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Background: Recent work on long term potentiation in brain slices shows that Hebb’s rule is not

completely synapse-specific, probably due to intersynapse diffusion of calcium or other factors. We

previously suggested that such errors in Hebbian learning might be analogous to mutations in

evolution.

Methods and findings: We examine this proposal quantitatively, extending the classical Oja

unsupervised model of learning by a single linear neuron to include Hebbian inspecificity. We

introduce an error matrix E, which expresses possible crosstalk between updating at different

connections. When there is no inspecificity, this gives the classical result of convergence to the first

principal component of the input distribution (PC1). We show the modified algorithm converges to the

leading eigenvector of the matrix EC, where C is the input covariance matrix. In the most biologically

plausible case when there are no intrinsically privileged connections, E has diagonal elements Q and off-

diagonal elements ð1� Q Þ=ðn� 1Þ, where Q, the quality, is expected to decrease with the number of

inputs n and with a synaptic parameter b that reflects synapse density, calcium diffusion, etc. We study

the dependence of the learning accuracy on b, n and the amount of input activity or correlation

(analytically and computationally). We find that accuracy increases (learning becomes gradually less

useful) with increases in b, particularly for intermediate (i.e., biologically realistic) correlation strength,

although some useful learning always occurs up to the trivial limit Q ¼ 1=n.

Conclusions and significance: We discuss the relation of our results to Hebbian unsupervised learning

in the brain. When the mechanism lacks specificity, the network fails to learn the expected, and

typically most useful, result, especially when the input correlation is weak. Hebbian crosstalk would

reflect the very high density of synapses along dendrites, and inevitably degrades learning.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Various brain structures, such as the neocortex, are believed to
use unsupervised synaptic learning to form neural representa-
tions that capture and exploit statistical regularities of an animal’s
world. Most neural models of unsupervised learning use some
form of Hebb rule to update synaptic connections. Typically, this
rule is implemented by updating a connection according to the
product of the input and output firing rates. Other forms of the
update rule are sometimes used, but they are still typically local
and activity dependent, and often Hebbian in the sense that they
depend on both input and output activity. Biological networks
may also use spike-timing dependent rules, but these are also
Hebbian in the sense that they depend on the relative timing of
pre- and postsynaptic spiking. The key element in Hebbian
ll rights reserved.
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learning is that the update should depend on the extent to which
the input appears to ‘‘take part in’’ firing the output (Hebb, 1949;
we added ‘‘appears’’ to emphasize that a single neural connection
knows nothing about actual causation, and merely responds to a
statistical coincidence of pre- and postsynaptic spikes).

One of us has previously proposed, in this journal (Adams,
1998), that such Hebbian errors might be analogous to genetic
mutations. Specifically, we are interested in the possibility that if
the Hebb rule is not completely local (in the sense there might be
some, possibly very weak, dependence of the local update on
activity at other connections) unsupervised learning might fail
catastrophically, not only preventing new learning, but wiping out
previous learning. We have proposed that the basic task of the
neocortex is to avoid such hypothetical learning catastrophes
(Adams and Cox, 2002a, b, 2006; Cox and Adams, 2000). In this
paper we modify a classical model of unsupervised learning, the
Oja single neuron principal component analyzer (Oja, 1982), to
include Hebbian inaccuracy. By ‘‘inspecificity’’, or ‘‘inaccuracy’’,
we mean that part of the local update calculated using a Hebb rule
(for example, proportional to the product of input and output
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www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2009.01.036
mailto:radulesc@colorado.edu


ARTICLE IN PRESS
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firing rates) is assigned to connections other than the one at
which the product was calculated. We also refer to this postulated
nonlocality as ‘‘leakage’’, ‘‘crosstalk’’ or simply ‘‘error’’. Some other
papers on this topic have appeared (Adams and Cox, 2002a;
Botelho and Jamison, 2002, 2004), and we will try to clarify the
relationship between these various studies. We conclude that
while the modified Oja model, and perhaps others that are only
sensitive to second-order statistics, do not show a true error
catastrophe at finite network size, their behaviour gives important
clues to understanding the difficulties that brains might encoun-
ter in learning higher-order statistics.

Recent experimental work has shown that long term potentia-
tion (LTP), a biological manifestation of the Hebb rule, is indeed
not completely synapse specific (Engert and Bonhoeffer, 1997;
Schuman and Madison, 1994; Bi, 2002). For example, Engert and
Bonhoeffer have shown that LTP induced at a local set of
connections on a CA1 pyramidal cell ‘‘spills over’’ to induce LTP
at a nearby set of inactive connections on the same cell. In earlier
work using less refined methods, it had been concluded that LTP
was synapse-specific (Andersen et al., 1977; Levy and Steward,
1979). Even in the Engert–Bonhoeffer experiments (Engert and
Bonhoeffer, 1997), it is likely that, because the ‘‘pairing’’ method
used to induce LTP was rather crude, the inspecificity was far
greater than would ever be actually seen in an awake brain. More
recent work has shown that at least one type of Hebbian
inspecificity, induced by theta burst stimulation of retinotectal
connections, reflects dendritic spread of calcium (Tao et al., 2001).
Even more recent LTP experiments at single synapses (Tao et al.,
2001) have shown that, while LTP is only expressed at the synapse
where it is induced (Matsuzaki et al., 2004), the threshold for LTP
induced at neighboring synapses is reduced (Harvey and Svoboda,
2007). Thus, some degree of Hebbian inspecificity is probably
inevitable, and its effects on learning need to be evaluated.
1 Here the notation ½Ex�i stands for the i-th component of the vector ½Ex�.
2. Overview

Here we briefly review the classical Oja model (Oja, 1982; Oja
and Karhunen, 1985; Diamantaras and Kung, 1996; Hertz et al.,
1991) and define terms as background to the new analysis. The
model network consists of a single output neuron receiving n

signals x1; x2; . . . ; xn from a set of n input neurons via connections
of corresponding strengths o1; . . . ;on (see Fig. 1). We assume
throughout that the inputs have zero-mean (see Discussion).

The resulting output y is defined as the weighted sum of the
inputs:

y ¼
Xn

i¼1

xioi (2.1)

The input column vector x ¼ ðx1 . . . xnÞ
T is randomly drawn from a

probability distribution PðxÞ, x 2 Rn (where T denotes transposi-
tion of vectors).

In accordance to Hebb’s postulate of learning, a synaptic
weight oi will strengthen proportionally with the product of xi

and y:

oiðt þ 1Þ ¼ oiðtÞ þ gyðtÞxiðtÞ (2.2)

Here g is a time independent learning rate and the argument t

represents the dependence on time (or on the input draw). The
relation between this formulation and neural processes such as
LTP is considered in the Discussion.

Oja (1982) modified this by normalizing the weight vector x
with respect to the Euclidean metric on Rn:

oiðt þ 1Þ ¼
oiðtÞ þ gyðtÞxiðtÞ

kxðtÞ þ gyðtÞxðtÞk
(2.3)
Expanding in Taylor series with respect to g, making kxk ¼ 1 and
ignoring the Oðg2Þ term for g sufficiently small, the result is

xðt þ 1Þ ¼ xðtÞ þ gyðtÞ½xðtÞ � yðtÞxðtÞ� (2.4)

Henceforth, we omit the variable t whenever there is no
ambiguity. The equation can be then rewritten as:

xðt þ 1Þ ¼ xþ g½xxTx� ðxT xxTxÞx� (2.5)

Consider the covariance matrix of the distribution PðxÞ, defined
by C ¼ hxxT i ¼ hxðtÞxT ðtÞi (where h i stands for expectation).
Clearly C is symmetric and semipositive definite. With the
following additional assumptions:
�
 the learning process is slow enough for x to be treated as
stationary,

�
 xðtÞ and xðtÞ are statistically independent.

One can take conditional expectation over PðxÞ and rewrite the
learning rule as:

hxðt þ 1ÞjxðtÞi ¼ wþ g½Cw� ðwT CwÞ� (2.6)

Oja concluded that, if xðtÞ converges as t!1, the limit is
expected to be one of the two opposite normalized eigenvectors
corresponding to the maximal eigenvalue of C (i.e., the ‘‘principal
component’’ of the matrix C—Oja, 1982; Oja and Karhunen, 1985).
If the input elements are Gaussian, the output of the Oja neuron
provides the statistically optimal representation of the current
input vector.

Three main types of synaptic learning error could occur. First
(‘‘Type 0’’), one could add uncorrelated noise to the input
elements, for example reflecting fluctuations in transmitter
release, which would simply add to the variances along the
diagonal of C. Second (‘‘Type 1’’), the updates themselves may be
imprecise (for example because of spine head calcium fluctua-
tions), with these fluctuations occurring independently at differ-
ent synapses. Third (‘‘Type 2’’), the updates could be inaccurate, in
the sense of depending on updates occurring at other synapses
(e.g., because of intersynapse calcium diffusion). This is the case
we study here. To introduce such inspecificity into the learning
equation, we assume that, on average, only a fraction Q of the
intended update reaches the appropriate connection, the remain-
ing fraction 1� Q being distributed amongst the other connec-
tions according to a defined and biologically plausible rule. The
actual update at a given connection thus includes contributions
from erroneous or inaccurate updates from other connections. The
erroneous updating process is formally described by a (possibly
time-dependent, but input-independent) error matrix E ¼ EðtÞ,
whose elements reflect at each time step t the fractional contri-
bution that the activity across weight oi makes to the update
of oj.

If one wanted to ensure that the weight vector retains the same
norm as the error-free rule, we would introduce E into Eq. (2.2),
obtaining as a first order approximation for the single weight one
pattern rule1:

oiðt þ 1Þ ¼ oi þ gyð½Ex�i �xTExoiÞ (2.7)

However, while the averaged form of this rule has the same
fixed points as the rule we actually used (see Eq. (2.8)), we could
not prove their stability. Furthermore, the rule would imply
biologically that the normalizing component ‘‘knew’’ the pattern-
to-pattern form of E, which is highly implausible. More generally
we could assume that the Hebbian and normalizing steps would
have different error matrices, reflecting their different physical
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Fig. 1. (A) Three spines on a short dendritic segment are shown. If Hebbian adjustment occurs at the middle synapse, a factor (red dots), such as calcium, diffuses to nearby

synapses and affects Hebbian adjustment there. (B) Input neurons (activities xi) converge on an output neuron (output y) via weights oi . Coincident activity at the synapses

comprising a weight (e.g. o1 or o2) leads to modification of that weight and of other weights. The left diagram shows the case where only the immediate neighboring

connections (each made up of one synapse) are affected. The right diagram shows the case where all connections are equal neighbors (either because each has many

synapses dispersed randomly over the dendrite, or because synapses move around; see Figure S1). The curved red arrows from o1 to on shows that periodic boundary

conditions are assumed (i.e., o1 affects o2 and on equally). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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implementation. We assumed for simplicity that the normalizing
step is error free, so the rule becomes:

oiðt þ 1Þ ¼ oi þ gyð½Ex�i � yoiÞ (2.8)

Taking conditional expectation of both sides and rewriting the
equation in matrix form leads to (as a ‘‘meanfield’’ approximation,
assuming that the errors are independent from the inputs and the
weights)

hxðt þ 1ÞjxðtÞi ¼ wþ g½ECw� ðwT CwÞw� (2.9)

where we defined w ¼ hxi and E ¼ hEi. E is then a symmetric
circulant matrix; in the zero error case of Q ¼ 1, E would become
the identity matrix.
3. Methods

As a prelude to analyzing the dynamics of inspecific learning,
we revisit the Oja original model with zero error, and the methods
used to establish its asymptotic behavior (Botelho and Jamison,
2004; Oja, 1982; Oja and Karhunen, 1985; Hertz et al., 1991). In
other words: for a size n 2 N, nX2, we want to know whether or
not a vector w 2 Rn stabilizes under iterations of the function:

f :Rn
! Rn; f ðwÞ ¼ wþ g½Cw� ðwT CwÞw� (3.1)

A nonzero vector w 2 Rn is a fixed point for f if

f ðwÞ ¼ wþ g½Cw� ðwT CwÞw� ¼ w 3 Cw ¼ ðwT CwÞw (3.2)

An equivalent set of conditions is:

Cw ¼ lww

lw ¼ wT Cw

(
3

Cw ¼ lww

lw ¼ lwwT w

(
(3.3)

These conditions translate as: ‘‘w is an eigenvector of C’’. In case C
is invertible (i.e. all its eigenvalues are nonzero), w is a unit
eigenvector of C with the Euclidean norm.

Consider an orthonormal basis B of eigenvectors of C (with
respect to the Euclidean norm on Rn). An eigenvector w 2 B with
eigenvalue lw is a hyperbolic attractor for f if all eigenvalues of the
n� n Jacobian matrix ðDf wÞij ¼ ðð@f i=@wjÞðwÞÞ are less than one in
absolute value.

We calculate the Jacobian matrix Df w, for a fixed vector w 2 B:

Lemma 3.1. Df w ¼ Iþ g½C� 2wðCwÞT � ðwT CwÞI�

Proof. Call gðwÞ ¼ ðwT CwÞw, so f ðwÞ ¼ wþ gðCw� gðwÞÞ

giðwÞ ¼ ðw
T CwÞwi

If iaj:

@gi

@wj
ðwÞ ¼

@

@wj

X
k;l

Cklwkwl

 !
wi ¼ 2

X
k

Ckjwk

 !
wi ¼ 2½Cw�jwi

If i ¼ j:

@gi

@wi
ðwÞ ¼

@

@wi

X
k;l

Cklwkwl

 !
wi þ

X
k;l

Cklwkwl ¼ 2
X

k

Ckiwk

 !
wi

þwT Cw ¼ 2½Cw�iwi þwT Cw

So

Dgw ¼ 2wðCwÞT þ ðwT CwÞI & (3.4)

Pick any v 2 B; vaw. Call lw and lv their corresponding
eigenvalues.

Df wðvÞ ¼ vþ g½Cv� 2wðCwÞT v� ðwT CwÞv�

¼ vþ g½Cv� 2wwT Cv� ðwT CwÞw�

¼ vþ g½lvv� 2wwTlvv� lww� ¼ ð1� g½lw � lv�Þv (3.5)

Df wðwÞ ¼ wþ g½Cw� 2wðCwÞT w� ðwT CwÞ�

¼ wþ g½lww� 2wwTlww� lww�

¼ wþ g½�2lwkwkw� ¼ ½1� 2glw�w (3.6)

So B is also a basis of eigenvectors for Df w. The corresponding
eigenvalues are 1� 2glw (for the eigenvector w) and 1� gðlw � lvÞ

(for any other eigenvector v 2 B, vaw). Therefore, a set of
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equivalent conditions for w to be a hyperbolic attractor for f is

j1� gðlw � lvÞjo1 for all v 2 B; vaw (3.7)

j1� 2glwjo1 (3.8)

In other words, w is a hyperbolic fixed point of f if and only if:
(i)
 lw4lv for all vaw (i.e. lw is the maximal eigenvalue)

(ii)
 go1=lw (in particular go2=ðlw � lvÞ, for all vaw).
Fig. 2. Effect of errors on performance in the Oja network for n ¼ 10 neurons.

The plots represent the cosine of the angle y between the weight vector and the

principal component, at each time-step of the updating process. Upper plot: The

inputs are uncorrelated Gaussian vectors with one of the sources at a variance of 2

compared to the others which are all 1. The learning rate is fixed as g ¼ 5� 10�4.

Lower plot: Correlated inputs were generated by mixing independent Gaussian

sources with equal variance with a random mixing matrix, with elements

distributed uniformly between 0 and 1. The learning rate for correlated inputs is

g ¼ 25� 10�6. In both cases, the total error � ¼ 1� Q ¼ ðn� 1Þ� was initially set to

zero and the weight vector converged very quickly to the first PC ðcosðyÞ ¼ 1Þ and

remained there with minor fluctuations. The error was then increased from zero to

0:8 in steps of 0:1 each 4� 104 epochs, producing approximately stepwise decreases

in performance. The equilibration time increased as error increased; the step heights

and the associated fluctuation increased and then decreased. Note that in the

correlated case error produces only small decreases in performance, since the

principal component already points approximately in the direction ð1;1; . . . ;1Þ.
These conditions are always satisfied provided: (i) C has a
maximal eigenvalue of multiplicity one and (ii) g is small enough
ðgo1=lwÞ.

In conclusion, under conditions (i) and (ii), the network learns
the first principal component (PC1) of the distribution PðxÞ. The
learning of the principal component requires a relationship
between the rate of learning g and the input distribution PðxÞ:
if the maximal eigenvalue of the correlation matrix C is large (i.e.
if the variance of the input patterns’ projections on PC1 is high),
the network has to learn slowly in order to achieve convergence.
Moreover, the convergence time along each eigendirection is
given by the inverse of the magnitude of the corresponding
eigenvalue of Df w (see the simulations in Fig. 2; see also Wyatt
and Elfadel, 1995).

To formalize learning inspecificity we introduced an error
matrix E 2MnðRÞ that has positive entries, is symmetric and
equal to the identity matrix I 2MnðRÞ when the error is zero. We
studied the asymptotic behavior of the new system, using a
similar approach. As shown before (Eq. (2.9)), the inspecific
learning iteration function becomes:

f E
ðwÞ ¼ wþ g½ECw� ðwT CwÞw�

Here also, wa0 is a fixed point of f E if and only if it is an
eigenvector of EC with eigenvalue lw ¼ wT Cw. Furthermore, w is
a hyperbolic attractor of f E if and only if lw is the principal
eigenvalue of EC and go1=lw. (see the Supplementary Material
for proofs).

The error-free rule maximizes the variance of the output
neuron lw and therefore, with Gaussian inputs, also maximizes
the mutual information (MI) between inputs and outputs (see
Discussion). Although the erroneous rule no longer maximizes the
output variance, it tolerates a faster learning rate. Conversely, at a
fixed g, learning is slowed by error.

3.1. The error matrix

One way in which an incorrect strengthening of a silent
synapse can occur is by diffusion of a messenger such as calcium
from one spine head to another, as illustrated in Fig. 1A.

If we assume that the output neuron is connected (at least
potentially) to all the input neurons (Stepanyants et al., 2002,
2008) then the amount of error depends on the number of
synapses each input neuron makes with the output neuron
(relative to the dendritic length L) as well as factors such as the
space constant for dendritic calcium diffusion lc (Zador and Koch,
1994), the Hill coefficient for calcium action h (DeKoninck and
Schulman, 1998; Lisman, 1989), and the amount of head/shaft/
head calcium attenuation a. If an intracellular factor other than
calcium is responsible for crosstalk (Harvey and Svoboda, 2007),
analogous parameters would still apply. We can define a per
‘‘synapse error factor’’ b 2 ½0;1�.

b�
ahlc

L
(3.9)

or equivalently a ‘‘synaptic quality’’ q 2 ½0;1�, q ¼ 1� b (see
Supplementary Material, Appendix 1 for definitions and details).
This formula says that the per synapse error b is proportional to
two factors: the ratio of the length constant for calcium spread lc

to the dendritic length L and the effective calcium coupling
constant ah between two adjoining spines. It assumes that as extra
inputs are added, the dendritic length remains the same.

The probability Q of the correct synapse being strengthened
depends on b and on the network size n. In Appendix 2 in the
Supplementary Material we analyze a plausible model and we
develop two approximations for Q ¼ Q ðn; bÞ:
�
 the continuous model, where weights adjust continuously and
Q ¼ 1=ðnbþ 1Þ,
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�
 the discrete model, where weights adjust discretely and
Q ¼ ð1� bÞn.

3.2. Error spread

We now consider different possibilities for the way that the
part of the Hebbian update xiy could spread to different
connections, presumably as a result of intracellular diffusion of
messengers such as calcium. In general this will reflect the
particular anatomical relationships between synapses, expressed
by E, which could change as learning proceeds. We examine two
extreme cases. First, each connection is made of a single fixed
synapse (e.g., a parallel fiber-Purkinje cell connection—Llinas and
Walton, 1998). In the second case, all connections are equivalent
(‘‘tabula rasa’’—Le Be and Markram, 2006; Elman et al., 1996).
1.
 The ‘‘nearest neighbor’’ model: Each connection consists of a
single fixed synapse, and calcium only spreads to two nearest
neighbor synapses. E then has diagonal elements Q and off
diagonal elements ð1� Q Þ=2.

E ¼

Q � 0 � � �
� Q � 0 � 0

0 � Q � � 0

� � � � � �

0 � � � Q �
� 0 � � � Q

0
BBBBBBBBB@

1
CCCCCCCCCA

(3.10)

The appearance of � in the top right and bottom right corners
reflects periodic boundary conditions. We can define a ‘‘trivial’’
error (see next paragraph) � ¼ 1

3 for which Hebbian adjust-
ments lacks specificity, which is marked in Fig. 3a as a red dot
on each curve.
Fig. 3. Dependence of cosðyÞ on the error factor b in the case of uncorrelated inputs
2.

with l ¼ 2 for the continuous error, nearest neighbour model. Each curve

corresponds to a different n, as shown in the legends. Upper plot: Continuous

error, nearest neighbor model. Note that for increasing n values, the value of the

total error � increases at any fixed per synapse error b, reducing performance

(cosðyÞ). The curves are shown as solid lines up to the trivial error value where

Q ¼ � ¼ 1
3 (i.e., b ¼ 2=n) at which learning is inspecific (red dots); beyond this point

the curves are unbiological and are shown dotted. Lower plot: The distribution of

weights of the asymptotically stable weight vector (the principal eigenvector of

EC), for fixed network size n ¼ 51, and fixed variance l ¼ 1:1, but different values

of the per synapse error b. The lower the quality, the more similar the weights

become. All the b values shown are less than trivial, except for the curve marked

with diamonds, where almost all the updates are transferred to neighbors. With

the exception of the weight on the high variance neuron labeled #26, the weights

decay approximately exponentially as a function of distance from the high variance

neuron. This is illustrated by the black dashed curve, which is a shifted exponential

with space constant of one unit (neuron). The space constant calculated from

Equation 7 in Adams and Cox (2002a) for the corresponding values of b, n and l is

0:7 neurons. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
The ‘‘error-onto-all’’ model: All connections are equally ‘‘dis-
tant’’ from each other, so that there are no privileged
connections. All offdiagonal elements of E are then equal to
ð1� Q Þ=ðn� 1Þ.

E ¼

Q � � � � �
� Q � � � �
� � Q � � �
� � � � � �

� � � � Q �
� � � � � Q

0
BBBBBBBBB@

1
CCCCCCCCCA

(3.11)

It is important to notice that the error matrix in this case
becomes singular when Q ¼ �, i.e. when the update leak to
each erroneous connection is as large as the update at the right
connection. We call this value the ‘‘trivial error value’’ �0ðnÞ,
which corresponds to b0ðnÞ ¼ 1� q0ðnÞ ¼ 1� 1=

ffiffiffi
nn
p

in the
discrete model, and to b0ðnÞ ¼ 1� q0ðnÞ ¼ 1=n in the contin-
uous model. For all biological purposes, we need only consider
errors smaller than the trivial value.

This arrangement could arise in two nonexclusive different
ways (see Supplementary Material, Appendix 2 for details):
(a)
 Each connection is composed of a very large number a of fixed
synapses, such that all possible configurations of synapses
occur.
(b)
 Synapses do not have fixed locations, but appear and
disappear randomly at all possible locations (i.e. ‘‘touch-
points’’—Le Be and Markram, 2006; Stepanyants et al., 2002)
where axons approach the dendrite close enough that a new
spine can create a synapse. In this case, assuming the dendrite
and axonal geometry are fixed (Holtmaat et al., 2005;
Grutzendler et al., 2002; Lendvai et al., 2000), ‘‘potential’’
synapses (Stepanyants et al., 2002) are composed of two
shifting subsets: anatomically existing synapses and a
reservoir of ‘‘incipient’’ synapses where spines could form
(see Supplementary Material, Appendix 2). In order to
maintain constant weights (in the absence of learning), each
disappearing synapse would have to be replaced by another
synapse of equal strength and, possibly, connectivity. This
could be done most simply if only zero-strength (‘‘silent’’)
synapses appear and disappear (since then connectivity
would not have to be conserved). There is evidence this is
the case (Alvarez and Sabatini, 2007).
If synapses appear and disappear, one has the problem that if
all synapses are equally plastic (have the same learning rate g),
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stochastic changes in the overall number of synapses comprising a
connection will change the overall learning rate at a connection.
(In the simplest case, if a number of new silent plastic synapses
happen to appear at a connection, while the overall weight is
unchanged, the learning rate will be increased). One way to
prevent this would be to ensure that only one of the synapses
comprising a connection is plastic (Adams and Cox, 2002a) but
this is a nonlocal rule. Another way would be for the average
number of potential synapses comprising a connection to be
reasonably high (perhaps �50) so that fluctuations are relatively
small. In several cases the average number of actual synapses at a
connection is around five (Markram et al., 1997a, b; Barbour et al.,
2007) and since these may only form about 10% of the total
(potential) synapses, learning rates at different connections would
be fairly similar (and of course identical when time-averaged). Of
course for this rough-and ready solution to work, axons and
dendrites would have to intersect sufficiently often, implying a
high degree of branching. Although there have been some claims
that weak synapses are more plastic (Matsuzaki et al., 2004),
other evidence suggests that all synapses are equally plastic
(Kopec et al., 2006); this could be achieved if strengthening added
a new plastic ‘‘unit’’ to each synapse, with previously added units
all rendered implastic (Adams and Cox, 2002a; Lisman and
Raghavachari, 2007). A related issue is that the synapses
comprising a connection will be at different electrotonic distances
along the dendrite, and therefore will influence spiking differ-
ently, and have different effective learning rates. Rumsey and
Abbott (2004) have proposed that a separate antiSTDP can be used
to equalize efficacy of synapses.

There is strong evidence for both these ways to achieve
complete connectivity (Le Be and Markram, 2006; Alvarez and
Sabatini, 2007), and we think this equal error-onto-all is the most
biologically plausible assumption, and it will be the principal
target of our analysis.

The stabilized weight vector of the modified (inaccurate) Oja
model will differ from the principal component of C. If the matrix
EC has a unique maximal eigenvalue, we can talk about its
principal eigenvector wEC. (This assumption is not a very strong
additional requirement; in the error-to-all case, for example, we
show in the Supplementary Material that it is almost always the
case.) If E is invertible, the inspecific learning algorithm will now
converge to wEC rather than to the principal component wC of the
input distribution. Indeed, for E symmetric and positive definite,
one can define F ¼

ffiffiffi
E
p

. Under the change of variables x0 ¼ Fx,
w0 ¼ F�1w, one recovers the standard Oja rule 2.6, with a new
covariance matrix C0 ¼ FCF, so the conditions for convergence are
easily derived from those obtained in the noiseless case (see also
Botelho and Jamison, 2002, 2004). The analysis in Appendix 1
shows that the convergence follows more generally, i.e. when E
does not necessarily have all nonzero eigenvalues. Since the
output of the Oja neuron allows optimal input reconstruction (at
least in the least squares sense), Hebbian infidelity would lead to
suboptimal performance. We quantified the effect of inaccuracy as
the cosine of the angle y between the principal component wC of C
and the principal eigenvector wEC of EC, which are the stabilized
weight vectors in absence and, respectively, presence of error:

cosðyÞ ¼
wT

CwEC

kwCk � kwECk
(3.12)

We examined how this measure of error depends on parameters
such as the size n and the input error � for a given C. As the
analysis for arbitrary input distributions is rather intractable
(because E and C do not commute), we detail only a few simple
cases of uncorrelated (Section 4.1) and correlated inputs
(Section 4.2), illustrating the results with plots and simulations.
4. Results

We start with examples of simulations of the behavior of the
erroneous rule in the error-onto-all case, using either uncorrelated
(Fig. 2a) or correlated (Fig. 2b) inputs. In all cases the network is
initialized with random weights. In the uncorrelated case and in
the absence of error, the correct principal component is learned
rapidly and accurately. The small fluctuations away from PC1
reflect the nonzero learning rate; they are most obvious at error
rates for which the dependence of performance on control
parameters is steepest (see Fig. 5a). In all cases, performance
(measured by cosðyÞ) gradually deteriorates with progressive
increase in error, although the magnitude of the decrease depends
on error and on correlation. The remainder of our results explore
these effects in more detail, using calculations and analysis. Fig. 2
also shows that learning is somewhat slowed by inaccuracy, as
expected; however, we do not analyze learning kinetics further
here.

4.1. Uncorrelated inputs

This section shows how network performance depends on the
quality factor q 2 ½0; q0ðnÞ� (or alternatively on the error factor
b ¼ 1� q) in the case of uncorrelated inputs. We illustrate this
dependence by a combination of plots and analytical results.

For the uncorrelated inputs case, we consider a diagonal C with
higher variance on the first component:

C ¼

l 0 0 � 0

0 1 0 � 0

0 0 � � �

� � � 1 0

0 0 � 0 1

0
BBBBBB@

1
CCCCCCA

(4.1)

where l41, so that wC ¼ ð1;0; . . . ;0Þ
T . In this case,

cosðyÞ ¼
jðwECÞ1j

kwECk
(4.2)

is our measure of the system’s performance.
We studied how cosðyÞ changes with the error (either � or b),

n and l. We numerically calculated cosðyÞ as a function of the error
in the two cases where the error is apportioned to two neighbors
(nearest neighbor model, Fig. 3a) or to all other connections (error
onto all model, Fig. 4a).

The curves in the nearest neighbor model (Fig. 3a) can be
understood in the following way. First consider a curve at a given
network size. As outlined in the Methods, in the absence of error
the high variance connection grows more rapidly than the low
variance connections, eventually completely winning, so the final
weight vector points in that direction. However, in the presence of
error, the immediate neighbors strengthen more than they would
have in the absence of error, as a result of leakage from the
preferred connection (see Fig. 3b); this means that future patterns
will produce extra strengthening of those neighboring connec-
tions (because they are stronger and so produce larger outputs);
this extra strengthening at the neighbors leads to increased
strengthening of the neighbors of the neighbors, and so on down
the line. Since the weight vector is normalized, these ‘‘wrong’’
strengthenings combine to reduce the preferred weight, although
as long as learning shows some specificity, the preferred final
weight is always strongest (see Fig. 3b).

Fig. 3b shows the distribution of equilibrium weights as a
function of ‘‘distance’’ from the preferred neuron and of error b.
The nearest neighbor case corresponds to the ‘‘fitness’’ model we
simulated in previous work, and analyzed in the large n limit
(Adams and Cox, 2002a), with ‘‘fitnesses’’ being the input
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Fig. 4. Error-onto-all, discrete updates model. Upper plot: Dependence of cosðyÞ on

the error factor b in the case of uncorrelated inputs with l ¼ 2. The performance is

measured as cosðyÞ, where y is the angle between the principal eigenvector of EC
and the principal component of C. Each color-coded curve corresponds to a

different network size n, as shown in the legend. The curves were plotted as solid

lines for b between zero and the trivial value b0ðnÞ ¼ 1=
ffiffiffi
nn
p

, and as dotted lines for

the error b larger than the trivial value, because this range is not biological. The

point of steepest downward slope (inflection point) is marked on each graph by a

red asterisk. Consistently with our calculations, the inflection point is always

situated between zero and the trivial value b0ðnÞ, getting arbitrarily close to zero

for large enough n. Note that the n ¼ 10 curve agrees almost exactly with the

results in Fig. 2a, if the b values are converted to the corresponding � values. Lower

plot: For a fixed network size n ¼ 20 and different values of the input variance l,

we show the dependence of the output performance cosðyÞ on the synaptic error b,

for b 2 ½0;b0ðnÞ�. Each curve corresponds to a different l value from l ¼ 1:1 to 5.

When the variance is very close to l! 1, the stable weight vector approaches

w ¼ ð1;1 . . . ;1Þ independently of the error, so cosðyÞ ! 1=
ffiffiffi
n
p
�0:22 for all values of

ba0. Also, cosðyÞ ¼ 1=
ffiffiffi
n
p

for all l at b ¼ b0ðnÞ. The performance improves with

larger variance, which agrees with our analytical results. The dotted line shows the

perturbation approximation for l ¼ 5, which works well only at low error. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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variances. In that model, the weight distribution on the non-
preferred connections followed a double exponential function of
distance. For sufficiently small error (or large l), the distribution
of weights on the nonpreferred (low variance) connections is close
to the single exponential distribution found in this limit in the
‘‘fitness’’ model (see dashed curve in Fig. 3b); the ‘‘space constant’’
for the weight distribution varied in the expected manner (Adams
and Cox, 2002a) with the Hebbian error (Fig. 3b) and with the
variance l.

In the remainder of the paper we focus on the error-onto-all
model, in which the quality of the network is Q40 and the error is
� ¼ ð1� Q Þ=ðn� 1Þ. We will present in detail only the discrete
update model, since this seems to be more biologically realistic
(Petersen et al., 1998; O’Connor et al., 2005; Bagal et al., 2005); the
continuous case is rather similar and treated in Appendix 2.
Numerical calculations of the performance at different per
synapse error values at various network sizes for the uncorrelated
case are shown in Fig. 4a. The curve for n ¼ 10 is plotted up to the
trivial error value b ¼ 1=

ffiffiffiffiffiffi
1010
p
�0:205 where learning is completely

inspecific. There is a smoothly increasing degradation of perfor-
mance with error, which drops to a much lower value for
inspecific learning than seen in the previous cases, since error
affects all nonpreferred inputs equally (for b ¼ b0, the weight
vector is parallel to ð1;1; . . .1ÞT , so the limiting cosine for the case
n ¼ 10 is 1=

ffiffiffiffiffiffi
10
p

¼ 0:316). In the remaining plots in Fig. 4a, the
unbiological points of the curves (i.e. beyond the trivial value) are
shown dotted.

Fig. 4b shows plots of performance against b for different
values of variance l, all for the case n ¼ 20. For l ¼ 1, all
eigenvalues are equal and the corresponding eigenvectors are
saddles. There is a very large change in performance for small
increases of l above one, especially at low error values. A tiny bit
of error stabilizes the behavior, so only the preferred weight is
selected, although never perfectly.

We obtained an approximation for cosðyÞ at small � values
using perturbation theory (Kahn, 1990):

cosðyÞ ¼
l� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl� 1Þ2 þ ðn� 1Þl2�2=ð1� n�Þ2
q (4.3)

Fig. 4b shows that this formula agrees well with the exact
results at sufficiently small �.

We now proceed to an analytic treatment of these numerical
results. The characteristic polynomial of the error matrix is:

PE
ðxÞ ¼ detðE� xIÞ ¼ ðQ � �� xÞðn�1Þ

ð1� xÞ (4.4)

Note that E is invertible, except when Q ¼ �, and Q and �
themselves depend on biological parameters (see Supplementary
Material, Appendix 2).

The maximal eigenvalue m of EC is given in this case by the
larger solution of the quadratic equation:

m2 � m½lþ 1þ �ðl� 1� nlÞ� þ l� nl� ¼ 0 (4.5)

The maximal eigenvector will be in the direction ðs;1; . . .1ÞT ,
where s ¼ sð�;n; lÞ is a ‘‘selectivity’’ value which expresses
how strongly one of the weights is favored because one input
is more active. This outcome reflects the fact that no weight
except that corresponding to the high variance input is preferred
(there are no privileged neighbor relations), so the behavior boils
down to competition between the preferred weight and the
set of equivalent nonpreferred weights, leading to the quadratic
equation.

We usually estimate the output performance as cosðyÞ, but

here it is simplest to calculate tanðyÞ, which is related to cosðyÞ by:

cosðyÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ðyÞ þ 1

q
, for y 2 ½0;p=2�.

hðqÞ ¼ tanðyðqÞÞ ¼ �
l� 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

l� mðqÞ
mðqÞ � 1

¼
sffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p (4.6)

h0 ¼ �
l� 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

m0

ðm� 1Þ2
(4.7)

h00 ¼ �
l� 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

m00ðm� 1Þ � 2ðm0Þ2

ðm� 1Þ3
(4.8)

where all derivatives are with respect to q. As m040, we have h0o0
for all q. This is consistent with our simulations: performance
decays as the quality factor decreases.

Both the discrete and continuous update models show similar
features (Section 3.1 and Supplementary Material, Appendix 3).
The angle y ¼ yðqÞ (measured by its tangent hðqÞ ¼ tanðyðqÞÞ)
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decreases as q goes from 0 to 1. In both cases hð1Þ ¼ 0, which
corresponds to perfect performance for perfect quality. Also,
hð0Þ ! 0 as n!1, which shows that the output degrades more
severely with error for larger values of the network size (because
of synaptic ‘‘crowding’’). Moreover, h0ð1Þ ! 1 as n!1, which
shows that the rate of the angle decay at q ¼ 1 gets very steep
with large n. However, since the slope is always finite at finite �,
there is no ‘‘error catastrophe’’ (see Discussion).

A less obvious observation concerns the inflection point on
each graph, where the decay rate (or ‘‘error sensitivity’’) of the
performance is steepest (see red asterisks in Figs. 4a and 5).
Although an exact estimate is intractable, we obtained, using the
above expressions for the derivatives of tanðyÞ, a lower bound: the
inflection point is always situated in the interval ½q0ðnÞ;1� (or
equivalently in ½0; b0ðnÞ�, when refering to synaptic error); see
Appendix 3. Fig. 5a further suggests that the inflection point
always moves to the left in step with the leftward shift in the
trivial error value as n gets larger.

In summary, in the uncorrelated case, high per-synapse quality
ensures excellent performance except when inputs are numerous
(high n), or almost indistinguishable (low l). Conversely, since
performance only improves very slightly when error is further
reduced from initially very low values, it would be difficult for
evolution to attain very low error rates. We next asked if these
features remain true for correlated inputs.
Fig. 5. Dependence of cosðyÞ on the error factor b, for the error-onto-all, discrete

updates model for correlated inputs. The size n ¼ 20 and l ¼ 4 have been fixed.

Each curve illustrates a different background covariance x, as shown in the legend.

The inflection point on each curve was marked by a red asterisk. The inflection

points are closest to zero for intermediate values of x, which agrees with the result

in Fig. 7. Upper plot: ‘‘high covariance pair’’ input distribution. Lower plot:

‘‘uniform covariance’’ inputs. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
4.2. Correlated inputs

We now study the equilibrium behavior of the network in
response to two simple cases of correlated inputs, in the error-
onto-all model, with the following covariance matrices:

C ¼

1 l x � x
l 1 x � x
x x 1 � �

� � � � x
x x � x 1

0
BBBBBB@

1
CCCCCCA

(4.9)

where 14l4x40 (C has higher covariance on one pair) and

C ¼

l x x � x
x 1 x � x
x x 1 � �

� � � � x
x x � x 1

0
BBBBBB@

1
CCCCCCA

(4.10)

where l414x40 (C has small uniform background covariance
with one high variance input).

Fig. 5 illustrates the dependence of performance on error at
various ‘‘background correlation’’ x values in a network with 20
inputs, for the two above cases (top plot—higher covariance pair;
bottom plot—high variance neuron with uniform background
correlation). Since the slopes along the curves corresponding to
different x values are not simply scalings of each other, it follows
that the way the performance degrades with error depends on the
background correlation. For intermediate background correlation
x (e.g., black and blue curves in Fig. 5a), the output shows the
highest error-sensitivity at very small error, while for very weak
(light blue and pink curves) and for very strong (green curve)
background correlation, the maximum error-sensitivity appears at
larger values of the error. This results in the inflection point first
moving to the left as x increases, then moving back to the right
(see Figs. 5a and b; the rightward movement is only visible at
lower x values than those shown in Fig. 5b).

Fig. 6 shows the dependence of performance on error for
various network sizes, using fixed l and x values, in both types of
background correlation model. In this case the initial effect of
error is very strong at large network sizes (because of synaptic
crowding), but performance then reaches rather constant levels
which are fairly close to the error-free level, because high
background correlations tend to equalize all weights even in the
absence of error.

We now analyze these numerical results.

4.2.1. Model 1—high covariance on one pair

The principal component of EC is the unit vector pointing in
the direction of ðs; s;1; . . . ;1ÞT .

Here, the output’s ‘‘selectivity’’ s ¼ sðn; �; l; xÞ is given by:

1

s
¼ 1þ

ð1� n�Þðl� xÞ
z�EC

(4.11)

where z�ECo0 is the smaller root of a quadratic defined in
Appendix 3. Once again, there is competition between the sets
of equivalent preferred and nonpreferred weights.

In both models, the selectivity can be used to interpret features
of the output performance with various degree of error. As the
explicit formula for s is rather complicated, we calculated the
upper bound and the lower bound (rð�Þ), which are simpler and
yet still suggest some of the main features:

rð�Þ ¼ 1�
ð1� n�Þðl� xÞ

½1� ðn� 2Þ��ðl� xÞ þ nð�þ x� �xÞ
p

1

s
p1 (4.12)



ARTICLE IN PRESS

Fig. 6. Dependence of cosðyÞ on the error factor b, for the error-onto-all, discrete

update model. The variances l and x have been fixed to l ¼ 4 and x ¼ 0:1. Each

curve corresponds to a different network size n, and the inflection point on each

curve is marked by a red asterisk. The infection points approach zero as n gets

arbitrarily large. Upper plot: ‘‘high variance pair’’ input distribution. Lower plot:

‘‘uniform variance’’ inputs. The red dots show the trivial error values, and the

curves are shown dotted beyond this point because this is a nonbiological range.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 7. Dependence of the output sensitivity d ¼ ð@=@�ÞðcosðyÞÞ on the covariance x
for n ¼ 20, l ¼ 4, and five error values � ¼ 0, 0.002, 0.01, 0.02, 0.04 and 0.05. Each

curve corresponds to a different error, as shown in the legend. The output shows

the most sensitivity to � at intermediate error values ð0:02o�o0:05Þ and at low

covariance values ð0oxo0:25Þ. Upper plot: ‘‘high variance pair’’ input distribution.

Lower plot: ‘‘uniform variance’’ inputs.
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where lim�!1=n rð�Þ ¼ 1 and lim�!0 rð�Þ ¼ 1� ðl� xÞ=
ðlþ ðn� 1ÞxÞ.

This can be compared with our other measure of output
performance: the cosine of the angle y ¼ yðn; �; l; xÞ between the
principal eigenvector ðs; s;1 . . .1Þ of EC and the principal compo-
nent of the input ðs0; s0;1 . . .1Þ (where s0 ¼ sðn;0; l; xÞ is the
selectivity in the absence of error).

cosðyÞ ¼
2ss0 þ n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2 þ n� 2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2
0 þ n� 2

q (4.13)

4.2.2. Model 2—uniform pairwise covariance

As before, we compute the eigenvector w of EC corresponding
to mEC. As expected, we get that w is in the direction of
ðs;1; . . . ;1ÞT .

Here, the output’s selectivity s is given by:

1

s
¼ 1þ

ð1� n�Þðl� 1Þ

z�EC

(4.14)

and has upper and lower bounds

rð�Þ ¼ 1�
ð1� n�Þðl� 1Þ

ðn� 1Þ½x� �ðx� 1Þ�
p

1

s
p1 (4.15)

Here also lim�!1=n rð�Þ ¼ 1 and lim�!0 rð�Þ ¼ 1� ðl� 1Þ=ðn� 1Þx.
The relation with cosðyÞ is given by

cosðyÞ ¼
ss0 þ n� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ n� 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
0 þ n� 1

q (4.16)

where s0 is again the selectivity for zero error.
Thus in both models cosðyÞ has a similar dependence on b

and n (see Fig. 6).

4.3. Error sensitivity

We define a quantity d as the error sensitivity of the
performance:

d ¼
@ cosðyÞ
@�

(4.17)

Fig. 7 shows plots of the dependence of d on background
covariance, measured at different error rates, for the two
correlated cases. d is always negative (error degrades perfor-
mance, as in the uncorrelated case), except of course for x ¼ 1,
where the error-free and the erroneous equilibrium eigenvectors
already have the same form. Also, d is very small near zero
error, again as in the uncorrelated case. At low error rates,
adding background correlation increases the error sensitivity d.
The maximum error sensitivity is greatest at intermediate error
rates.
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These effects reflect two opposing processes. Background
correlation increases the rate of growth of all connections;
from a connection’s point of view it looks as though the
pressure driving selective growth of one (Fig. 6b) or two
(Fig. 6a) connections has been reduced (e.g. is equivalent to a
reduction in l in Fig. 6b). But increases in positive background
correlation tend to make the weights more equal, synergistic
with increases in error. The second effect dominates at high
error values.

We also looked at symbolic software computations of the
sensitivity of performance to changes in background covariance,
@ cosðyÞ=@x, at various values of � and x. These can be used to
understand the dependence of the sizes of the fluctuations visible
in Fig. 2 on parameters. We interpret these fluctuations as small
deviations of the input statistics from their average values (i.e.
small spontaneous transient perturbations of parameters such as
x). Their amplitudes should therefore follow j@ cosðyÞ=@xj. We
found that j@ cosðyÞ=@xj increased as error increased, in agreement
with the behavior in Figs. 2b and c.

In Fig. 2b independent and equal variance ‘‘sources’’ were
linearly mixed to generate correlated random vectors used as
inputs to the erroneous Oja rule. These correlations act as a
‘‘background’’ which tends to equalize the weights even in the
absence of error, so adding error has relatively little effect.
Fig. 8. Error-onto-all, discrete update model for n ¼ 20 cells receiving uncorre-

lated inputs with l14l241. Upper plot: Dependence of cosðyÞ on the synaptic

error b, shown as b increases from zero to the trivial value

b0ðnÞ ¼ 1� 1=
ffiffiffi
nn
p
¼ 1� 1=

ffiffiffiffiffiffi
2020
p
�0:14. The trivial error b0ðnÞ equalizes all weights

and makes cosðyÞ ¼ 1=
ffiffiffi
n
p
¼ 1=

ffiffiffiffiffiffi
20
p
�0:22, independently of the distribution

variances l1 and l2. Lower plot: Evolution of the normalized weights

s1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2 þ ðn� 2Þ

q
and s2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2 þ ðn� 2Þ

q
with respect to b. As b increases

from zero to b0ðnÞ, the weights equalize and the ratio s1=s2 drops from 1 to 1.
4.4. Other models and extensions

Here we consider an input distribution such that the variance
is higher, but uneven, on two of the components, while the
covariance is uniform (and possibly zero). The correlation matrix
will be of the form:

C ¼

l1 x x � x
x l2 x � x
x x 1 � �

� � � � x
x x � x 1

0
BBBBBB@

1
CCCCCCA

(4.18)

with l14l2414x.
The modified correlation matrix EC has the eigenvalue

ðQ � �Þð1� xÞ, with multiplicity n� 3. The other three eigenvalues
m1, m2 and m3 are distinct and lie, respectively, within the
intervals:

ðQ � �Þð1� xÞom1oðQ � �Þðl2 � xÞ
ðQ � �Þðl2 � xÞom2oðQ � �Þðl1 � xÞ
maxfðQ � �Þðl1 � xÞ;nxþ ð1� xÞ þ �ðl1 þ l2 � 2Þg

om3onðxþ �� �xÞ þ �ðl1 þ l2 � 2Þ (4.19)

Clearly, m ¼ m3 is always the unique maximal eigenvalue of EC.
In the case of uncorrelated inputs, for example, � ¼ 0

corresponds to s1 ¼ 1 and s2 ¼ 0 (the maximal eigenvalue is
m ¼ l1, and its corresponding eigenvector is the first element
ð1;0; . . . ;0Þ of the standard orthonormal basis in Rn). As the error
increases from � ¼ 0 to � ¼ 1=n, the eigenvector ðs1; s2;0 � � � :0Þ

T

evolves such that the ratio s1=s2 decays very dramatically from1
(when � ¼ 0) to finite values (see Fig. 8). When �! 1=n (the
trivial value) all weights equalize and thus s1=s2 ! 1 (Fig. 8b).
Thus in a situation where two highly (but inevitably unequally)
active inputs are to be selectively wired by Hebbian learning, the
presence of error can promote the desired outcome, at least in the
large n case.

When the inputs are correlated, the dependence of m on
parameters is more complicated. The eigenspace of m is the
direction ðs1; s2;1; . . .1Þ

T , where the selectivities s1 and s2
themselves depend, via the eigenvalue m, on all the system
parameters:

s1

s2
¼ 1þ

ðQ � �Þðl1 � l2Þ

m� ðQ � �Þðl1 � xÞ
(4.20)

It is easy to observe that, as �! 1=n (the trivial error value),
Q � �! 0, hence s1=s2 ! 1. As in the uncorrelated case, weights
tend to equalize as the error gets close to the trivial value (see
Fig. 9). However, the slope of the decay of s1=s2 is different from
the uncorrelated case, since s1=s2 is always finite when the inputs
are correlated with x40, even for zero �.

Although these results are not general, they seem to apply to
various other situations with increasing degree of background
correlation (e.g. Fig. 2). Similar behavior can be observed, for
instance, in an Oja network learning from correlated inputs
obtained by rotations of n-dimensional normally distributed
vectors. Once again one sees that as correlations increase the
inflexion points in the performance versus error plots shift to the
left and then to the right (Fig. 10; compare with Figs. 5 and 2b),
confirming that at low error introducing small correlation
increases error sensitivity.
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Fig. 9. Error-onto-all, discrete update model for n ¼ 20 cells receiving correlated

inputs with variances l14l241 and small uniform covariances x ¼ 0:2. Upper

plot: Dependence of cosðyÞ on the synaptic error b, shown as b increases from zero

to the trivial value b0ðnÞ ¼ 1� 1=
ffiffiffi
nn
p
¼ 1� 1=

ffiffiffiffiffiffi
2020
p
�0:14. The trivial error b0ðnÞ

equalizes all weights, but cosðyÞ varies at b0ðnÞ. Since the principal component

of C varies with parameters, so will the angle y at the trivial error value.

Lower plot: Evolution of the normalized weights s1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2 þ ðn� 2Þ

q
and

s2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2 þ ðn� 2Þ

q
with respect to b. As b increases from zero to b0ðnÞ, the

weights equalize and the ratio s1=s2 drops from an initial finite, parameter-

dependent value to 1.

Fig. 10. Oja network learning a distribution of correlated inputs obtained by

rotations of n-dimensional normally distributed vectors. Here l ¼ 10 and n ¼ 40.

The amount of rotation alpha was varied as shown in the inset.
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5. Discussion

In this paper we analyze and describe the effect of introducing
errors into Hebbian learning by a single model neuron, in the form
of local or global spread of the updates induced at one connection
to other connections. This work was motivated by our earlier
suggestion (Adams and Cox, 2002a) that such errors may play
roles analogous to mutations in genetic evolution, as well as by
recent experimental evidence (Engert and Bonhoeffer, 1997;
Harvey and Svoboda, 2007). In previous work we introduced local
spread into an even simpler model network, consisting of an input
axon making Hebbian connections onto a set of output neurons.
Because in that early model each connection operates indepen-
dently (apart from overall normalization of the weights), it is
essentially equivalent to the present model when inputs are
uncorrelated. The advantages of the present model are mainly
that one can study arbitrary input covariance and error matrices.
We obtained some analytic results (for example, we showed that
the modified learning rule converges to the duly modified
‘‘principal component’’), and we further investigated several
special, but representative, cases by explicit calculation. Our main
finding is that learning remains stable in the presence of crosstalk,
under rather general conditions, although it gradually gets worse
as crosstalk increases. There appears to be no complete learning
failure up to the trivial limit, where synapse spacing becomes so
small that the Hebb rule is fully inspecific.

Our goal was to study Hebbian error, or crosstalk, in the
simplest possible model of unsupervised learning, since our
ultimate aim is to understand circuitry in the neocortex, which
seems to be specialized for such learning. We chose the Oja model
of a neuron as a principal component analyzer because it is
perhaps the most widely known, and simplest, example of a
Hebbian model of unsupervised learning. The Oja model is rather
unbiological: it uses a rate-coding scheme and a simple multi-
plicative Hebbian learning rule, together with an elegant, local,
but perhaps implausible, normalization procedure. It also sup-
poses that input patterns are zero-mean, with the Hebbian and
normalizing parts of the rule both able to trigger ltp or ltd. A more
biologistically realistic model would use timed spikes, spike-
timing dependent plasticity (STDP) and natural inputs (e.g.
movies). However, we wanted to study the effect of one particular
aspect of biological realism—plasticity crosstalk—in the context
of a model that is otherwise as transparent as possible. Gerstner
and Kistler (2002) have developed a model intermediate between
the Oja model and a detailed spiking model. It assumes a rate-
coding scheme, with Poisson spikes and STDP with ltd and ltp
lobes, with postsynaptic spikes triggered by presynaptically
generated epsps. This model learns the principal component of
the zero-mean inputs, without explicit centering or normal-
ization. It would be interesting to combine this model with ours,
by applying an error matrix either to the ltp or ltd lobes. One
might anticipate that in the first case the effect would be similar
to what we describe, while in the second case normalization
might be inaccurate.

Although our numerical results suggest that in a representative
range of cases the introduction of crosstalk produces graceful
degradation, all we have been able to prove, even in the simple
case of uncorrelated inputs, is that learning remains stable. It
would be theoretically possible that as error increases the two
leading eigenvalues closely approach (while remaining distinct),
and that at an ‘‘avoided crossing’’ the nature of the leading
eigenvector changes dramatically. This is what happens in the
Eigen molecular evolution dynamics (Nowak and Schuster, 1989;
Eigen et al., 1989; Swetina and Schuster, 1982; Tarazona, 1992;
Volkenstein, 1994), such that at a threshold error value, the
leading eigenvector (which represents the relative concentrations
of all possible polynucleotide sequences), suddenly switches from
a ‘‘quasispecies’’ distribution dominated by the fastest replicating
sequence to a binomial distribution (with all sequences equiprob-
able). This behaviour is only abrupt in the thermodynamic limit
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(large dimensionality) and requires a statistical–mechanical
analysis. In our model the two leading eigenvalues always seem
remain separated (up to the trivial error) and the network
performance changes smoothly.

Hebbian learning in the essentially linear Oja model is driven
entirely by the input covariances, and, for Gaussian patterns, finds
the statistically optimal representation, the first principal compo-
nent. Sensory input is generated in a very complicated (and
essentially unknown) way, and it seems reasonable that it should
initially be processed assuming it is approximately Gaussian, i.e.
by (pairwise) decorrelation, as in PCA. While such processing
cannot capture the underlying real-world generative process, it
would provide an efficient way to transmit information to brain
structures (such as the neocortex) that could use more sophisti-
cated techniques, involving nonlinear Hebbian learning, sensitive
to higher-order correlations. Furthermore, such techniques—

e.g. independent component analysis (Bell and Sejnowski, 1995;
Hyvarinen et al., 2001)—often work best if inputs are decorre-
lated. It has been suggested that the center-surround organization
of retinal ganglion cells reflects at least partly the fact that the
pairwise correlations in retinal images decay radially from a given
pixel (Atick and Redlich, 1990, 1992; Bell and Sejnowski, 1997;
Srinivasan et al., 1982), so that ganglion cells send optimally
compressed information (via thalamus) to cortex. In principle
Hebbian mechanisms might underlie this strategy, and our results
Fig. 11. Mutual information (MI) at different error values and network sizes, for

correlated Gaussian inputs. Upper plot: The plots show MI as function of error for

different network sizes. The MI depends on output variance; since all the inputs

contribute to the output variance, the MI increases with network size. Because

error increases, the relative contribution of the poorly correlated inputs to the

output variance MI decreases with error. Lower plot: The relative MI (dotted lines)

at different error rates is expressed as the fraction of the MI at zero error, and

compared with cosðyÞ at different errors (solid lines) for various network sizes. In

all cases error decreases MI, and when cosðyÞ is small, it closely tracks the MI.
suggest that crosstalk would compromise efficient decorrelation.
While at low error there would be little loss in information (see
Fig. 11 for an example of mutual information loss), the slight
‘‘dewhitening’’, combined with the effect of similar crosstalk on
subsequent nonlinear learning, might cripple the neocortex. In
particular, we have found (paper submitted) that small amounts
of crosstalk completely destabilize nonlinear learning in ICA
models, especially for nonwhite inputs.

It seems possible that learning inaccuracies of the type we
study here could be responsible for some of the apparently
‘‘aberrant’’ wiring seen in the lateral geniculate nucleus, where
activity and NMDAR-driven mechanisms lead to the refinement of
center-surround visual receptive fields (Shatz, 1996). In particular,
as development proceeds, the number of retinal inputs to relay
cells decreases dramatically, until only highly correlated inputs
(with closely overlapping receptive fields) remain (Chen and
Regehr, 2000). However, detailed analysis reveals that occasional
weak inputs may remain, even though they seem inappropria-
te—e.g., X cells receiving Y input (Wilson et al., 1984). While it is
possible that these anomalies may represent some unusual clever
strategy (Alonso et al., 2006), our results suggest they could arise
from Hebbian crosstalk. Interestingly, the X cells, which have the
most precise RFs, receive their retinal inputs on spinelike
dendritic appendages (Sherman, 2007; Sherman and Guillery,
2001), which may promote calcium isolation and hence minimize
crosstalk.
6. Conclusion

Although it is widely appreciated that physics sets ultimate
limits to biology (Bialek, 1987), little attention has been paid to
the physical limits to the process that is of most interest to
humans: learning. The Oja rule is the simplest and best-studied
unsupervised learning rule. It captures the key point that linear
Hebbian learning is driven by pairwise correlations (in the form of
the input covariance matrix). Not surprisingly, when the rule is
inaccurate, it fails to accurately learn the expected (and typically
most useful) result. Although the failure is graceful, it can be
severe when the patterned activity driving growth of particular
weights is rather weak. We propose that even though the
chemical changes driving Hebbian learning are largely confined
to the synapses where learning is induced, the very high density
of synapses along dendrites means that significant crosstalk, and
therefore somewhat degraded learning, is inevitable. In future
work we hope to show that such inevitable crosstalk can
completely prevent Hebbian learning of higher-than-pairwise
correlations, unless additional interesting machinery, roughly
corresponding to the basic neocortical microcircuit, is employed.

While the linear case studied here does not show a learning
collapse at a critical error rate, unlike the situation in genetic
evolution (Eigen et al., 1989; Swetina and Schuster, 1982;
Tarazona, 1992), our recent unpublished results show that a
collapse does occur using nonlinear Hebbian rules. This supports
the original suggestion (Adams, 1998) that Hebbian errors are
analogous to mutations. The advent of the neocortical machinery
that we postulate reduces the error rate would thus be analogous
to the transition from the RNA world to the DNA/protein world
(Orgel, 1994), allowing the emergence of sophisticated learning
(and ‘‘mind’’), a neural analog of Darwinian adaptation (‘‘life’’).

Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2009.01.036.

http://dx.doi.org/10.1016/j.jtbi.2009.01.036
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