
Introduction

The geometry of circles, triangles and quadrilaterals represents some of the oldest mathematics know to man.
At its origins, mathematics was a discovery, not an invention, in that mathematical questions rouse from
inquiries into astronomy, geography, engineering, even astrology and alchemy. The prestigious scientists of
the times would be called today interdisciplinary investigators, except all these fields had not yet consolidated
as separate disciplined, and were fused into one complex approach to studying the world. While Euclid, for
example (around 300 BC) was primarily a mathematician, and essentially the father of a few fields like conic
geometry, and number theory, Pythagoras (around 500 BC) was primarily a philosopher, interested in ethics,
politics and mysticism besides mathematics and Ptolemy (around 100 AD) was also a prominent astronomer,
geographer and astrologer.

A lot of the beautiful and widely used results in geometry were forged in ancient times, often of obscure
origin (while one may be able to locate references where a theorem was state and proved, it is harder to
discard the possibility of earlier accounts, which did not get preserved by history. One must remember that
these early works preceded most of the more modern mathematical formalizations, which came a lot later. For
example, trigonometry did not yet exist even in the times of Ptolemy, hence results could not be formulated
in terms of trigonometric functions, but instead were using arcs and “chords.” A lot of alternative proofs to
ancient results sprouted along history, making use of new developments and mathematical frameworks. Part
of the attraction of coming up with new proofs of an already known result may be to illustrate a progressive
timeline of mathematics, but also to unify the perspective over different fields.

Some history

In this paper, we generalize and discuss a result originally proved by Van Schooten, which in turn relates to
Ptolemy’s Theorem [1]. We present a few proofs: one based directly on the

A proof using Ptolemy’s Theorem

Theorem S3. Consider A1A2A3 an equilateral triangle, and consider P a point on the small arc
_
PA1 of its

circumscribed circle. Then PA1 + PA3 = PA2.

Proof. Since the quadrilateral PA1A2A3 is inscribed in a circle, we can use Ptolemy’s theorem:

PA1 ·A2A3 +A1A2 · PA3 = PA2 ·A1A3

But A1A2 = A2A3 = A1A3 = l, hence l · (PA1 + PA3) = l · PA2 =⇒ PA1 + PA3 = PA2

�

Theorem S5. Consider A1A2A3A4A5 a regular pentagon, and consider P a point on the small arc
_
PA1 of

its circumscribed circle. Then PA1 + PA3 + PA5 = PA2 + PA4.
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Proof. To simplify notation, notice that A1A2 = A2A3 = A3A4 = A4A5 = A5A1 = l, that A1A3 = A2A4 =
A3A5 = A4A6 = A5A2 = d. The quadrilaterals PA1A2A5, PA1A4A5, PA1A2A3 and PA1A3A4 are all
inscribed in the circle, hence we can apply Ptolemy’s theorem for each, and obtain:

• PA5 ·A1A2 + PA1 ·A2A5 = PA2 ·A1A5 =⇒ l · PA5 + d · PA1 = l · PA2

• PA5 ·A1A4 + PA1 ·A4A5 = PA4 ·A1A5 =⇒ d · PA5 + l · PA1 = l · PA4

• PA1 ·A2A3 +A1A2 · PA3 = A1A3 · PA2 =⇒ l · PA1 + l · PA3 = d · PA2

• PA1 ·A3A4 +A1A3 · PA4 = A1A4 · PA3 =⇒ d · PA3 = l · PA1 + d · PA4

Adding the equations side by side, it follows that (d+ l)(PA1 + PA3 + PA5) = (d+ l)(PA2 + PA4), hence:

PA1 + PA3 + PA5 = PA2 + PA4

�

A natural subsequent question is whether the theorem, found true for the S3 and S5 cases, applies in general
for any S2n+1.

Theorem S2n+1. Consider A1 . . . A2n+1 a regular polygon, and consider P a point on the small arc
_
PA1

of its circumscribed circle. Then:

n∑
j=0

PA2j+1 =

n∑
j=1

PA2j

While a proof based directly on Ptolemy’s theorem is somewhat tedious in the general case, below we
present two different approaches, a geometric proof using an auxiliary construction, and an analytic proof
using complex numbers.

A direct proof with congruence

Proof for S3. Recall that A1A2A3 is an equilateral triangle, and that P is on its circumscribed circle, on

the small arc
_
A1A3. We want to prove that PA1 + PA3 = PA2. Since PA1 < PA2 , we can consider the

point B2 on the segment PA2 such that PB2 = PA1. This creates the triangle PA1B2, which is isoceles

(since PA1 = PB2), and has ]A1PB2 =

_
A1A2

2
= ]A1A3A2 = 60◦, hence is equilateral. This implies

PA1 = PB2 = A1B2, and ]PB2A1 = PA1B2 = A1PB2 = 60◦.
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This construction creates a pair of congruent triangles: ∆A1B2A2 ≡ ∆A1PA2. Indeed, ]A1A2B2 =

_
PA1

2
=

]A1A3P , and ]A1B2A2 = ]A1PA3 = 120◦. It follows that the remaining pair of angles are also equal.
Also: A1A2 = A1A3. Hence ∆A1B2A2 ≡ ∆A1PA2 (angle-side-angle criterion). It follows that B2A2 = PA3.
We have thus shown that PA2 = PB2 +B2A2 = PA1 + PA3.

The construction can be generalized for regular polygons with higher numbers of sides, as long as this num-
ber is odd. Below, we work out the cases of a pentagon and a heptagon, illustrating a strategy that clearly
applies in general.

Proof for S5. A1 . . . A5 is a regular pentagon and P is a point on the small arc
_
A1A5. We want to prove

that PA1 + PA3 + PA5 = PA2 + PA4.

Consider points B2, B3 and B4 on the segments PA2, PA3 and PA4 respectively, so that the pentagon
PA1B2B3B4 is regular. This is possible because ]A1PA2 = ]A2PA3 = ]A3PA4 = 36◦.

This construction creates two pairs of congruent triangles: ∆A1B2A2 ≡ ∆A1PA5 and ∆A1B3A3 ≡ ∆A1B4A4.

Indeed: ]A1A2B2 =

_
A1P

2
= ]A1A5P , and ]A1B2A2 = ]A1PA5 = 144◦, implying that the third pair

are also equal: ]A2A1B2 = ]A5A1P . Moreover, A1A2 = A1A5 (as sides of the original regular pen-
tagon). Hence ∆A1B2A2 ≡ ∆A1PA5 (angle-side-angle). It follows directly that B2A2 = PA5. Similarly:

]A1A3B3 =
_
A1P
2 = ]A1A4B4 and ]A1B3A3 = ]A1B4A4 = 144◦. This, together with A1A3 = A1A4

(as diagonals in the original pentagon), imply the congruence ∆A1B3A3 ≡ ∆A1B4A4 (angle-side-angle). It
follows that B3A3 = B4A4. We now have the following:

• PA1 = PB4 (from the construction of our first regular pentagon of side PA1)

• PB3 = PB2 (as equal diagonals of the pentagon above)

• PA5 = B2A2 (from the congruence of the first triangle pair)
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• B3A3 = B4A4 (from the congruence of the second triangle pair)

Hence: PA1 + (PB3 +B3A3) + PA5 = (PB4 +B4A4) + (PB2 +B2A2) =⇒

PA1 + PA3 + PA5 = PA2 + PA4

�

Proof for S7. A1 . . . A7 is a regular pentagon and P is a point on the small arc
_
A1A7. We want to prove

that PA1 + PA3 + PA5 + PA7 = PA2 + PA4 + PA6.

Consider points Bj , for j = 2, 6 on the corresponding PAj segments, so that the heptagon PA1B2 . . . B6

is regular. With this construction, we obtain three pairs of congruent triangles: ∆A1B2A2 ≡ ∆A1PA7,
∆A1B3A3 ≡ ∆A1B6A6 and ∆A1B4A4 ≡ A1B5A5. It follows that:

• PA1 = PB6 (by construction, as equal sides of a regular heptagon)

• PB5 = PB2 (equal diagonals in a regular heptagon)

• PB3 = PB4 (equal diagonals in a regular heptagon)

• PA7 = B2A2 (from the congruence of the first triangle pair)

• B3A3 = B6A6 (from the congruence of the first triangle pair)

• B5A5 = B4A4 (from the congruence of the first triangle pair)

It follows that: PA1 + (PB3 +B3A3) + (PB5 +B5A5) +PA7 = (PB2 +B2A2) + (PB4 +B4A4) +PA6 =⇒

PA1 + PA3 + PA5 + PA7 = PA2 + PA4 + PA6

�

A proof using complex numbers

Call ξ1, ξ2, . . . , ξN the roots fo unity of odd order N = 2n+ 1:

ξk = eiθk = cos(θk) + i sin(θk) = ξk1 , for all k = 1, 2n+ 1

where θk =
2πk

2n+ 1
= kθ1.

Lemma. For any arbitrary θ ∈ [0, θ1], we have that:
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2n+1∑
k=1

(−1)k
∣∣eiθ − eiθk ∣∣ = 0 (1)

Remark. This result does not hold for even roots of unity.

Proof. It is easy to show that:

∣∣eiθ − eiθk ∣∣2 = (cos θ − cos θk)2 + (sin θ − sin θk)2 = 2− 2(cos θ cos θk + sin θ sin θk)

= 2− 2 cos(θk − θ) = 4 sin

(
θk − θ

2

)

Hence: |eiθ − eiθk | = 2

∣∣∣∣sin θk − θ2

∣∣∣∣. Since 0 ≤ θ ≤ θk, it follows that 0 ≤ θk − θ ≤ 2π, so 0 ≤ θk − θ
2

≤ π,

and sin

(
θk − θ

2

)
≥ 0. This means that:

∣∣eiθ − eiθk ∣∣ = 2 sin
θk − θ

2
= 2

(
sin

θk
2

cos
θ

2
− sin

θ

2
cos

θk
2

)
Then the sum in (1) then becomes:

2n+1∑
k=1

(−1)k
∣∣eiθ − eiθk ∣∣ = 2 cos

θ

2

2n+1∑
k=1

(−1)k sin
θk
2
− 2 sin

θ

2

2n+1∑
k=1

(−1)k cos
θk
2

Consider the root of unity of order 2N : ψ = cos
θ1
2

+ i sin
θ1
2

. Hence: ψk = cos
θk
2

+ i sin
θk
2

. Then:

2n+1∑
k=1

(−1)kψk = −ψ ·
2n∑
k=0

(−ψ)k = −ψ · 1 + ψ2n+1

1− ψ

But ψ2n+1 = cosπ + i sinπ = −1, hence

2n+1∑
k=1

(−1)kψk = 0, which means that its real and imaginary parts

are both zero. In other words, both

2n+1∑
k=1

(−1)k cos
θk
2

= 0 and

2n+1∑
k=1

(−1)k sin
θk
2

= 0

hence

2n+1∑
k=1

(−1)k
∣∣eiθ − eiθk ∣∣ = 0.

�

Returning now to our geometry problem, consider any regular polygon with N = 2n+1 vertices A1 . . . A2n+1.
WLOG, the polygon can be transformed (through shifts, rotations and scaling) so that the vertices correspond
to the 2n+ 1 roots of unity. Then our identity follows directly from Lemma 1:

n∑
j=0

PA2j+1 =

n∑
j=1

PA2j
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