then h(u) > 0. In other words, if vtu > 0, −‖v‖ sin(θ )θ̇ >

0—hence, θ̇ < 0. For our original system, this means that any trajectory
starting at a w with 〈w, wEC〉 > 0 converges in time toward the principal
eigenvector wEC of the matrix EC.
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Appendix B: A Direct Computation for Unbiased Inputs

Theorem 4. For order two input bias δ1 = δ2 = 0, the dynamic behavior of the
system is classified by the classification of the input covariance sign: (+, +, +),
(+, +,−), (+,−,−) and (−,−,−).

Proof. For unbiased inputs (i.e., order two input bias), all classes can be
generated from three symbolic structures:

C1 =
⎡
⎣

v c c
c v c
c c v

⎤
⎦ , C2 =

⎡
⎣

v −c c
−c v c
c c v

⎤
⎦ and C3 =

⎡
⎣

v c −c
c v c

−c c v

⎤
⎦ .

Class (+,+,+) represents Structure C1 with c > 0, and class (−,−,−) rep-
resents Structure C1 with c < 0. Class (+,+,−) can be obtained from Struc-
tures C2 and C3 with c > 0, while class (+,−,−) can be obtained from
Structures C2 and C3 with c < 0.

Computing directly the spectrum for C1, we get one simple error-
independent eigenvalue ξ1 = v + 2c (whose eigenvector is also error in-
dependent) and one double eigenvalue ξ2 = (1 − 3e)(v − c). If c > 0 (class
(+,+,+)), ξ1 always dominates (see Figure 1E). If c < 0 (class (−,−,−)),
the double eigenvalue ξ2 = (1 − 3e)(v − c) takes over for error smaller than
the critical value ε < −c

v−c (see Figure 1H).
Also by direct computation, one notices that C1 and C2 have the

same spectral decomposition. One eigenvalue is given by ξ1 = (1 −
3e)(v + c), while the other two, ξ2 ≥ ξ3, are the roots of the quadratic
polynomial P(X) = X2 + (c − 2v − 5ec + 3ev)X + (6ec2 − cv − 3ev2 − 2c2 +
v2 + 3ecv). It is easy to see that P(ξ1) = −8ec(1 − 3e)(v + c). If c > 0 (class
(+,+,−)), then P(ξ1) < 0; hence, ξ2 ≥ ξ1, with equality at ε = 0, and ξ1 ≥ ξ3,
with equality when ε = 1/3 (see Figure 1G). If c < 0 (class (+,−,−)), then
P(ξ1) > 0 and ξ1 < (ξ2 + ξ3)/2, hence ξ1 ≤ ξ2 < ξ3, with equality when ε = 0
and ε = 1/3 (see Figure 1F).

Appendix C: A Numerical Extension to Weakly Correlated Inputs

In this section, we loosen the assumption of weakly mutually correlated
three-dimensional inputs (i.e., of a diagonally dominant input covariance
matrix C) and investigate numerically the behavior of the system under a
wider class of input schemes, corresponding to larger ranges for the pa-
rameters c, δ1, δ2, and q. We will be studying sensitivity to these parameters
in all four combinatorial input classes: (+,+,+), (+,+,−), (+,−,−), and
(−,−,−).

Without losing generality, we will be normalizing our matrix C so that
v = 1, which will be considered fixed throughout this analysis. The range
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for the mutual covariance c will be extended in each case to the largest
interval for which C remains positive definite. While the parameter q was
restricted before to live in the interval [1/3, 1] (representing the constraint
for the quality to be larger than the error), in the following illustrations, we
will allow q to change within [0, 1]. This allows us to better understand how
bifurcations and fapp bifurcations appear in the more plausible biological
interval [1/3, 1] and also reveals interesting behavior that occurs in the
poor-quality range for strongly negatively correlated inputs.

As before, in order to quantify and illustrate the effects of cross talk (er-
ror) on the outcome of learning, we use the cosine of the angle θ between
the system’s attractors with and without cross talk (i.e., between the direc-
tions of the leading eigenvectors of the matrices EC and C, respectively).
Generally the behavior of the system with respect to error, as observed in
section 3.1, extends naturally to the range of high mutual correlations within
the input distribution. The learning outcome depreciates when gradually
increasing the error (decreasing q). As discussed in section 3.1, this decay
is smooth for some types of input distributions, but for others, it exhibits
jump discontinuities (corresponding to bifurcations in the dynamics) or
just smooth but very sharp drops (fapp bifurcations) with very steep but
bounded slope at the inflection point. We have discussed, in the context of
small mutual correlations c (C had been assumed to be diagonally domi-
nant, i.e., with |c| < v

n−1 ), that both fapp and actual bifurcations can appear
at arbitrarily small cross-talk values (q arbitrarily close to 1). While these
effects still occur for higher values of |c|, the presence of highly negatively
correlated inputs introduces an interesting new effect that is not accounted
for by the analysis in the main text.

Figure 7 shows a few instances of bifurcations and fapp bifurcations
for one negative pairwise correlation and the slight differences between its
two possible off-diagonal positions (next to the diagonal or in the corner
of the matrix C). When increasing |c| past the value v

n−1 , while keeping
it within the range that preserves positive definiteness of C, the behavior
of cos(θ ) with respect to q remains qualitatively the same, whether it is a
smooth depreciation of the output when decreasing q (for biased inputs) or
a sharp drop (some unbiased inputs trigger bifurcations; see the pink curve
in Figure 7A), with only the position and shape of the transitions being
altered in the process.

When increasing the number of negative pairwise correlations, the re-
sults change qualitatively, in particular for very high levels of cross talk, as
shown in Figures 8 and 9. Typically for (+,−,−), there is a fapp bifurcation
at low values of cross talk, which in fact can shift to arbitrarily small levels
of cross talk depending on the bias parameters. When increasing |c| past

v
n−1 in class (+,−,−), a bifurcation appears in the low q range, so that after
having passed the inflection point (fapp) in its degradation from the correct
attractor, the system suddenly reverses, for very large levels of cross talk,
to computing the principal direction of C more accurately (the cosine is
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Figure 7: Processing three-dimensional inputs with one negative pairwise cor-
relation. The two panels represent the two distinct possibilities for off-diagonal
positions for the negative entry within C. In both panels, the solid lines repre-
sent cos θ represented as a function of q. We considered biased inputs: δ1 = 0.4,
δ2 = 0.2, for c = 0 (green), c = 0.1 (blue) and c = 0.55 (red), as well as an instance
of input bias loss of order one: δ1 = δ2 = 0.4, for c = 0.55 (pink). The dotted lines
measure the sensitivity of the cosine to changes in q by illustrating its derivative
with respect to q and are convenient for locating fapp bifurcations. (Please refer
to online supplement for color version of this figure.)

Figure 8: Processing three-dimensional inputs with two negative pairwise cor-
relations. The two panels represent the two distinct possibilities for off-diagonal
configurations of the negative entries within C. In both panels, the solid lines
represent cos θ for biased inputs corresponding to δ1 = 0.4 and δ2 = 0.2; the dot-
ted lines represent cos θ for bias loss of order one, corresponding to δ1 = δ2 = 0.4.
The color coding is c = 0.1 (green), c = 0.8 (blue), and c = 1 (red). (Please refer
to online supplement for color version of this figure.)

close to 1 for small values of q). While this jump discontinuity also exists in
class (+,+,−), it does not appear in Figure 7 because it occurs for q < 0.
For class (+,−,−), this high cross-talk bifurcation is brought within the
interval q ∈ [0, 1] by the increase in the number of negative correlations,
together with increasing the pairwise-correlation strength.

The effect is exacerbated when increasing the number of negative pair-
wise correlations further and observing class (−,−,−). The high cross-talk
bifurcations shown in Figure 9 are more pronounced and occur for higher
values of q (i.e., more biologically plausible levels of cross talk).
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Figure 9: Processing three-dimensional inputs with all negative pairwise cor-
relations. (A) The solid lines represent cos θ for biased inputs corresponding
to δ1 = 0.4 and δ2 = 0.2; the dotted lines represent cos θ for bias loss of order
one, corresponding to δ1 = δ2 = 0.4. The color coding is c = 0.1 (green), c = 0.2
(blue), c = 0.4 (red), and c = 0.55 (cyan). (B) The solid lines represent cos θ for
biased inputs corresponding to δ1 = 0.6 and δ2 = 0.4; the dotted lines represent
cos θ for bias loss of order one, corresponding to δ1 = δ2 = 0.6. The color coding
is c = 0.1 (green), c = 0.2 (blue), c = 0.5 (red), and c = 0.65 (cyan). (Please refer
to online supplement for color version of this figure.)

Appendix D: An Extension to Higher Dimensions

We want a concise description of the modified input matrix EC. To begin,
we can express the matrices E and C individually as E = εM + (q − ε)I and
C = cM + (v − c)I + �δ jA j, where I is the n × n identity matrix, M is the
n × n matrix with uniform unit entries, and, for any j = 1, n, A j is the matrix
with zero entries except Aj( j, j) = 1. Note, for future computations, that
M2 = nM and that MA j is the matrix with the only nonzero entries being
ones along the jth column. Unless otherwise specified, the summations are
for j = 1, n. The product EC will then be

EC = [ε(v − c) + c(q − ε) + εcn]M + (q − ε)(v − c)I

+ ε
∑

δ jMA j + (q − ε)
∑

δ jA j.

In matrix form, this translates as

EC =

⎡
⎢⎢⎢⎣

X1(λ) f2 · · · fn
f1 X2(λ) · · · fn
...

. . .
...

f1 f2 · · · Xn(λ)

⎤
⎥⎥⎥⎦ ,

where ∀ j = 1, n, we called f j = ε(v + δ j − c) + c and Xj(λ) = q(v + δ j −
c) + c − λ.
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D.1 Fully Biased Case. We first consider the covariance biases δ j’s to be
distinct: δ1 > δ2 > · · · > δn−1 > δn = 0. We will prove that the polynomial �

has n real roots ξ1 ≥ ξ2 ≥ · · · ≥ ξn, and we will find approximating bounds
for their positions on the real line.

We remark first that the end behavior of �(λ) is given by limλ→−∞ �(λ) =
∞ and limλ→+∞ �(λ) = (−1)n∞. Consider λ j = (q − ε)(v + δ j − c); clearly:
λ1 > λ2 > · · · > λn. We will use these values to partition the real line and
separate the roots of �. To begin, we calculate, for all i, j = 1, n,

Xi(λ j) = fi + (q − ε)(δi − δ j). (D.1)

In particular, Xj(λ j) = f j, ∀ j = 1, n. By raw and column manipulations, it
can be shown that, ∀ j = 1, n,

�(λ j)= f j(q − ε)n−1
∏
i �= j

(δi − δ j). (D.2)

In consequence, sign(�(λ j)) = sign( f j)(−1)n− j.
Recall that f j = ε(v + δ j − c) + c; hence, f1 > f2 > · · · > fn. To continue

our discussion and establish the signs of � at all partition points λ j, we
need to establish the index j for which the values fj switch sign.

For each j ∈ 1, n, consider the “critical” error values, for which f j(ε
∗
j ) =

0, ∀ j ∈ 1, n:

ε∗
j = −c

v + δ j − c
, (D.3)

so that 0 < ε∗
1 < ε∗

2 < · · · < ε∗
n (since δ1 > δ2 > · · · > δn). Clearly, for all j ∈

1, n, we have f j > 0 iff ε > ε∗
j .

Remark. The diagonal dominance assumption v > (n − 1)|c| allows us to
study all cases that may appear, since it guarantees ε∗

j < 1/n, ∀ j ∈ 1, n. This
ensures a complete discussion, since then ε ∈ [0, 1/n] is allowed to reach
and cross over all the critical values ε∗

j , creating a possible swap in the order
of the eigenvalues of EC, as we will show later. The proof for the other cases
will be omitted, since it is just a simplification of the argument. In fact, the
only crossover of true interest to us is ε = ε∗

1 , where the eigenvalue swap
involves the two largest eigenvalues and thus affects the position of the
system’s attracting equilibria, corresponding to the normalized eigenvec-
tors of the maximal eigenvalue. The other critical values ε = ε∗

j , for j ≥ 2,
affect only the stable and unstable spaces of the saddle-equilibria. In this
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light, the condition on the entries of the covariance matrix can be loosened
to v > (n − 1)|c| − δ1.

We distinguish the following cases:

1. For 0 ≤ ε < ε∗
1 . This implies f j < 0, ∀ j ∈ 1, n. Then

sign(�(λ j)) = sign( f j)(−1)n− j = (−1)(−1)n− j = (−1)n− j+1

(D.4)

From equations D.1, D.2, and D.4, we obtain the following sign table:

λ −∞ λn λn−1 . . . λ2 λ1 +∞
sign(�(λ)) (+) (−) (+) . . . (−1)n−1 (−1)n (−1)n

.

From the intermediate value theorem and the fundamental theorem
of algebra, it follows that the polynomial �(λ) has n real roots ξ1 >

ξ2 > · · · > ξn, such that

− ∞ < ξn < λn < ξn−1 < λn−1 < · · ·< λ2 < ξ1 < λ1 < ∞. (D.5)

2. For ε∗
p < ε < ε∗

p+1. Then f1, . . . , fp > 0 and fp+1, . . . , fn < 0. Similarly
as in Case 1, we have

λ −∞ λn λn−1 . . . λp+1 λp . . . λ1 +∞
sign(�(λ)) (+) (−) (+) . . . (−1)n−p (−1)n−p . . . (−1)n−1 (−1)n

;

hence, the polynomial �(λ)) has roots ξ1 > ξ2 > · · · > ξn, such that

− ∞ < ξn < λn < ξn−1 < λn−1 < · · · < ξp+1

< λp+1 < λp < ξp < · · · < λ1 < ξ1 < ∞ (D.6)

3. For ε∗
n < ε < 1/n. Then f1, . . . , fn > 0, and we have

λ −∞ λn λn−1 . . . λ2 λ1 +∞
sign(�(λ)) (+) (+) (−) . . . (−1)n (−1)n−1 (−1)n

,

and the polynomial �(λ) has roots ξ1 > ξ2 > · · · > ξn, such that

− ∞ < λn < ξn < λn−1 < ξn−1 < · · · < λ1 < ξ1 < ∞. (D.7)

In particular, we have proved the following proposition in the main text:

Proposition 1. In the biased case δ1 > δ2 > · · · > δn, the matrix EC has n real
distinct eigenvalues ξ1 > ξ2 > · · · > ξn, for any error ε ∈ (0, 1/n).
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D.2 Losing the Bias. Suppose now that for j ∈ 1, n, δ j = δ j+1 + ζ j, and
allow some of the ζ j → 0; in the limit, this results in a loss of bias in the
covariance matrix C (v + δ j = v + δ j+1 for some index j). In consequence,
λ j − λ j+1 → 0.

Let us study the changes of the maximal root ξ1 as ζ1 → 0 (i.e., we
eliminate the bias between the two most correlated components of the
matrix C). Suppose ε ∈ [

0, ε∗
1

]
. This calculation can be extended to the other

intervals for ε; however, we will discuss here only the case ε ∈ [
0, ε∗

1

]
, since

it is the only one that relates directly to the position and multiplicity of
the leading root of �. It also agrees with our goal to study the behavior of
the system for small enough errors. According to equation D.5, we have

−∞ < ξn < λn < ξn−1 < λn−1 < · · · < λ2 < ξ1 < λ1 < ∞.

Since λ1 → λ2, it follows that in the limit of ζ = 0 and ξ = λ1 = λ2, so that
the maximal eigenvalue of EC preserves its multiplicity = 1. This situation
changes if we introduce an order two bias loss δ1 = δ2 = δ3 (i.e., if we make
both ζ1 and ζ2 approach zero simultaneously). Then λ1 − λ2 → 0 and λ2 −
λ3 → 0, so that the two leading roots collide into a double root λ3 = ξ2 =
λ2 = ξ1 = λ1. This justifies the following proposition:

Proposition 2. Suppose ε < ε∗
1 . An order k bias loss of the covariance matrix

C of the type δ1 = · · · = δk results in a leading eigenvalue of multiplicity k − 1 for
the modified covariance matrix EC.

This proposition can be generalized to encompass bias loss anywhere in
the inputs and any interval for the error ε. Below, we give a more general
statement, which follows by repeating the argument for the case we already
analyzed but could also be proved more directly.

Theorem 5. Suppose that the matrix C is allowed to exhibit bias loss in all
possible ways, so that it can be written in block form as equation 3.2, where there
exist k1, k2, . . . , kN ∈ 1, n, with

∑N
j=1 k j = n and such that

δ1 = · · · = δk1
= ν1

δk1+1 = · · · = δk2
= ν2

...

δkN−1+1 = · · · = δkN
= νN

with

ν1 > ν2 > · · · > νN.
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Then the characteristic polynomial Δ of EC has all real eigenvalues. More precisely,
these eigenvalues are λ j = (q − ε)(v + δ j − c) with multiplicity k j − 1, for all
j ∈ 1, N, and N additional eigenvalues ξ1 ≥ ξ2 ≥ · · · ≥ ξN.

Remark. The order of these eigenvalues, depending on the the error value
ε with respect to the critical error values ν∗

j = −c
v+ν j−c , is the same as described

in cases 1 to 3.
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