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Mathematical Modeling of Retinal
Degeneration: Aerobic Glycolysis
in a Single Cone

Erika Tatiana Camacho, Atanaska Dobreva, Kamila Larripa,
Anca Rǎdulescu, Deena Schmidt, and Imelda Trejo

Abstract Cell degeneration, including that resulting in retinal diseases, is linked
to metabolic issues. In the retina, photoreceptor degeneration can result from
imbalance in lactate production and consumption as well as disturbances to pyruvate
and glucose levels. To identify the key mechanisms in metabolism that may be
culprits of this degeneration, we use a nonlinear system of differential equations to
mathematically model the metabolic pathway of aerobic glycolysis in a single cone
photoreceptor. This model allows us to analyze the levels of lactate, glucose, and
pyruvate within a single cone cell. We perform numerical simulations, use available
metabolic data to estimate parameters and fit the model to this data, and conduct a
sensitivity analysis using two different methods (LHS/PRCC and eFAST) to identify
pathways that have the largest impact on the system. Using bifurcation techniques,
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136 E. T. Camacho et al.

we find that the system has a bistable regime, biologically corresponding to a healthy
versus a pathological state. The system exhibits a saddle node bifurcation and
hysteresis. This work confirms the necessity for the external glucose concentration
to sustain the cell even at low initial internal glucose levels. It also validates
the role of β-oxidation of fatty acids which fuel oxidative phosphorylation under
glucose- and lactate-depleted conditions, by showing that the rate of β-oxidation
of ingested outer segment fatty acids in a healthy cone cell must be low. Model
simulations reveal the modulating effect of external lactate in bringing the system
to steady state; the bigger the difference between external lactate and initial internal
lactate concentrations, the longer the system takes to achieve steady state. Parameter
estimation for metabolic data demonstrates the importance of rerouting glucose
and other intermediate metabolites to produce glycerol 3-phosphate (G3P), thus
increasing lipid synthesis (a precursor to fatty acid production) to support their high
growth rate. While a number of parameters are found to be significant by one or
both of the methods for sensitivity analysis, the rate of β-oxidation of ingested
outer segment fatty acids is shown to consistently play an important role in the
concentration of glucose, G3P, and pyruvate, whereas the extracellular lactate level
is shown to consistently play an important role in the concentration of lactate and
acetyl coenzyme A. The ability of these mechanisms to affect key metabolites’
variability and levels (as revealed in our analyses) signifies the importance of inter-
dependent and inter-connected feedback processes modulated by and affecting both
the RPE’s and cone’s metabolism.

Keywords Retina · Photoreceptors · Aerobic glycolysis · β-oxidation and
differential equations

1 Introduction

Photoreceptors are the sensory cells of the eye, and they are the most energetically
demanding cells in the body [52]. Photoreceptors have the most essential role in
vision, absorbing light photons and processing them to electrical signals that can
be transmitted to the brain. Therefore, vision deterioration or blindness occurs if the
vitality and functionality of photoreceptors are compromised. In order to understand
how to mitigate such pathological cases, it is essential to first obtain a firm grasp of
processes that ensure the health of photoreceptors. The factor of upmost importance
for photoreceptor vitality and functionality is metabolism.

To maintain their high metabolic demands and prevent accumulation of photo-
oxidative product, the photoreceptors undergo constant renewal and periodic shed-
ding of their fatty acid-rich outer segment (OS) discs. Aerobic glycolysis is integral
to the renewal process. It facilitates the production of energy and the synthesis of
phospholipids, both which are required for OS renewal. Phagocytosis of the shed OS
by the retinal pigment epithelium (RPE) contributes to the creation of intermediate
metabolites fundamental for photoreceptor energy production via β-oxidation [1].
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Understanding the dynamics of glucose and lactate levels in aerobic glycolysis in
a single cone cell is essential to maintain cone functionality and hence to preserve
central vision. Studies in rod-less retinas have shown that maintaining functional
cones even when 95% are gone may stop blindness [11, 30]. The purpose of this
study is to analyze the key mechanisms affecting the levels of glucose, pyruvate,
and lactate in a single cone cell via a first approximation mathematical model, with
the goal of gaining insight into the interplay of glucose consumption and lactate
production and consumption that may affect normal cone function.

1.1 Biological Background and Modeling Assumptions

1.1.1 Photoreceptors and Retinal Pigment Epithelium (RPE)

Photoreceptors are specialized neurons that convert light into electrical signals that
can be interpreted by the brain [37]. There are two types of photoreceptor cells:
rods and cones. Cones are densely packed in the center of the retina and are
responsible for color vision and high acuity. Rods have high sensitivity to light,
are distributed on the outer edges of the retina, and are responsible for night and
peripheral vision. In the human retina, there are approximately 90 million rod cells
and 4.5 million cone cells [15], making rods twenty times more prevalent than cones.
In the mature human retina (by about age 5 or 6), there are no spontaneous births of
photoreceptors, making their preservation and vitality critical [10]. Photoreceptor
shedding and renewal of their OS has been considered as a type of death and
birth process, as it is the mechanism by which photoreceptors discard unwanted
elements (e.g., accumulated debris or toxic photo-oxidative compound in shed
OS discs) and renew themselves through the recycling of various products. This
process is a measurement of the photoreceptor’s energy uptake and consumption
and associated metabolism [11, 12]. The shedding and renewal process and the
associated metabolism of photoreceptors involve the RPE. The photoreceptors and
the RPE work as a functional unit; glucose is transported from the RPE to the
photoreceptors for their metabolism, lactate produced by photoreceptors and other
retina cells is shuttled to the RPE for its metabolism, and the RPE mediates the
phagocytosis of photoreceptor OS and recycling of fatty acids from these OS discs
which are utilized in oxidative phosphorylation (OXPHOS) in the production of
acetyl coenzyme A (ACoA); see Fig. 1. However, as a first approximation we will
not consider the role of the RPE but instead integrate the feedback mechanisms back
into the cone cell via β-oxidation and external lactate transport.

The RPE lies between the choroid and a layer of photoreceptors. In addition to
functioning as the outer blood retinal barrier and transporting glucose to photore-
ceptor cells through GLUT1 (a facilitated glucose transporter), the RPE is involved
in the phagocytosis of photoreceptor OS discs [57]. It serves as the principal
pathway for the exchange of metabolites and ions between the choroidal blood
supply and the retina [14]. Müeller cells are a layer of retinal glial cells and also
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Fig. 1 Schematic of metabolic pathways and substrate sources in the photoreceptors. This
schematic shows that glucose and lactate flow between the cone photoreceptor and the RPE cell
layer. It illustrates the contribution of glycolysis in providing energy to the cone cell and its role in
helping generate cone outer segments. β-Hydroxybutyrate oxidation (β-HB) comes from oxidation
of fatty acids from the shed outer segments, so that under starvation or low glucose levels they can
be used as oxidative substrates [1]

provide support to photoreceptors. They can release lactate which is metabolized
by photoreceptors [41] and store glycogen which can be broken down to glucose.
A thorough investigation should consider the interaction of the three cell types.
However, in this work we consider, as a first step, a single cone photoreceptor in
the human retina and model the metabolic pathways present. This analysis provides
the foundation for a future application of the model: prediction of the interplay of
metabolites from three cell types (RPE, photoreceptors, and Müeller) coexisting in
the retina.

1.1.2 Glycolysis and Oxidatative Phosphorylation

Photoreceptors are responsible for the majority of the energy consumption in the
retina [38, 50]. Active transport of ions against their electrical and concentration
gradients in neurons is required to repolarize the plasma membrane after depo-
larization, and this process is what consumes the most energy in photoreceptors
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[37, 52]. Moreover, the continual renewal and periodic shedding of OS [56] is also
an extremely energetically demanding process.

All life on Earth relies on adenosine triphosphate (ATP) in energy transfer. ATP is
produced via two pathways, oxidative phospholylation and glycolysis. Glycolysis,
through a series of reactions (described in detail in Sect. 2.1), converts one molecule
of glucose into two molecules of pyruvate, yielding two net molecules of ATP.
If oxygen is present, pyruvate is typically converted to ACoA and enters the
tricarboxylic acid (TCA) cycle, generating 32 net ATP molecules through OXPHOS.
If oxygen is scarce, or if a cell has been metabolically reprogrammed, pyruvate is
instead converted to lactate. However, photoreceptor cells use both pathways for
energy production in the presence of oxygen with the vast majority of pyruvate
being converted into lactate. In other words, despite only producing two molecules
of ATP (versus 32 via OXPHOS), photoreceptors go through glycolysis as well as
OXPHOS.

Glucose serves as the primary fuel in photoreceptors [13] and is broken down
through aerobic glycolysis (glycolysis even in the presence of oxygen), termed the
Warburg effect [2]. The Warburg effect has long been noted as a hallmark of tumors
[23], but is also present in healthy tissue, particularly if their biosynthetic demands
are high. Aerobic glycolysis maintains high fluxes through anabolic pathways and
creates excess carbon which can be exploited for generation of nucleotides, lipids,
and proteins, or diverted to other pathways branching from glycolysis, such as the
pentose phosphate pathway and Kennedy pathway [32].

During glycolysis, glucose is transported into the cell. Rod-derived cone viability
factor (RdCVF), which is secreted by rod photoreceptors, accelerates the uptake
of glucose by cones through its binding with the glucose transporter complex
1/Basigin-1 (GLUT1/BSG-1) and stimulates aerobic glycolysis [3]. RdCVF also
protects cones from degeneration [28, 53]. When glucose is in short supply,
photoreceptors have the ability to take up and metabolize lactate [41].

1.1.3 Lactate Secretion and Consumption

Photoreceptors can produce lactate from pyruvate and secrete it out of the cell or
consume external lactate and convert it to pyruvate for OXPHOS if there is too much
lactate in the extracellular space. The influx of lactate from the extracellular space
would almost certainly slow the rate of glycolysis in the cell because any resulting
higher intracellular lactate concentration shifts the lactate dehydrogenase (LDH)-
catalyzed reaction equilibrium toward a higher NADH/NAD+ ratio. Under normal
conditions, retinal cells oxidize cytosolic NADH to NAD+ (via the reduction/con-
version of pyruvate to lactate in order to regenerate the NAD+). This lactate is
transported out of the cell, thus increasing the amount of extracellular lactate. When
glucose is low, such as during hypoglycemia or aglycemia conditions or hypoxia,
oxidation of external lactate and fatty acids (via β-oxidation) to generate ACoA and
thus produce energy (ATP) is favored [51]. When the photoreceptor cell undergoes
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OXPHOS, it makes citrate which provides an inhibitory feedback to glycolysis when
other intermediates for ATP production are high, indicating additional glucose is not
needed.

Glucose from the choroidal blood passes through the RPE to the retina where
photoreceptors convert it to lactate, and in return, photoreceptors then export lactate
as fuel for the RPE and for neighboring cells [26]. It has been hypothesized that
photoreceptors also take up lactate for energy under low glucose levels. In humans,
insufficient lactate transported out of the cone and rod cells for RPE consumption
can suppress transport of glucose by the RPE. In such a case, the RPE takes glucose
for its metabolism thereby decreasing the amount of glucose that is transported to
the photoreceptors. Thus, lactate secretion for RPE consumption and external lactate
consumption by photoreceptors is a balance process.

1.1.4 Modeling Assumptions

Our model consolidates some of the steps in the glycolytic pathway in a single cone,
for simplicity. Glucose is initially transported into the cell, and the rate of transport
is amplified by the release of RdCVF from rods. The rate of transport is gradient
dependent and modulated by the difference in the amount of glucose inside and
outside the cell. The next step is the conversion of glucose in the cell into glucose-
6-phosphate (G6P) by the enzyme hexokinase 2. This phosphorylation also works
to trap glucose in the cell’s cytosol. Some G6P is diverted to the pentose phosphate
pathway (not included in our model), while the rest moves through the glycolytic
pathway. The enzyme phosphofructokinase (PFK) converts fructose-6-phosphate
to fructose 1,6-biphosphate (not explicitly included in our model). This in turn is
cleaved into two sugar molecules, one of which is dihydroxyacetone phosphate
(DHAP), the substrate for the next reaction. DHAP is converted to glycerol-3-
phosphate (G3P) in the Kennedy pathway and glyceraldehyde-3-phosphate (GAP)
in the glycolytic pathway. The latter metabolite is not explicitly considered in our
model. A number of sequential reactions occur, with the ultimate step aided by the
enzyme pyruvate kinase, resulting in pyruvate. Since our model considers a single
cone, we use the presence of the metabolite concentration [G3P] with an appropriate
scaling factor as a proxy for the amount of RdCVF synthesized by the rods. RdCVF
accelerates glucose uptake in cones [3, 28, 53].

Specifically, our model incorporates the uptake and consumption of glucose, the
production of G3P and pyruvate, and key consecutive chemical reactions in the
cone cell involving lactate, ACoA, and citrate. Pyruvate is converted to lactate,
which is then transported out of the cell. A portion of pyruvate is also transferred
to the mitochondria; there it is converted to ACoA and goes through OXPHOS,
creating citrate, which leads to the production of ATP but also negatively regulates
the glycotic pathway. Citrate inhibits phosphofructokinase (PFK) which slows down
the production of G3P and pyruvate. G3P leads to the production of lipids which are
used to create OS that are shed and phagocytized periodically. The fatty acids from
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Single Cone Photoreceptor Model
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Fig. 2 Flow diagram of the key metabolic pathways within a single cone photoreceptor. Parame-
ters corresponding to each pathway are labeled with black letters while metabolic pathways are
labeled with blue letters (a-l). Parameters are described in Table 2. Brief descriptions of each
pathway are given in Table 1 and are described in detail in Sect. 2.1

the shed OS can feed back into the cone cell as β-hydroxybutyrate (β-HB) which
serves as a substrate for ACoA production. Through the process of β-oxidation fatty
acids in the RPE result in β-HB. The specific pathways are outlined in Fig. 2, and
specific evidence is presented for each pathway in detail below.

2 Mathematical Model

We model six key steps in the glycolytic pathway as a system of six nonlinear
ordinary differential equations that describes metabolic pathways in a single cone.
Specifically, we track the temporal dynamics of the following six concentrations
in the cell: internal glucose ([G]), glycerol-3-phosphate ([G3P]), pyruvate ([PYR]),
lactate ([LACT]), acetyl coenzyme A ([ACoA]), and citrate ([CIT]). The chemical
reactions and up- and down-regulations included in this model are illustrated in
Fig. 2 and listed in Table 1. In Sect. 2.1, we discuss the biological basis for each
interaction pathway used in the model. In Sects. 2.2 and 2.3, we give the model
equations and parameter values used, respectively.
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Table 1 Description of metabolic pathways in the model

Pathway Description References

a Gradient transport of glucose [33, 40]

b Glucose uptake; without and with RdCVF [3, 10, 53]

c Glycolytic flow diverted to G3P [43, 46]

d Glycolytic flow diverted to pyruvate [6]

e Glycolysis inhibition by citrate [6]

f Gradient gating mechanism to transport lactate out of the cell [5, 8, 9, 22, 25]

g Fraction of pyruvate concentration converted into lactate [18, 41, 55]

h Gradient gating mechanism to transport lactate into the cell for
ACoA production

[6, 20]

i Fraction of pyruvate concentration converted into ACoA [36, 47]

j Conversion of ACoA to citrate [47]

k β-HB utilized in production of ACoA [1]

l Diversion of citrate to the cytosol and other metabolic pathways [47]

2.1 Kinetic Pathways in the Model

Here, we provide details of all model pathways shown in Fig. 2 and described in
Table 1. These pathways represent a reduced system, with some pathways omitted
and elements implicitly modeled via proxies. There are multiple intermediates
produced in glycolysis and oxidative phosphorylation which are not explicitly
considered in this work. In order to focus on production and consumption of glucose,
lactate, and pyruvate in a single cone cell we reduce the system to its most essential
components and pathways.

Pathway a: gradient transport of glucose
In the retina, sodium independent glucose transporters (GLUTs) transport glu-

cose by facilitated diffusion down its concentration gradient [40]. GLUT1 is found
in human photoreceptor outer segments [33]. We model this pathway by considering
the difference between external glucose concentration (the parameter GE in our
model) and the internal glucose concentration, the variable [G]. The parameter λ is
a constant of proportionality that governs the rate of glucose uptake based on the
concentration gradient.

Pathway b: glucose uptake without and with stimulation of GLUT1 by
RdCVF

Rod-derived cone viability factor (RdCVF) is secreted in a paracrine manner
by rod photoreceptors and protects cones from degeneration [3, 53]. It binds with
the GLUT1/BSG-1 complex to activate GLUT1 and accelerates the entry of glucose
into the cone. We use [G3P] together with an appropriate scaling factor incorporated
into δ as a proxy for the RdCVF that is synthesized by the rods. G3P is needed for
phospholipid synthesis resulting in the renewal of photoreceptor OS [10]. Since for
every cone cell there are approximately 20 rods in the human retina and G3P in
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our model is a measurement of the cone OS, we scale concentrations to account for
rods’ secretion of RdCVF that accelerates glucose uptake and supports cone vitality.

Note that the parameter n is included in this term so that even in the absence of
RdCVF or our proxy for rods, glucose is passively transported down its gradient
(bidirectionally) into the intracellular space of the cone cell. Thus, λn is the glucose
uptake rate of our cone cell in the absence of RdCVF. The uptake of glucose due to
RdCVF is an allosteric reaction, and therefore there is a binding time requirement
for the enzyme to catalyze the reaction. We therefore use a Hill type function with
a Hill coefficient of 2 to model the sigmoidal response [10, 42].

Pathway c: glycolytic flow diverted to G3P
The sequence of reactions leading to G3P are glucose to glucose-6 phosphate

to fructose 6-phosphate to fructose 1,6-biphosphate to dihydroxyacetone phosphate
(DHAP), and then G3P. Figure 2 indicates the many intermediate steps which are
skipped with the ellipsis in the diagram. We model the conversion of glucose to G3P
with a Hill type function where V[G3P] is the maximal rate of conversion (controlled
by the rate-limiting allosteric enzyme PFK described above) of glucose to G3P and
K[G3P] is the concentration of the ligand that gives half-maximal activity [46].

Pathway d: glycolytic flow diverted to pyruvate
We skip intermediate reactions to focus on the key metabolites of interest;

glucose, pyruvate, and lactate. We take a similar approach as in pathway c and
consider glucose to be the substrate in the reaction resulting in the production of
pyruvate. We can infer from known aerobic glycolysis that the substrate (in this
case glucose) which is not converted to G3P is converted to pyruvate [6]. Thus, a
fraction q of glucose gets converted to G3P, while the remaining fraction 1 − q gets
converted to pyruvate.

Pathway e: glycolysis inhibition by citrate
The flux through the glycolytic pathway must be responsive to conditions both

inside and outside the cell, and the enzyme phosphofructokinase (PFK) is a key
element in this control. PFK is inhibited by citrate, which enhances the allosteric
inhibitory effect of ATP [6]. Elevated citrate levels indicate that biosynthetic
precursors are readily available and additional glucose should not be degraded. The
form of the function capturing this inhibition is reciprocal to the concentration of
citrate and is multiplied to the metabolic reactions that involve glucose as a substrate
down the glycolysis pathway (i.e., the reactions that produce G3P and pyruvate).

Pathway f: gradient gating mechanism to transport lactate out of the cell
Monocarboxylate transport proteins (MCT) are a family of plasma membrane

transporters and allow lactate, pyruvate, and ketone bodies to be actively transported
across cell membranes [5]. The RPE expresses various isoforms of the MCT
transporter [9], as do the photoreceptors, Müeller cells, and the inner blood-retinal
barrier. Inhibition of MCT results in retinal function loss [9], mainly due to lactate
accumulation in the extracellular space. The lactate transport rate is dependent on
pH, temperature, and concentration of internal lactate relative to external cellular
lactate [25]. MCTs faciliate lactate transport down the concentration and pH gra-
dients [8]. MCT1 is particularly important for reducing conditions of intracellular
acidification when glycotic flux is high [22]. MCT1 transports lactate out of the
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photoreceptors and into the RPE. We incorporate this process in our model with
pathway f.

Lactate flux out of the cell depends on the concentration gradient, pH, and
temperature. We model this using a gating function f ([LACT]); see Equation 8. For
large binding affinity of lactate transporter (i.e., for large k values), if the external
lactate concentration LE exceeds the internal lactate concentration [LACT], the gate
closes, and the external lactate is directed to OXPHOS via function h([LACT]) to
produce ACoA; see Equation 9. The height of this function represents the maximal
flux possible, physiologically limited by the concentration and expression of MCT1.

Pathway g: fraction of pyruvate concentration converted into lactate
Pyruvate is converted to lactate in glycolysis. This metabolic reaction is pro-

moted by increased expression of the enzyme lactate dehydrogenase A (LDHA)
and inactivation of pyruvate dehydrogenase [18, 41]. The conversion and direction
of the reaction from pyruvate to lactate depends on lactate dehydrogenase subtypes;
photoreceptors express LDHA which favors the production of lactate from pyruvate
[10].

Pathway h: gradient gating mechanism to transport lactate into the cell for
ACoA production

Pyruvate dehydrogenase complex (PDC) converts pyruvate to ACoA. The con-
sumption of lactate back into the cell depends on a gating mechanism modulated by
the pH levels and the lactate gradient inside and outside the cell. While LDHA
converts pyruvate to lactate, lactate dehydrogenase B (LDHB) converts lactate
to pyruvate. The latter reaction involves external lactate and the newly acquired
pyruvate does not convert back to lactate but rather goes into the mitochondria
where it becomes a substrate in the production of ACoA. The conversion of lactate
to pyruvate and vice versa also depends on NAD+ and NADH levels as they can
drive things in one direction or another. When lactate is used as an energy source,
lactate carbon is ultimately inserted into the TCA cycle in the mitochondria.

Glycolysis and gluconeogenesis are coordinated so that within one cell, one
pathway is relatively inactive while the other is highly active. The rate of glycolysis
is governed by the concentration of glucose whereas the rate of gluconeogenesis is
governed by the concentration of lactate [20]. Inhibition of the enzyme PFK (which
drives glycolysis) and abundance in [CIT] activates gluconeogenesis [6]. Rather
than modeling all steps of gluconeogenesis, we let external lactate feed directly to
ACoA and do not track its passage through pyruvate. This mechanism consolidates
entry of lactate into the cell.

Pathway i: fraction of pyruvate converted into ACoA
After pyruvate is produced, its flux branches off and a fraction ρ of pyruvate is

transferred to the mitochondria by the mitochondrial pyruvate carrier and converted
into ACoA. During glycolysis, the mitochondrial pyruvate dehydrogenase complex
catalyzes the oxidative decarboxylation of pyruvate to produce ACoA [36, 47].

Pathway j: conversion of ACoA to citrate
In the mitochondria, the enzyme citrate synthase catalyzes the conversion of

ACoA and oxaloacetate into citrate [47].
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Pathway k: fatty acids utilized in production of ACoA
During the shedding and subsequent phagocytosis of the OS, a source of fatty

acids is created [1]. This itself can be used for metabolism, and feeds directly into
ACoA. As depicted in pathway k, we use G3P as a proxy for the substrates that are
created through β-oxidation (the process by which fatty acid molecules are broken
down in the mitochondria to generate ACoA). G3P is converted to lipids which
form the photoreceptor’s OS that eventually get shed and become phagolysosomes
containing fatty acids. These fatty acids can be oxidized and generate ACoA. ACoA
leads to the production of β-Hydroxybutyrate (β-HB) via ketogenesis which can be
used as an oxidative substrate in the TCA cycle when glucose is low. In conditions
of glucose starvation, fatty acids are released, broken down, oxidized, and used to
produce ketones that can be used to fuel the cone cell. In our mathematical model,
we do not directly model ketogenesis but instead G3P serves as a proxy for β-
oxidation of fatty acids from ingested OS.

Pathway l: diversion of citrate to the cytosol and other metabolic pathways
Citrate in the mitochondria can be oxidized via the TCA cycle, or it can be

moved to the cytosol to be cleaved by ATP citrate lyase, which regenerates ACoA
and oxaloacetate. This pathway redirects ACoA away from the mitchondria under
conditions of glucose excess [47]. It reduces the glycolytic flux coming into the
TCA cycle and signals the cone cell that ATP is high and there is no need for glucose
metabolism.

2.2 Model Equations

Following the flow diagram given in Fig. 2, we apply mass-action Michaelis-Menten
kinetics and allosteric regulations to the relevant parts of the variable interactions to
yield the resulting system of equations:

d[G]
dt

=
a︷ ︸︸ ︷

λ(GE − [G])

b︷ ︸︸ ︷(
V[G](δ[G3P])2

K2[G] + (δ[G3P])2
+ n

)

−

⎛
⎜⎜⎜⎝

c︷ ︸︸ ︷
qV[G3P][G]2

K2
[G3P] + [G]2

+

d︷ ︸︸ ︷
(1 − q)V[PYR][G]2

K2
[PYR] + [G]2

⎞
⎟⎟⎟⎠

e︷ ︸︸ ︷(
1

1 + β[CIT]

)
(1)

d[G3P]
dt

=

c︷ ︸︸ ︷
qV[G3P][G]2

K2
[G3P] + [G]2

e︷ ︸︸ ︷(
1

1 + β[CIT]

)
−

k︷ ︸︸ ︷
α[G3P] (2)
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d[PYR]
dt

=

d︷ ︸︸ ︷
(1 − q)V[PYR][G]2

K2
[PYR] + [G]2

e︷ ︸︸ ︷(
1

1 + β[CIT]

)

−
g︷ ︸︸ ︷

(1 − ρ)V[LACT][PYR]
K[LACT] + [PYR] −

i︷ ︸︸ ︷
ρV[ACoA][PYR]

K[ACoA] + [PYR] (3)

d[LACT]
dt

=
g︷ ︸︸ ︷

(1 − ρ)V[LACT][PYR]
K[LACT] + [PYR] −

f︷ ︸︸ ︷
f ([LACT])([LACT] − LE) (4)

d[ACoA]
dt

=
i︷ ︸︸ ︷

ρV[ACoA][PYR]
K[ACoA] + [PYR] +

h︷ ︸︸ ︷
h([LACT])(LE − [LACT])

−
j︷ ︸︸ ︷

V[CIT][ACoA]
K[CIT] + [ACoA] +

k︷ ︸︸ ︷
α[G3P] (5)

d[CIT]
dt

=
j︷ ︸︸ ︷

V[CIT][ACoA]
K[CIT] + [ACoA] −

l︷ ︸︸ ︷
φ[CIT] (6)

The model consists of 25 parameters defining various metabolic kinetic processes
affecting internal [G], [PYR], and internal [LACT] within a cone cell; see Table 2.
Since we are not incorporating the RPE and the rod cells, we consider three
intermediate metabolites, G3P, ACoA, and citrate, that affect energy production and
are sources of feedback mechanisms. The former two provide feedback mechanisms
for glucose and fatty acids (in the form of β-HB) to enter the cone cell. They are
proxies for mechanisms being mediated by the RPE and rod cells. The metabolite
G3P in a healthy cone cell can be used to approximate the rods that synthesize
RdCVF as well as the fatty acids that are β-oxidized, converted to β-HB, and
contribute to ACoA. The intermediate metabolite ACoA is a product of pyruvate
and OS fatty acids and is the entry point of the citric acid cycle, also known as
the Krebs cycle or tricarboxylic acid (TCA) cycle. Citrate provides a self-regulating
mechanism through its inhibition of PFK. If citrate builds up, it signals the cell that
the citric acid cycle is backed up and does not need more intermediates to create
ATP, slowing down glycolysis. This in turn reduces the production of pyruvate
and lactate. The six key metabolic processes under consideration in this study are
described by equations (1)–(6) and the 25 parameters, following key features of
photoreceptor biochemistry [10, 29, 31]. As such, we define glycerol-3-phosphate as
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Table 2 Parameter descriptions and units

Parameter Description Units

λ Transport conversion factor mM−1

V[G] Maximum transport rate of glucose mM·min−1

K[G] Substrate concentration that gives half the maximal rate of V[G] mM

n Rate of passive glucose transport in the absence of RdCVF mM·min−1

δ Scaling factor for contribution of RdCVF by rods no units

q Fraction of G converted into G3P no units

V[G3P] Maximum production rate of G3P mM·min−1

K[G3P] Substrate concentration that gives half the maximal rate of V[G3P] mM

V[PYR] Maximum production rate of PYR mM·min−1

K[PYR] Substrate concentration that gives half the maximal rate of V[PYR] mM

β Rate of CIT inhibition of G catabolism (multiplied by an
appropriate conversion factor)

mM−1

α Rate of β-oxidation of ingested OS fatty acids (created from G3P) min−1

to generate the β-HB substrate for ACoA

ρ Fraction of PYR converted into ACoA no units

V[LACT] Maximum production rate of LACT mM·min−1

K[LACT] Substrate concentration that gives half the maximal rate of V[LACT] mM

V[ACoA] Maximum production rate of ACoA mM·min−1

K[ACoA] Substrate concentration that gives half the maximal rate of V[ACoA] mM

φ Rate of CIT converted to ATP min−1

V[CIT] Maximum production rate of CIT mM·min−1

K[CIT] Substrate concentration that gives half the maximal rate of V[CIT] mM

ψ Maximum velocity of lactate transport min−1

k Measurement of binding affinity of lactate transporter mM−1

γ Maximum velocity of lactate transport contributing to ACoA min−1

GE Concentration of glucose outside the cell mM

LE Concentration of lactate outside the cell mM

G3P, which should not be confused with glyceraldehyde-3-phosphate (abbreviated
as GAP, G3P, and GA3P in some literature).

Equation (1) describes the rate of change with respect to time of the glucose
concentration. It increases or decreases proportionally to bidirectional glucose
transport and decreases by catalysis. The transport function of [G3P] [10]:

λn + λ
V[G](δ[G3P])2

K2[G] + (δ[G3P])2
(7)

accounts for the passive transport term (first term of Equation (7)) and the facilitated
transport term (second term of Equation (7)). In passive transport, glucose crosses
the membrane without activation and stimulation by the facilitated transporter
GLUT1, while in facilitated transport, RdCVF stimulates the transport activity of
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GLUT1 by triggering its tetramerization and accelerating the uptake of glucose [10].
The expression δ[G3P] accounts for the concentration of RdCVF synthesized by rod
phothoreceptors since it is assumed that RdCVF concentration is in proportion to
[G3P].1

We model q as the fraction of [G] that is converted into [G3P] and 1 − q as
the remaining fraction of [G] that is converted into [PYR]. The metabolism of
glucose into these two metabolites is inhibited by [CIT], where β is the rate of
citrate inhibition of glucose catabolism.

Equation (2) describes the rate of change with respect to time of the G3P
concentration. [G3P] increases with an influx of glucose, which is inhibited by
citrate, and decreases by production of OS, which serves as a measurement of β-
oxidation of ingested OS fatty acids that contribute to the production of ACoA. We
are taking catabolism of α[G3P] as a proxy for OS fatty acids converted into ACoA.2

Equation (3) describes the rate of change with respect to time of the pyruvate
concentration. [PYR] increases with an influx of glucose, which is inhibited by
citrate, and decreases by its conversion into lactate and ACoA. The factor (1 − ρ)

accounts for the fraction of [PYR] converted into lactate while ρ accounts for the
fraction of [PYR] converted into ACoA.

Equation (4) describes the rate of change with respect to time of the lactate
concentration. [LACT] increases by conversion of pyruvate to lactate via aerobic
glycolosis and increases or decreases by bidirectional lactate transport. The lactate
transport rate is modeled with a logistic function as follows:

f ([LACT]) = ψ

1 + e−k
([LACT]−LE

) , (8)

where ψ is the maximum transport rate, LE is the extracellular concentration of
lactate, and k is the binding affinity of lactate transporters which corresponds to the
steepness of the curve f .

Since LE accounts for the lactate concentration outside of the cell, the gradient
flux of lactate is from inside to outside of the cell when [LACT] > LE , while
the opposite gradient flow occurs when [LACT] < LE . If external lactate is in
abundance, then the transport rate out of the cell is very small, i.e.,

f ([LACT]) ≈ 0, when LE � [LACT].

In other words, if lactate inside of the cell is scarce, relative to external lactate,
then the transport of lactate out of the cell is a slow process. If the intracellular

1There are approximately 20 rods per each cone in the human retina (and 25 to one in mice retina).
G3P leads to the production of lipids which result in new photoreceptor OS. Thus we take [G3P]
as a proxy for rods with the appropriate scaling factor incorporated into δ, the scaling factor for
contribution of RdCVF by rods.
2Since we are not considering the RPE, we will utilize α[G3P] as a proxy for the metabolite β-
hydroxybutyrate produced by the PRE and utilized by the photoreceptor’s TCA.



Mathematical Modeling of Retinal Degeneration: Aerobic Glycolysis in a Single Cone 149

lactate concentration is much larger than the extracellular concentration, then lactate
transport out of the cell is faster, i.e.,

f ([LACT]) ≈ ψ, when [LACT] � LE.

Equation (5) describes the rate of change with respect to time of the ACoA
concentration. [ACoA] increases by PYR leakage to the mitochondria and β-HB
produced from OS fatty acids generated by G3P lipid synthesis. It also increases
or decreases by bidirectional lactate transport and decreases by its conversion into
citrate. The lactate transport rate is modeled with a logistic function as follows:

h([LACT]) = γ e−k
([LACT]−LE

)

1 + e−k
([LACT]−LE

) , (9)

where γ is the maximum transport rate and k is the steepness of the curve
h([LACT]).3 The extracellular lactate that comes into the cell gets converted into
pyruvate which is immediately shuttled to the mitochondria for OXPHOS, and there
is no re-conversion of lactate. Mathematically, this means that we can directly model
the gradient influx of external lactate into the mitochondria and the conversion of
this lactate to ACoA with the transport rate h([LACT]). The conversion of LE to
ACoA is metabolically faster when external lactate is in abundance, i.e.,

h([LACT]) ≈ γ, when LE � [LACT].

However, when the LE is scarce, its contribution to the production of ACoA is
negligible, i.e.,

h([LACT]) ≈ 0, when [LACT] � LE.

Equation (6) describes the rate of change with respect to time of the citrate
concentration. [CIT] increases by the conversion of ACoA into citrate and decreases
by its conversion into other intermediate metabolites leading to the creation of ATP.

In our model every resulting product becomes the substrate in the next metabolic
reaction, with the exception of citrate, the last metabolite in our sequence of
metabolic reactions, and lactate, which is modulated by LE . The metabolic conver-
sion of the substrates [G], [G3P], [PYR], and [ACoA] into their respective products,
given by the variables in equations (1)–(6), are modeled with Hill type functions:

VmSn

Kn
d + Sn

,

3By the inverse relation of the functions f ([LACT]) and h([LACT]), the parameters k and LE

have the analogous meaning with respect to each function.
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where Vm is the maximal velocity of the reaction, Kd is the dissociation constant
(or equivalently concentration of the substrate at which the conversion rate achieves
its half-maximum value) and n = 1, 2 is the Hill coefficient. This coefficient relates
to the number of binding sites available in the enzyme. When there is cooperative
binding, n is greater than one, illustrating higher binding affinity of the substrate to
the enzyme [46]. We modeled allosteric regulation kinetics with n = 2, indicative of
multiple binding sites and enzyme cooperation, which results in increased substrate
conversion rates after the first binding event.

2.3 Parameter Values

All model parameters and their meaning are described in Table 2. We performed
an extensive literature search to identify and justify parameter values and ranges
used in the model; see Table 3. When human values were not available, we used
animal values. Note that even through V[G3P] and V[PYR] have the same baseline
values, their corresponding range values, used later for the sensitivity analysis, are
different. When metabolic parameter values for retina cells were not available, we
used values from brain, heart, liver, or muscle tissues. Cancer cells can also serve
as a case study to investigate the predictive capabilities of our model, as they also
exhibit the Warburg effect, converting glucose to lactate even in the presence of
oxygen. Since both cancer and photoreceptor cells utilize aerobic glycolysis for
metabolism and both are high energy demanding cells, we used cancer data to see
how well our cone cell model extends to other aerobic glycolysis systems.

3 Numerical Results

3.1 Model Validation

With parameter values in empirical ranges, we first verified that the model predicts
a temporal evolution comparable to that observed in data. To do this, we compared
model simulations with results from an empirical study in cancer cells, which
provided measurements of the intracellular concentrations of glucose, lactate,
and pyruvate over a period of four hours [54]. Ying et al. [54] measured these
concentrations at six time points (0, 0.5, 1, 2, 3, and 4 h). 4T1 (breast cancer
line) cells were cultured in 10 mM of both glucose and lactate with a pH of
7.4. The concentrations of glucose, lactate, and pyruvate were measured using a
spectrophotometer.4 We averaged the experimental results and used the resulting

4The authors generously shared their data used to generate their Figure 1B for three cells for each
experiment.



Mathematical Modeling of Retinal Degeneration: Aerobic Glycolysis in a Single Cone 151
Ta

bl
e
3

Pa
ra

m
et

er
va

lu
es

us
ed

in
si

m
ul

at
io

ns
fo

r
ph

ot
or

ec
ep

to
r

m
od

el
an

d
ca

nc
er

ce
lls

N
or

m
al

ph
ot

or
ec

ep
to

r
m

od
el

C
an

ce
r

ce
lls

Pa
ra

m
et

er
R

an
ge

va
lu

e
B

as
el

in
e

va
lu

e
R

an
ge

va
lu

e
B

as
el

in
e

va
lu

e
R

ef
er

en
ce

λ
[0.

06
2,

0.
09

3]
0.

07
55

[0.
05

4,
0.

10
1]

[1
0]

+ &
E

st

V
[G

]
[0.

1,
1.

56
]

1.
2

[1
0,

54
]

K
[G

]
[5,

24
.7

]
19

[1
0,

54
]+

n
[0.

00
07

,
0.

00
13

]
0.

00
1

[1
0]

+

δ
[45

.5
,
95

]
65

[1
0]

+

q
[0.

04
,
0.

2]
0.

18
[0.

33
6,

0.
62

4]
0.

38
[3

9]
+

&
E

st

V
[G

3P
]

[0.
12

,
0.

18
]

0.
15

[1
0]

K
[G

3P
]

[0.
02

,
0.

17
1]

0.
14

3
[1

0]
+

V
[P

Y
R

]
[0.

00
13

,
0.

39
15

]
0.

15
[1

0,
54

]

K
[P

Y
R

]
[0.

05
,
2.

21
]

1.
7

[1
0,

54
]+

β
[0.

7,
1.

3]
1

[0.
56

,
1.

04
]

0.
8

[1
9]

+
&

E
st

α
[0.

00
2,

1]
0.

2
[1

0]
+

ρ
[0.

04
,
0.

06
]

0.
05

[1
0,

16
,1

7,
21

,5
1]

V
[L

A
C

T
]

[0.
09

8,
0.

33
]

0.
14

[1
0,

54
]

K
[L

A
C

T
]

[0.
08

75
,
10

]
0.

12
5

[1
0,

54
]+

V
[A

C
oA

]
[0.

10
5,

0.
19

5]
0.

15
[5

4]

K
[A

C
oA

]
[0.

00
5,

0.
02

]
0.

02
[3

5]

φ
[0.

7,
1.

3]
1

[0.
35

,
0.

65
]

0.
5

[4
]

&
E

st

V
[C

IT
]

[0.
02

1,
0.

03
9]

0.
03

[0.
07

,
0.

13
]

0.
1

[4
,3

5]
&

E
st

K
[C

IT
]

[0.
00

46
,
0.

00
70

2]
0.

00
54

[0.
35

,
0.

65
]

0.
5

[3
5]

&
E

st

ψ
[6.

4,
9.

6]
8

[1
0]

k
[7,

13
]

10
[0.

31
5,

0.
58

5]
0.

45
C

S
&

E
st

γ
[0.

7,
1.

3]
1

[0.
01

05
,
0.

01
95

]
0.

01
5

[2
7]

&
E

st

G
E

[5,
20

]
11

.5
[8.

4,
15

.6
]

13
[1

0,
51

,5
4]

&
E

st

L
E

[5,
22

]
10

[15
.4

,
28

.6
]

22
[1

0,
54

]
&

E
st

C
S

re
fe

rs
to

pa
ra

m
et

er
va

lu
es

un
iq

ue
to

th
is

cu
rr

en
ts

tu
dy

.E
st

re
fe

rs
to

pa
ra

m
et

er
va

lu
es

es
tim

at
ed

fo
r

ca
nc

er
ba

se
lin

e
va

lu
es

fr
om

th
e

ca
nc

er
ce

ll
li

ne
da

ta
sh

ow
n

in
Ta

bl
e

5.
+

re
fe

rs
to

va
lu

es
es

tim
at

ed
fr

om
no

n-
re

tin
a

or
ga

ns
or

re
ac

ta
nt

co
nc

en
tr

at
io

ns
.I

n
th

e
co

lu
m

ns
fo

r
ca

nc
er

ce
lls

w
e

on
ly

re
po

rt
ed

ra
ng

es
an

d
ba

se
lin

e
va

lu
es

w
hi

ch
ar

e
di

ff
er

en
tt

ha
n

th
os

e
fo

r
th

e
no

rm
al

ph
ot

or
ec

ep
to

r
m

od
el



152 E. T. Camacho et al.

Table 4 Time series averages of glucose, lactate, and pyruvate [54]

Time (hours) Lactate (mM) Glucose (mM) Pyruvate (mM)

0 2.8 1.87 0.042

0.5 13.39 7.98 0.1014

1 21.78 10.49 0.1358

2 21.55 9.81 0.1360

3 21.38 9.62 0.1469

4 21.98 8.49 0.1362

data, given in Table 4, as a first step in validating our model for an aerobic glycolysis
system.

To account for the distinct molecular dynamics and the increased proliferation
rates specific to cancer cells, we considered slightly different values for ten param-
eters than those for a healthy cone cell. See Table 3 for the ten parameter values
labeled as estimated. The different parameters showed that a cancer cell undergoes
aerobic gycolysis in a more disorganized manner while the aerobic glycolysis
process in a cone cell is more controlled. The different parameter values in cancer
revealed less controlled lactate transport in and out of the cell, with significantly
slower lactate transport contributing to ACoA, a faster pace of cell growth, a
slightly higher glucose flux, lower ability to self-regulate glycolysis through citrate
inhibition or less abundance of ATP, and less production of intermediate metabolites
for ATP production by citrate. The differences in these mechanisms are defined
by a much lower k value (0.45 versus 10) in the gating functions h([LACT])
and f ([LACT]), which illustrates back flow and not a complete on-off gating
mechanism of lactate exchange between the extracellular and intracellular space
with a significantly smaller γ , velocity of lactate transport into the cell for ACoA
production; a higher fraction q of glucose converted to G3P for lipid synthesis and
cell growth, which confirms the rapid cancer cell division and growth; a slightly
larger range of glucose transport conversion factor λ, indicating more glucose
supply variability, including a higher demand for glucose; smaller citrate inhibition
of glycolysis β, signifying less self-regulation or potentially less abundance of ATP;
and smaller rate φ of converting citrate to ATP, illustrating a reduction in ATP. The
lack of tight metabolic regulation in cancer was further shown by the two fold
increase in external lactate LE , and the faster metabolic reaction of [CIT], given
by the value of V[CIT], and the larger K[CIT] substrate concentration that gives half
the maximal rate of V[CIT].

The model simulations show a good fit with the data, with all three concentrations
stabilizing to their steady states within a little over an hour, as shown in Fig. 3. Our
model assumes a constant external glucose flow allowing for steady levels of [G]
to be achieved while the experimental data comes from cultured cells leading to an
eventual decay in [G]. Though there are many similarities in metabolism between
cancer cells and photoreceptors in that both cell types exhibit the Warburg effect,
retinal cell parameters differ. However, this qualitative match to data is a good
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Fig. 3 Fitting model predictions with data from cancer cells. In each panel, the black curve
shows the average empirical values, with error bars describing variability (standard deviation) over
a population of three measured cells [54]. The blue curve represents our predicted solution. The
parameters used are as follows: λ = 0.0755, ρ = 0.05, ξ = 8, δ = 65, α = 0.2, β = 1, q = 0.38, n

= 0.001, GE = 13, k = 0.45, γ = 0.015, φ = 0.5, LE = 22, V[G] = 1.2, K[G] = 19, V[G3P] = 0.15,
K[G3P] = 0.143, V[PYR] = 0.15, K[PYR] = 1.7, V[LACT] = 0.14, K[LACT] = 0.125, V[ACoA] = 0.15,
K[ACoA] n 0.02, V[CIT] = 0.1, K[CIT] = 0.5. Initial conditions for the simulation were chosen to
agree with the average empirical ones (in mM): [G] = 1.87; [G3P] = 0.12; [PYR] = 0.042; [LACT]
= 2.8; [ACoA] = 0.03; [CIT] = 0.02

proof of concept for our model, which can now be tuned to parameters specific
for photoreceptors.

3.2 Bifurcation Analysis and Bistability Ranges

As expected, the long-term dynamics of the system depend on its parameter values,
and is altered by parameter perturbations. The model’s sensitivity to changes and
uncertainty in its parameters, which define various key mechanisms of the cone
metobolic system, are further analyzed in Sect. 3.3. Here, we observe the effects
of perturbing specific key parameters, and discuss the crucial consequences of the
number and position of steady states (which correspond to specific physiological
states and may distinguish between viability or failure of the system).

We first analyzed the changes in dynamics in response to variations in the
external glucose concentration, GE . Figure 4 shows the system’s equilibria and their
evolution and phase transitions as GE is increased within the range of 0–13 mM.
Each panel illustrates separately the projection of the same equilibrium curve along
each of the variables in the system, representing key metabolite concentrations.
The figure suggests that a reduced extracellular glucose supply below 2.6 mM (i.e.,
GE < 2.6 mM) cannot successfully sustain the system and elevate internal glucose
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Fig. 4 Equilibrium curves and bifurcations with respect toGE . As the level of external glucose
is varied between GE=0–13 mM, the equilibria of the system are plotted, each panel representing
a different component of the same equilibrium curves. There are two locally stable equilibrium
branches shown as green and blue solid curves, and a saddle equilibrium, shown as a dotted red
curve. The bistability window onsets with a saddle node bifurcation at GE ∼ 2.6 mM (brown
square marker), and closes with another saddle node bifurcation at GE ∼ 11.6 mM (purple square
marker). The other system parameters were held fixed as: λ = 0.0755, n = 0.001, δ = 65, q = 0.18,
β = 1, α=0.2, ρ = 0.05, ϕ = 1, ψ = 8, k = 10, γ = 1, LE = 10; V[G] = 1.2, K[G] = 19, V[G3P] = 0.15,
K[G3P] = 0.143, V[PYR] = 0.15, K[PYR] = 1.7, V[LACT] = 0.14, K[LACT] = 0.125, V[ACoA] = 0.15,
K[ACoA] = 0.02, V[CIT] = 0.03, K[CIT] = 0.0054

to a viable range. In this regime of GE < 2.6 mM, the only attainable long-
term physiological state, represented by the only stable equilibirum reachable from
any initial conditions, is a “low functioning” stable state, shown as a green solid
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curve in the figure, and characterized by [LACT] ∼10 mM with all other metabolite
concentrations close to zero. This represents a pathological state of the cone.

At GE ∼ 2.6 mM, the system undergoes a saddle node bifurcation. If the external
glucose level is raised past this phase transition value, the system enters a bistability
regime, where a second, “viable” physiological steady state becomes available, with
metabolite concentration levels in all components within a range for a healthy cone
cell (illustrated in our panels as a blue solid branch of the equilibrium curve).
Depending on the initial concentrations of the six metabolites in our model, the
cone cell metabolism may converge to either the pathological or the healthy state.
The [G], [G3P], [PYR], [LACT], [ACoA], and [CIT] levels change in response
to GE being further increased up to 13 mM. The internal glucose concentration
[G] increases (up to ∼4.5 mM), and so does the steady state level of [PYR], all the
other components remain relatively unaltered, after a transient following up the birth
of the second steady state. This shows the importance of external glucose and the
components that alter it in driving the system via glucose and pyruvate metabolism.

The bistability window persists up to GE ∼ 11.6 mM, allowing different initial
conditions to converge to one of two locally attracting equilibria (the green and
the blue curves, separated by the unstable saddle shown as a red dotted curve).
Convergence of different initial states in different attraction basins to either of the
two stable steady states is further illustrated in Fig. 5. We show a [G]-[LACT] phase

Fig. 5 Schematic representation of coexistence of equilibria within the bistability window,
shown in a phase-space two-dimensional slice [G]-[LACT]. The two stable equilibria are
shown as a green and a blue dot. A third, saddle equilibrium is shown as a red dot. A few
simulated trajectories converging to the green equilibrium are shown as green curves, and simulated
trajectories which converge to the blue equilibrium are shown as blue curves. The stable manifold
of the saddle was symbolically drawn as a dotted black curve. The fixed parameters are the
same as in Fig. 4. Figure 6 provides a more complete representation of all components for two
representative solutions corresponding to two different initial conditions; one converging to the
green dot, and one converging to the blue dot, for GE=11.5 mM
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Fig. 6 Simulation of two solutions converging to the two different locally attracting equilib-
ria, for our system in the bistability regime (with external glucose concentration GE=11.5 mM
and the rest of the parameters as in Figs. 4 and 5). The left versus the right panels represent
two trajectories which differ only in their initial glucose concentration level. The other initial
concentration are [G3P]=[PYR]=[ACoA]=[CIT]=0, and [LACT] = 9.4 mM. Left. Initial glucose
level [G] = 0.02 mM. The system converges to a non-viable steady state in which all concentrations
are close to zero, except for lactate. Right. Initial glucose level [G] = 2 mM. The system converges
to a biologically viable/ healthy steady state as observed in empirical studies

space slice, for a value of GE within the bistability range. For a more complete
illustration, Fig. 6 shows two potential evolutions of the system in the bistability
regime (for GE = 10 mM). The left panel illustrates all components of the solution
for a set of initial conditions in the basin of attraction of the green (“low functioning”
or unhealthy) stable state, and the right panel for the blue (“high functioning”
or healthy) steady state. The bistability window ends at GE ∼ 11.6 mM, and
henceforth the healthy equilibrium remains the only attainable state in the long
run. The basin of attraction provides a range for the initial concentration levels of
our six metabolites that will drive the system to either the pathological or healthy
state depending on the parameter values. Investigating how varying the parameters
leads to one of these two states provides potential mechanisms that can be altered
as potential therapies for improving cone vitality and sight.

Tracking the behavior of the system in response to varying the transport
conversion factor λ, or the rate of passive glucose transport n, leads to very similar
bifurcation diagrams, bistability windows, and variable ranges. Thus, they are not
further illustrated here. Instead, we focus on α, the rate of β-oxidation of ingested
OS fatty acids created from G3P. While there is a bistability regime that lives
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Fig. 7 Equilibrium curves and bifurcations with respect to α. As the rate α is varied between 0
and 1 min−1, the equilibria of the system are plotted, each panel representing a different component
of the same equilibrium curves. There are two locally stable equilibrium branches shown as green
and blue solid curves, and a saddle equilibrium, shown as a dotted red curve. The bistability
window onsets with a saddle node bifurcation at α ∼ 0.17 min−1 (brown square marker), and
closes with another saddle node bifurcation at α ∼ 0.43 min−1 (purple square marker). GE was
fixed to 10 mM. The other system parameters were held fixed as in Fig. 4

between two saddle node points, the evolution of the system when varying α through
these phase transitions is qualitatively different. We illustrate this behavior in Fig. 7.

When the rate of β-oxidation of fatty acids (α) exceeds the bifurcation value
0.43 min−1, the system exhibits a unique locally stable equilibrium (solid green
curve). This is a low functioning/unhealthy equilibrium, in the sense that all system
components stabilize close to zero, except for [LACT] which stabilizes close to
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10 mM, the external lactate value. Our analyses reveal that prolonged high rates
of β-oxidation (beyond 0.43 min−1) which exist under extreme glucose starvation
and scarce key metabolites will result in the pathological unhealthy state without
any alternative for reprogramming the cone to a healthy state by altering certain
processes or mechanisms. Further, our findings show that the gating mechanisms of
lactate transport in the cone cell is a tightly controlled mechanism and thus always
stabilizes close to the external lactate concentration.

Varying α above the bistability regime does not have significant impact on the
long term outcome. However, when α is reduced past the saddle node bifurcation
(purple marker), the system suddenly enters its bistability regime and gains access
to a second, high functioning/healthy steady state (blue solid curve). Rates of β-
oxidation higher than 0.17 min−1 and lower than 0.43 min−1 provide the possibility
of reprogramming the cone to a healthy state by altering certain processes and mech-
anisms. When α is decreased past the lower saddle node bifurcation at ∼0.17 min−1,
the green curve disappears in the collision with the unstable equilibrium, and the
high functioning steady state becomes the only stable long term outcome. This result
confirms that low rates of β-oxidation are aligned with a robust healthy metabolic
state for the cone that can not be perturbed.

Since the blue curve represents the healthy viable outcome, and in fact the only
stable outcome for small enough values of α, it is useful to track its progression
in response to perturbations of the parameter. As α is progressively lowered, there
is first an increase in all steady state components of the system. After an initial
upward and then downward transient, the [ACoA] and [CIT] concentrations will
consistently settle to the same relatively low states ([ACoA] ∼0.02 mM and [CIT]
∼0.025 mM) as α approaches zero. The other steady state components will continue
to increase as α approaches zero. While [G], [PYR], and [LACT] still settle to values
in the biological range, [G3P] exhibits a blowup as α approaches zero. This is not
at all surprising, since the [G3P] concentration is the compartment affected most
directly by the shutdown of pathway k (i.e., by reducing to zero the β-oxidation of
ingested OS fatty acids created from G3P). Under starvation or additional need of
energy, β-oxidation of fatty acids becomes a key substrate to fuel ATP production
in the TCA cycle. The bifurcation analysis for α shows that when initial [G], [PYR],
and [G3P] levels are relatively low, α has the ability to change the fate of the cone
cell and its metabolism. But α can only do this within a small range of values. This
shows that this process of creating energy via intermediate substrates created from
β-oxidation of fatty acids is mainly an auxiliary process and the main process by
which the cell relies on intermediate metabolites and substrates.

3.3 Sensitivity Analysis

We use sensitivity analysis to determine which processes have the greatest impact on
the intracellular concentrations tracked by the model. Sensitivity analysis includes
the following general steps: (i) vary the model parameters, (ii) perform model
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simulations, (iii) collect information on an output of interest (this can be the
model output or another outcome), and (iv) calculate sensitivity measures. There
are local and global sensitivity analysis methods. In local methods, parameters are
varied one at a time, and in global methods, all parameters are varied at the same
time. Examples of global sensitivity analysis methods include Latin Hypercube
Sampling/Partial Rank Correlation Coefficient (LHS/PRCC), the Sobol method, and
Extended Fourier Amplitude Sensitivity Test (eFAST). Depending on the technique
used, sensitivity measures are called coefficients or indices, and they indicate
the impact of parameter changes on the output of interest [34]. In LHS/PRCC,
the sensitivity measure is named the partial rank correlation coefficient (PRCC).
This method can only be applied when parameter variations result in monotonic
changes in the output [7, 34]. However, the advantages of LHS/PRCC compared to
other global methods are simplicity and much lower computational demand. The
magnitude of the PRCC values provides information about parameter influence on
the outcome of interest.

If the PRCC magnitude is greater than 0.4, the outcome of interest is considered
sensitive to changes in the corresponding parameter [34]. The sign of a PRCC
value shows if the corresponding parameter and the output are directly or inversely
related. A positive coefficient indicates that the parameter and the output move in
the same direction. A negative coefficient means they move in opposite directions,
so as a parameter increases, the output decreases, and vice versa [7, 34]. In
LHS/PRCC, parameters are varied simultaneously using Latin hypercube sampling
(LHS). This involves assigning a probability distribution to each parameter, dividing
the distribution into areas of equal probability and drawing at random and without
replacement a value from every area [7, 34]. With LHS/PRCC, we can examine how
a specific output is affected by an increase or decrease in a specific parameter, which
can be useful for identifying the best parameters to target for control. Additionally,
with LHS/PRCC we can explore how changes in initial conditions influence an
outcome of interest [34].

The eFAST method can be conducted in the case when there are non-monotonic
relationships between parameters (i.e., inputs) and a specific output of interest, but
this approach is more computationally expensive than LHS/PRCC. In eFAST, the
sensitivity measures are called sensitivity indices and they quantify the portion of
variance in the outcome due to uncertainties in the parameters. There is a first order
sensitivity index and total order sensitivity index. The first order index is a measure
of how a parameter contributes to the output variance individually. The total order
index shows the contribution a parameter makes to the output variance individually
and in interaction with other parameters.

The magnitude of sensitivity indices determines the importance of parameters
[34, 44, 45]. In eFAST, parameters are varied at the same time using a sinusoidal
search curve, where angular frequency is specified for each parameter. To compute
the sensitivity indices for a given parameter, a high frequency is assigned to that
parameter, while all other parameters are assigned a low frequency [34, 44, 45].
With eFAST, we can examine which parameter uncertainties have the largest impact
on output variability [34]. Due to the intricacies and complexity of eFAST, initial
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conditions are rarely used as input factors. In the next section, we present the results
of our sensitivity analysis using both the LHS/PRCC and eFAST methods.

3.4 Sensitivity Results

The results of our sensitivity analysis are summarized in Table 5, which correspond
to the detailed results shown in Figs. 8, 9, and 10. For the normal photoreceptor
model, parameters are varied over their corresponding ranges given in Table 3. For
the case of cancer conditions, due to insufficient information regarding parameter
ranges, we allowed for 30% variation around nominal values.

3.4.1 Cancer Conditions

Both the LHS/PRCC and the eFAST sensitivity analysis results for cancer condi-
tions show that the glucose level inside the cell, [G], is most sensitive to changes in
the parameter GE , the concentration of glucose outside the cell. The two methods
also classify as important q (the fraction of glucose converted into G3P), δ (the
increased uptake of glucose facilitated by hypoxia inducible factor 1 signaling,
which up-regulates the expression of the glucose transporter GLUT1, for cancer
cells [24]), V[G] (the maximum transport rate of glucose), λ (the transport conversion
factor), α (the rate of β-oxidation of fatty acids [created from G3P]), and K[G] (the
substrate concentration giving half the maximal rate of V[G]). These parameters are
involved in three key processes responsible for cell energy and growth; total glucose
uptake (a catalyst in both), the utilization of G3P in β-oxidation (that results in β-HB
which can be used as an oxidative substrate in the TCA cycle), and the production
of G3P for lipid synthesis (which is essential for growth). The PRCC results also
reveal that changes in the glucose concentration are inversely related with changes
in the parameters α and K[G]; see Fig. 8.

The PRCC and eFAST analyses for cancer conditions both reveal that the
pyruvate concentration, [PYR], is sensitive to variation in the parameters which
capture the maximum production rate of lactate and pyruvate (V[LACT] and V[PYR],
respectively) and the fraction of glucose converted into G3P (q); see Table 5. The
negative PRCC values corresponding to the sensitivity of [PYR] to changes in q and
V[LACT] indicate that as the fraction of glucose diverted into G3P and the maximum
production rate of lactate decrease, the pyruvate concentration, [PYR], increases.
The PRCC approach also highlights how [PYR] is affected by K[LACT], which
measures the pyruvate concentration that gives half the maximal rate of V[LACT].
Changes in the chemical reaction of [LACT], in particular change in the mechanisms
within as defined by parameters V[LACT] and K[LACT], affect the resulting [PYR] levels.

According to both sensitivity analysis methods, the lactate concentration level
inside a cancer cell, [LACT], is significantly influenced by the concentration of
lactate outside the cell, LE , both in its overall levels and its variability. The eFAST
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Fig. 8 Sensitivity results for [G] using eFAST (top) and LHS/PRCC (bottom) for cancer
conditions. These are the graphical results that are entered in the Cancer conditions column of
Table 5 for [G]. Both methods show that [G], the glucose level inside the cell, is most sensitive to
changes in the parameter GE . Inspection of the top and bottom graphs shows comparable relative
impact on [G] for the remaining parameters, with the exception of V[G3P] which stands out as
influential using PRCC but not eFAST

approach highlights two additional parameters that affect the variability of [LACT].
Uncertainty in the maximum production rate of pyruvate, V[PYR], and the binding
affinity level of the lactate transporter, k, will result in the variability of [LACT]. The
sensitivity results for [G], [PYR], and [LACT] indicate that the initial biochemical
reactions in the gycolysis pathway are sensitive to more mechanisms, as illustrated
by the number of parameters in the corresponding cases in the Cancer conditions
column of Table 5, than the reactions further downstream not including the reactions
in the TCA and the Kennedy pathways.
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Fig. 9 Sensitivity results for [PYR] using eFAST (top) and LHS/PRCC (bottom) using
normal photoreceptor conditions with [G](0) = 2. These are the graphical results that are
entered in the relevant column of Table 5 for [PYR]. The graphs illustrate agreement in the
importance of α and V[PYR]

3.4.2 Normal Cone Cell

Both the LHS/PRCC and eFAST methods show that for a cone cell, where model
simulations are performed with initial condition for glucose of [G](0) = 0.02, the
glucose concentration is sensitive to changes in the level of external glucose (GE).
The results from the eFAST approach indicate that uncertainty in the rate of β-
oxidation of ingested OS fatty acids (created from G3P) (α) has the more significant
impact in the variability of [G]. For low initial concentration levels of glucose there
are more mechanisms affecting [G] variability as indicated by the eFAST results.
The LHS/PRCC and eFAST sensitivity results also have other differences. While
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Fig. 10 Sensitivity results for [LACT] using eFAST (top) and LHS/PRCC (bottom) using
normal photoreceptor conditions with [G](0) = 0.02. These are the graphical results that are
entered in the relevant column of Table 5 for [LACT]. While eFAST classified LE and α as most
influential, PRCC determined that the initial lactate concentration is most important; see the text
for further discussion of these results

PRCC highlights the substrate concentration that gives the half-maximum rate of
V[G3P] as having an impact on the intracellular glucose concentration, this parameter
is not classified as important by eFAST. On the other hand, eFAST indicates that
[G] is sensitive to variation in the parameters K[G], V[G], and V[PYR].

The eFAST results using a higher initial condition for glucose of [G](0) = 2
show that the processes important for the intracellular glucose level are β-oxidation
of OS fatty acids, external glucose, glucose uptake, and pyruvate production. In
addition to indicating the impact of these factors, the PRCC method highlights
the influence of converting glucose to G3P. For [G](0) = 2, the same parameters
impact [G] in the eFAST results. However, for PRCC the number of mechanisms
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affecting [G] increases, so now changes in seven parameters (as opposed to two)
affect [G]. These parameters are involved in glucose uptake, [PYR] biochemical
reaction, glucose diversion to G3P, and β-oxidation. The negative sign of α in the
PRCC analysis indicates that the glucose level in a cone cell decreases as the cell
breaks down OS fatty acids at a higher rate to synthesize β-HB to be utilized as a
substrate in the production of ACoA.

According to the eFAST results with [G](0) = 0.02, the pyruvate concentration,
[PYR], in a cone cell is influenced by the oxidation of OS fatty acids (α), the amount
of glucose outside the cell (GE), the half limiting value of the glucose transport rate
(K[G]), the maximum rate of glucose transport (V[G]), and the maximum production
rate of pyruvate (V[PYR]). In PRCC only three parameters affect [PYR]; GE , K[PYR],
and K[G3P]. The substrate that gives the half-maximal rate of V[PYR], defined by
K[PYR], inversely affects [PYR]. An increase in K[PYR] will increase the amount of
substrate required for [PYR] to reach its saturation level.

The eFAST and PRCC results with [G](0) = 2 differ from those with lower
initial condition for glucose: eFAST no longer classifies external glucose and
glucose uptake as influential, and PRCC shows a whole new set of parameters as
being important. In addition, there are less mechanisms (defined by the model’s
parameters) affecting [PYR] in the eFAST results as compared with the LHS/PRCC
results for [G](0) = 2. Both sensitivity methods highlight [PYR] as being affected
by changes and uncertainties in the parameters that describe β-oxidation and
maximum production rate of [PYR], α and V[PYR], respectively. The PRCC results
indicate an inverse relationship between variation in α and K[G] and changes in
[PYR]. PRCC also identifies the process of diverting glucose to G3P for production
of OS, which are rich in fatty acids, as having a strong effect. See Fig. 9 for the case
with initial condition [G](0) = 2.

When the intracellular lactate level, [LACT], is the outcome of interest, both
sensitivity analysis methods show as important the extracellular lactate level (LE)
when [G](0) = 2. The eFAST results also classify the processes of β-oxidation of OS
fatty acids from lipids produced by G3P (α) and the half-limiting value of glucose
transport (K[G]) as having an impact on [LACT]. The eFAST results for [LACT]
were the same for [G](0) = 0.02 and [G](0) = 2. The PRCC results show that only
the lactate initial condition has an impact on the concentration of lactate inside the
cell when the initial internal glucose concentration is low; see Fig. 10 for the case of
with initial condition [G](0) = 0.02. The relatively small number of parameters that
affect [LACT] levels and variability indicates the strong pull of these mechanisms
(or parameters) to try to bring the external and internal lactate levels to a balance.

For both [G](0) = 0.02 and [G](0) = 2, PRCC and eFAST indicate that β-
oxidation of OS fatty acids from lipids produced by G3P (α) is the most important
process for the level and variability of [G3P]. In addition, PRCC shows that external
glucose (GE) and the half-limiting value of pyruvate production (K[PYR]) have an
impact on the [G3P] level for [G](0) = 0.02, while at the higher initial condition
for glucose, important factors are the conversion of glucose to G3P (q) and the
maximum production rate of G3P (V[G3P]).
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The eFAST results show that uncertainty in the same parameters influences the
variability of [AcoA] at both [G](0) = 0.02 and [G](0) = 2. These parameters are LE

(external lactate level), α (β-oxidation of OS fatty acids), and γ (maximum velocity
of lactate transport contributing to AcoA). PRCC also highlights γ as important but
only for [G](0) = 0.02. With both initial conditions for glucose, the PRCC results
indicate that the external lactate level and the initial internal lactate concentration
have a strong impact on the level of ACoA.

The sensitivity results of [CIT] for [G](0) = 0.02 and [G](0) = 2 are the same
for both methods. PRCC and eFAST indicate that [CIT] is impacted by external
lactate (LE), rate of CIT conversion to ATP (φ), and the maximum production rate
of CIT (V[CIT]). The relative impact of these mechanisms differs within each method.
Uncertainties in external lactate affect the variability of [CIT] the most in eFAST,
with the rate of CIT conversion to ATP having the second largest impact. PRCC
reveals that φ affects [CIT] the most, with V[CIT] having the second largest impact.
An increase in the rate of CIT conversion to ATP reduces the concentration of CIT,
while an increase in the maximum production rate of CIT elevates [CIT].

Interestingly, across both the normal photoreceptor model and cancer conditions,
changes in α affect [G] and [G3P] but only [PYR] in the cone cell. In an analogous
manner, changes in external lactate, LE , affect [LACT], [ACoA], and [CIT] across
photoreceptor and cancer conditions (with one exception).

4 Discussion

4.1 Specific Comments on the Model

In this work, we developed and explored a mathematical model for the dynamics
in the metabolic pathways of a healthy photoreceptor cell. We validated our model
structure by comparing its predictions for concentrations of glucose, lactate, and
pyruvate to data collected in cancer cells [54], which are metabolically similar to
photoreceptors. In addition to developing the model structure, we also identified
parameter values and ranges through a comprehensive literature search. When
possible, we used values specific to photoreceptor cells and, if no measurements
existed, selected another cell type as a proxy.

We applied two different global sensitivity analysis methods (LHS/PRCC and
eFAST) and found the sensitive parameters resulting from each. PRCC reveals how
the output of a model is affected if a parameter is changed, whereas variance-based
methods such as eFAST measure which parameter uncertainty has the largest impact
on output variability [34]. Using these two sensitivity analysis approaches in unison,
we obtained a comprehensive view for which processes reflected in the equations
(via the parameters) have the greatest impact on the metabolic system.

This sensitivity analysis, for the case of a photoreceptor cell, revealed that exter-
nal glucose (reflected by GE) and β-oxidation of fatty acids from OS (generated
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by G3P lipid synthesis) for ACoA production (defined by α) significantly affect
the concentrations of glucose, G3P, and pyruvate at steady state (corresponding
to time equal to 240 minutes). The importance of external glucose indicates
that the effective metabolism of photoreceptors relies on sufficient availability of
glucose, their primary fuel resource. The influence of β-oxidation of fatty acids,
which links glycolysis occurring in the cytosol to oxidative phosphorylation in
the mitochondria, suggests that photoreceptor metabolism is modulated by this
feedback mechanism. The PRCC results also indicate that at a low initial level
of intracellular glucose, the pyruvate concentration is most sensitive to changes in
external glucose, while if greater amount of intracellular glucose is present initially,
the pyruvate concentration is most sensitive to changes in the rate of β-oxidation.

Our sensitivity analyses reveal that ACoA, CIT, and intracellular lactate are
impacted to the greatest extent by external lactate (LE). Furthermore, they are the
only metabolites sensitive to external lactate. This suggests that external lactate is
an important mechanism affecting oxidative phosphorylation, while it does not seem
to have a strong influence on the glycolysis pathway, where external glucose has a
crucial role.

We used bifurcation techniques to study the dependence of the system’s behavior
on the parameters, in particular on GE and α, identified as key parameters by
the sensitivity analysis. We found that the system undergoes two saddle node
bifurcations with respect to these parameters revealing bistability over a range of
parameter values. This is heartening, as a properly designed analysis should reveal
bifurcation parameters to be sensitive [34]. Bistability allowed us to investigate the
mechanisms, defined by the parameters, that can be altered to bring a cone to healthy
conditions from the pathological state. We were also able to determine key ranges
for GE and α as well as initial metabolite levels that will lead to one state versus
another with the aid of bifurcation curves and basins of attraction.

Our analysis found that the system behaves monotonically (broadly speaking)
as the external glucose concentration is increased. This is not surprising when
considering the molecular coupling: as more glucose is made available to the cell,
the internal glucose concentrations are expected to increase, driving in turn (via
pathways c and d) higher concentrations of G3P and PYR, respectively, and further
(via pathway g) a higher concentration of LACT. The level of [LACT] eventually
increase above the external concentration LE , preventing additional production of
[ACoA], and subsequently of [CIT]. Our bifurcation analysis also reveals that a very
low external source of glucose (less than 2.6 mM) cannot drive the cell to function
in a healthy regime, since in the long term all metabolites will be depleted without
an adequate source of glucose to maintain cone metabolism, except for the β-HB
and external lactate used as substrates for ATP production.

Increasing GE to an adequate level pushes the system into the bistability window,
with two potential, and very different outcomes. This opens up the possibility for
the cell to function in a healthy long-term regime (with concentrations which have
been observed empirically within the healthy functional range for the eye). This
alternative prognosis is available based on the cone cell’s current state or ability to
change the current metabolite levels in the cell. If all the molecular pools of the
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cell have become extremely low, the cell can no longer be rescued by increasing
the extracellular glucose. Figure 4 illustrates how an external concentration GE =
11.5 mM or lower cannot resuscitate a cell with already depleted molecular pools
[G3P]=[PYR]=[ACoA]=[CIT]=0, [LACT] close to the external concentration of
10 mM, and [G] = 0.02 mM. The same external concentration of GE = 11.5 mM can
bring a cell to a healthy regime provided the initial glucose is as high as [G] = 2 mM.
Such a surge of glucose input may have, however, other physiological effects on the
system, not captured by our model, and should not be necessarily viewed as a cure-
all strategy.

Our sensitivity and bifurcation analyses support the expectation from the model
diagram (Fig. 2) that the system’s prognosis also depends quite crucially on the rate
α of β-oxidation of ingested OS fatty acids. The metabolites directly affected by
even small changes in α are [G], [G3P], [PYR], [LACT], and [ACoA], but these
perturbations propagate via the tight coupling of the system, affecting the long-term
concentrations of all its components.

Our bifurcation analysis in Sect. 3.2 shows the global effects of having an overly
glucose-starved system corresponding to an extremely large rate of β-oxidation.
Overall, too high of a β-oxidation rate leads to a complete system shutdown. An
extremely low β-oxidation rate leads to a dangerously high accumulation of G3P in
the cell, as the system under-utilizes lipids to be converted to OS (whose fatty acids
will eventually be used to generate β-HB).

The bifurcation analysis for α between ∼0.17–0.43 mM, shows that the bista-
bility regime, hence the optimal functioning of the system, is contingent on its
initial state. If the current state of the cell is close to healthy, further tuning its β-
oxidation rate (e.g., via medication or therapies) can optimize its function. However,
if the cell’s current state is very poor (e.g., based on a history of functioning under
pathological parameter values), the behavior cannot be rescued even by a substantial
adjustment in the β-oxidation rate, and the cell’s function will remain poor. These
effects support our sensitivity analysis, which showed all metabolites of the system
(with the exception CIT) to be sensitive to changes or perturbation of α.

It has been established that the RPE serves as the principal pathway for the
exchange of metabolites (in particular, glucose and lactate) between the choroidal
blood supply and the retina [14]. The fact that external glucose (GE) and the rate
of β-oxidation of fatty acids (α) are highlighted as important by our sensitivity and
bifurcation analyses, as well as external lactate (LE) in the sensitivity analyses,
points to the critical role the RPE plays in photoreceptor metabolism. As these
processes link the metabolism of photoreceptors with the metabolism of the RPE,
our findings indicate that the normal function of photoreceptors relies heavily on
their interaction with the RPE. This aligns with the physiological understating that
photoreceptors and the RPE have a reciprocal resource relation and operate as a
functional unit: the RPE provides photoreceptors with a source of metabolism via
glucose, and photoreceptors provide a source of metabolism for the RPE via lactate.

External lactate is key for maintaining a balanced reciprocal resource relation
between the RPE and photoreceptors, on which cone nutrition and vitality depend.
In addition to glucose supplied by the RPE, photoreceptors can also consume lactate,
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produced by other retinal cells for oxidative metabolism. For example, Müeller cells
are known to secrete lactate which can be used as fuel in photoreceptors [49]. The
high impact of external lactate seen in the sensitivity analysis also points to the
importance of this mechanism for photoreceptor metabolism.

4.2 Limitations and Future Work

We have identified three limitations in our model. (1) Our model considers a single
healthy photoreceptor cell, whereas in reality there are multiple photoreceptors
of different types and other cell types such as RPE and Müeller cells, forming
a “metabolic ecosystem.” Future work will address this complexity. (2) Our
model would be improved if time series data existed for concentration levels of
the metabolites, represented by state variables, in the retina. We identified time
series concentrations of glucose, lacate, and pyruvate for cancer cells, which are
metabolically similar to photoreceptors, but we would expect parameters to differ.
Time series data would also allow us to better estimate parameters to which our
model outputs are sensitive. (3) Some parameter ranges were not available from the
literature, so we were forced to use a different tissue type as a proxy. Because both
LHS/PRCC and eFAST depend on starting with biologically relevant ranges for
each parameter and sampling within that range, this is a concern. If photoreceptor-
specific parameter ranges become available, this model could be updated and
improved.

The RPE is a layer of cells which provides glucose to photoreceptors, and these
cells are also metabolically active. External glucose is very important, and though
it is a parameter in our single-cell model, in future work it will depend on the
dynamics of other cell types. The RPE serves as the main pathway for the exchange
of critical metabolites (specifically, glucose and lactate) between the choroidal
blood supply and the retina [14]. Metabolites that can be used as substitutes for
photoreceptor energy production, during glucose deprivation, are also mediated by
the RPE. Müeller cells are known to secrete lactate which can be used as fuel in
photoreceptors [49]. A future step in this work will be investigating the interaction
of the RPE, Müeller cells, and photoreceptors along with the “metabolic ecosystem”
they create.

5 Conclusions

We developed and analyzed a mathematical model for the dynamics in the metabolic
pathways of a healthy photoreceptor cell. Using two different methods for sensitivity
analysis, we identified the parameters and potential mechanisms that are driving
system output levels and variability which are particularly relevant to photoreceptor
health. The behavior of the model for different values of the highly sensitive
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parameters was explored, and we demonstrated that certain sets of parameters
exhibit phase transitions and bistable behavior where healthy and pathological states
both exist.

Our work confirms the necessity for the external glucose, β-oxidation, and
external lactate concentrations, which are key feedback mechanisms connecting
the RPE and photoreceptors, to sustain the cell. The role of β-oxidation of fatty
acids which fuel oxidative phosphorylation under glucose- and lactate-depleted
conditions, is validated. A low rate of β-oxidation corresponded with the healthy
cone metabolite concentrations in our simulations and bifurcation analysis. Our
results also show the modulating effect of the lactate differential (internal versus
external) in bringing the system to steady state; the bigger the difference, the longer
the system takes to achieve steady state. Additionally, our parameter estimation
results demonstrate the importance of rerouting glucose and other intermediate
metabolites to produce glycerol 3-phosphate (G3P), to increasing lipid synthesis
(a precursor to fatty acid production) to support the cone cell high growth rate. A
number of parameters are found to be significant; however, the rate of β-oxidation
of ingested outer segments is shown to consistently play an important role in the
concentration of glucose, G3P, and pyruvate, whereas the extracellular lactate level
is shown to consistently play an important role in the concentration of lactate and
acetyl coenzyme A.

These mechanisms can be posed to the biology community for future experi-
ments or for potential therapeutic targets. The ability of these mechanisms to affect
key metabolites’ variability and levels (as revealed in our analyses) signifies the
importance of inter-dependent and inter-connected feedback processes modulated
by and affecting both the RPE’s and cone’s metabolism. The modeling and analysis
in this work provide the foundation for a more biologically complex model that
metabolically couples different cell types as found in the retina.
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Appendix

A Simple Model

In this section, System (1)–(6) is simplified to gain more insight into the cone
glucose metabolic pathways. The model is simplified as below:

d[G]
dt

= λ(GE − [G]) (n + V[G]δ[G3P]) − (
qV[G3P] + (1 − q)V[PYR]

) [G]
(10)

d[G3P]
dt

= qV[G3P][G] − α[G3P] (11)

d[PYR]
dt

= (1 − q)V[PYR][G] − (
(1 − ρ)V[LACT] + ρV[ACoA]

) [PYR] (12)

d[LACT]
dt

= (1 − ρ)V[LACT][PYR] − ψ([LACT] − LE) (13)

d[ACoA]
dt

= ρV[ACoA][PYR] + γ (LE − [LACT]) − V[CIT][ACoA] + α[G3P]

(14)

d[CIT]
dt

= V[CIT][ACoA] − φ[CIT]. (15)

We were able to prove existence and uniqueness of the model solution in
System (10)–(15). Furthermore, it was proved that the system evolves to a unique
equilibrium point under healthy conditions. However, the simple model does not
capture the complete qualitative behaviours of the full model as shown by the
stability analysis of the simple model.

Note that System (10)–(15) is well-posed and that all solutions remain within the
state space, [G] ≥ 0, [G3P] ≥ 0, [PYR] ≥ 0, [LACT] ≥ 0, [ACoA] ≥ 0, [CIT] ≥ 0,
since the right-hand side functions of System (10)–(15) are continuously differen-
tiable [48]. The analysis of Model (10)–(15) is done by finding the equilibria and
their corresponding stability properties. Setting the right-hand sides of the equations
(10)–(15) equal to zero yields the following biological meaningful equilibrium point
denoted by E([G∗], [G3P∗], [PYR∗], [LACT∗], [ACoA∗], [CIT∗]), and defined as
follows

[G∗] = GE − 1

2

⎛
⎝GE + a

λb
+ n

b
−

√
n2

b2 + (GE − a

λb
)2 + 2n

b
(GE + a

λb
)

⎞
⎠

(16)
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[G3P∗] = qV[G3P]

α
[G∗] (17)

[PRY∗] = (1 − q)V[PYR]

(1 − ρ)V[LACT] + ρV[ACoA]
[G∗] (18)

[LACT∗] = LE + (1 − q)(1 − ρ)V[LACT]V[PYR]

ψ((1 − ρ)V[LACT] + ρV[ACoA])
[G∗] (19)

[ACoA∗] = κ

V[CIT]
[G∗] (20)

[CIT∗] = κ

φ
[G∗], (21)

where a = qV[G3P] + (1 − q)V[PYR], b = qδV[G]V[G3P]/α and

κ = qV[G3P] +
[
ρV[ACoA] − γ (1 − ρ)V[LACT]

ψ

]
(1 − q)V[PYR]

(1 − ρ)V[LACT] + ρV[ACoA]
,

with κ ≥ 0.

Theorem 1 The equilibrium E exists and it is locally stable.

Proof From the parameter modeling assumptions, it is easy to prove that [G∗] > 0.
Therefore, Equations (17)–(19) are all positive and Equations (20)–(21) are non-
negative if and only if κ ≥ 0. Hence, E is a biologically feasible equilibrium, since
all the elements of E are non-negative for all parameter values of the model. Next,
the Jacobian matrix corresponding to E is given by the following lower triangular
block matrix:

J (E) =
(

J1(E) 0
J ∗

1 J2(E)

)
,

where J ∗
1 is a non-zero matrix and

J1(E) =
(−λ(n + δV[G][G3P∗]) − a δλV[G](GE − [G∗])

qV[G3P] −α

)
,

J2(E) =

⎛
⎜⎜⎝

−(1 − ρ)V[LACT] − ρV[ACoA] 0 0 0
(1 − ρ)V[LACT] −ψ 0 0

ρV[ACoA] −γ −V[CIT] 0
0 0 V[CIT] −φ

⎞
⎟⎟⎠ .
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Therefore, the eigenvalues of J (E) are determined from the eigenvalues of J1(E)

and J2(E). Since J2(E) is a lower triangular matrix, its eigenvalues are given by its
diagonal elements, which are all negative by the parameter modeling assumptions.
From Routh-Hurwitz criteria, n = 2, the eigenvalues of J1(E) are negative or have
negative real part if and only if det (J1(E)) > 0 and tr(J1(E)) < 0. From the model
assumptions follow that tr(J1(E)) = −λ(n + δV[G][G3P∗]) − a − α < 0 and

det (J1(E)) = α
(
λ(n + δV[G][G3P∗]) + a

) + δλqV[G]V[G3P]([G∗] − GE) > 0

if an only if

[G∗] >
1

2

(
GE − a

bλ
− n

b

)
.

From Equation (16)

[G∗] = 1

2

(
GE − a

bλ
− n

b

)
+

√
n2

b2 + (GE − a

λb
)2 + 2n

b
(GE + a

λb
)

>
1

2

(
GE − a

bλ
− n

b

)
.

Therefore, all the eigenvalues of J (E) are negative and hence E is a locally stable
node. ��

Therefore in a long term glucose metabolic dynamic behaviour within a single
cone, all the substrate variables achieve steady-state values, which depend linearly
on the steady-state glucose concentration value, [G∗], Equation (17)–(21). Fur-
thermore, the concentration of glucose inside of the cell is always less than the
outside concentration while the lactate concentration inside is more than the outside
concentration, i.e.,

0 < [G∗] < GE and 0 < LE < [LACT∗]. (22)

Note that [G∗] = 0 if and only if α = 0 or n = 0 and 0 < GE < a/bλ. Therefore
α and n are important parameters for the survival of the cell. Another important
parameter is κ , since when κ = 0 the [ACoA∗] = 0, and [CIT∗] = 0 which also
leads to a pathological metabolic steady-state outcome.

Figure 11 shows the molecular evolution of System (10)–(15), where the
variables evolve to their steady-state values in about 3.3 h (200 min).
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Fig. 11 Molecular evolution of energy demand in a single cone cell. The parameter values are
set to their baseline value for normal photoreceptor model with initial conditions: [G] = 0.2,
[LACT] = 9.4 and the rest of the other initial conditions are set to be equal to zero

B Acronym Glossary

Acronym Definitions

Acronym Meaning

ACoA acetyl coenzyme A

ATP adenosine triphosphate

BSG-1 basigin-1

CIT citrate

DHAP dihydroxyacetone phosphate

eFAST Extended Fourier Amplitude Sensitivity Test

G glucose

GAP glyceraldehyde-3-phosphate

G3P glycerol-3-phosphate

G6P glycerol-6-phosphate

(continued)
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Acronym Definitions

Acronym Meaning

GLUT1 glucosetransporter 1

LACT lactate

LDH lactate dehydrogenase

LDHA lactate dehydrogenase A

LDHB lactate dehydrogenase B

LHS Latin Hypercube Sampling

MCT monocarboxylate transport proteins

NAD nicotinamide adenine dinucleotide

OS outer segment

OXPHOS oxidative phosphorylation

PDC pyruvate dehydrogenase complex

PFK phosphofructokinase

PRCC Partial Rank Correlation Coefficient

PYR pyruvate

RdCVF rod-derived cone viability factor

RdCVFL rod-derived cone viability factor long form

RPE retinal pigmented epithelium

TCA tricarboxylic acid

VEGF vascular endothelial growth factor
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