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We study asymptotic behaviour in networks of n nodes with discrete quadratic dynamics. While single
map complex quadratic iterations have been studied over the past century, considering ensembles of such
functions, organized as coupled nodes in an oriented network, generates new questions with potentially
interesting applications to the life sciences. We discuss extensions of traditional results from single map
iterations, such as the existence of an escape radius; we then investigate whether crucial information about
the network is encoded in the behaviour of the critical orbit. We use two previously defined objects: the
network Mandelbrot set (i.e., the set of quadratic parameters in C

n for which the network is post-critically
bounded in C

n) and the equi-M set (the diagonal slice of the network Mandelbrot set, corresponding to
all nodes using the identical quadratic map). Using a combination of analytical techniques and numerical
simulations, we study topological properties of the equi-M set, with the aim of understanding which of
these properties are affected by altering different aspects of the network architecture and node-to-node
connectivity strengths. We find that, while equi-M sets no longer have a hyperbolic bulb structure, some of
their geometric landmarks (e.g., the cusp) are preserved for any network configuration, and other properties
(such as connectedness) depend on the network structure. We further study the relationship between the
Mandelbrot set and the connectedness locus of the network uni-Julia set (defined as the set of z0 ∈ C for
which all nodes remain bounded when they are all initialed identically at z0). We discuss using the geometry
of uni-Julia or equi-M sets to classify asymptotic behaviour in networks based on their underlying graph
structure. Finally, we propose using a form of averaging uni-Julia and equi-M sets to describe statistically
the likelihood of a specific asymptotic behaviour, considered over an entire collection of configurations.
We discuss which analytical results can be further supported or refined in the future. We also revisit the ties
with applications to the life sciences. We explore how this theoretical study may inform on using similar
methods to understand natural systems with more complex architecture and node-wise dynamics.

Keywords: discrete dynamics; complex quadratic maps; dynamic networks; low-dimensional directed
networks; dynomics.

1. Introduction

1.1 Motivation

Many natural systems are organized as self-interacting networks. Subsequently, dynamic networks have
been used as a modelling framework in many fields of the life sciences, with definitions of nodes and edges
depending on the context. A unifying question for all these different fields regards how the hardwired
structure of a network (its underlying graph) and its connectivity (edge weights) affect the system’s overall
function. The new term of ‘dynomics’ has been recently used in reference to investigating simultaneously
the network hardwiring (connectomics) and the node-wise temporal evolution (dynamics). The aim is to
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2 A. RǍDULESCU AND S. EVANS

understand the contribution of each of these two aspects to the ensemble temporal evolution resulting
from their interplay.

The difficulty of the problem did not initially detract from the motivation to address it, a strong
drive coming from the potentially tremendous applications to any system in which behaviour emerges
from network coupling of interacting nodes. For example, when studying brain networks, the nodes may
represent neurons, and the connecting oriented edges between them are synapses with varying weights.
In epidemics, the nodes may be populations, and the edges, the physical contacts that promote contagion.
For a traffic map, the nodes may be towns, connected by various size roads, and for a social network,
individuals are connected by friendship edges of different strengths.

Empirical studies support certain generic topological properties of natural architectures, such as
community structure, small-world properties, the existence of hubs and ‘rich clubs’. By applying graph
theoretical measures (e.g., clustering coefficient, motifs and modularity), various studies have been inves-
tigating the sensitivity of a system’s temporal behaviour to perturbations in the network architecture (e.g.,
to removing/adding nodes or edges at different places in the network structure). Using graph measures
in conjunction with dynamical systems methods originally held great promise towards investigating how
the interacting units of a system are wired together and control complex behaviour. In neuroscience, for
example, this question is considered one of the great scientific challenges of the 21st century [1–3].

With this aim in mind, a lot of effort was invested in building network models that incorporate
graph structure and realistic node-wise dynamics in one unified framework, tractable theoretically or
numerically. These can then be used in conjunction with data towards interpreting empirical results and
for making predictions. Biophysical models revealed rich dynamic regimes and transitions [4], shown
to depend as much on the coupling parameters of the network as on the arrangement and strength of its
connections, in ways which are difficult to differentiate. While successfully explaining a variety of specific
results, biophysical models seem too complex to provide the optimal tools for differentiating between
the effects of local dynamics and global architecture, or to be helpful with classifications of dynamics in
terms of architectural properties. It has become therefore increasingly clear that, in a naturally realistic
setting, this interesting theoretical problem presents potentially insurmountable challenges arising from
compounding the graph complexity with the nodes’ dynamic richness.

It has been proposed that simplified, canonical models, while losing the immediate connection with
the natural world, may be better suited to identify and pair specific structural patterns with their effects
on dynamics. Instead of a focus on rendering specifically the biophysics of any particular natural system,
theoretical networks focus (using simpler, lower dimensional graph structures and more tractable, some-
times close to linear, node-wise dynamics) on capturing the phenomenological essence of the question,
as well as on establishing methods and results that may work in a more general context. One can then
verify whether these methods are more universal, and whether the results can be extended to the more
complex networks that describe natural systems.

For example, a standard model historically used to describe and study firing activity in neural popu-
lations has been the two-dimensional, nonlinear Wilson-Cowan model [5]. When coupled in even small
dimensional networks, Wilson-Cowan equations produce rich behaviour [6]. In our previous work, we
developed methods for approaching larger networks with Wilson-Cowan node-wise dynamics, but we
observed that analytical and numerical difficulties increase dramatically with size [7]. In order to eliminate
some of these issues and keep models analytically tractable for larger sizes, a popular choice has been to
‘linearize’ the Wilson-Cowan system (i.e., approximate a sigmoidal function with three linear pieces [8]).

A newer direction of inquiry initiated by Curto et al. [9] is to consider the even simpler node dynamics
of threshold-linear networks. The authors study low dimensional networks of simple, perceptron-like
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 3

nodes, the difficulty of which is closer to that of linear nodes, but which, when coupled, still exhibit
nonlinear-like dynamics due to the way in which the two node-wise linear pieces act on the domain. The
authors successfully prove how certain dynamic features (e.g., fixed points and cycles) emerge from the
node-wise behaviour in combination with specific network connectivity patterns. Their results support
the idea that it is possible, in simple theoretical networks, to infer analytically features of the dynamics
from the network’s connectivity.

Along the lines of analysing theoretical networks, our study focuses on understanding how architecture
affects asymptotic dynamics in networks of complex quadratic maps: fc : C → C, fc(z) = z2 + c,
for c ∈ C. We chose this particular family of node-wise dynamics for three reasons. Firstly, because
the node-wise dynamics builds upon over a century of research: the classical theory for single function
iterations has been most developed for the complex quadratic family. Secondly, because discrete iterations
(and unimodal functions, in particular) have provided good simplified representations for many natural
processes such as learning in brain circuits [10–12]. Thirdly, because this is a distinctly different type
of dynamics than that considered in the Curto study, which offers a great candidate for testing in the
future, whether results are universal (i.e., transcend the type of node-dynamics used for the network). If
successful, a long-term goal will be to verify if such results carry over to more complex, physiological
node-wise dynamics.

1.2 Networks of complex quadratic maps

Work on the complex quadratic family spans more than a century, from the original results of Fatou and
Julia, describing in the early 1900s the behaviour of orbits in the dynamic complex plane (reflected by the
structure of the Julia set) [13, 14], to bifurcation phenomena in the parameter plane (reflected in the work
of Mandelbrot and others, in the 1970s) [15, 16], to recent connections between the two concepts [17–19].
Therefore, we adopted the simplified framework of networked logistic maps as an ideal starting point
for approaching basic dynamic questions in the context of networks. In this framework, each network
node receives weighted inputs from the adjacent nodes, and integrates these inputs in discrete time as a
complex quadratic map. Then the system takes the form of an iteration in C

n:

zj(t) −→ zj(t + 1) = fj

(
n∑

k=1

gjkAjkzk

)

where n is the size of the network, A = (Ajk)
n
j,k=1 is the binary adjacency matrix of the oriented underlying

graph, that is Ajk = 1 if there is an edge from the node k to the node j, and Ajk = 0 otherwise. The
coefficients gjk are the signed weights along the adjacency edges (in particular, gjk = 0 if there is no edge
connecting k to j, that is if Ajk = 0). In isolation, each node zj(t) → zj(t + 1), 1 ≤ j ≤ n, iterates as a
quadratic function fj(z) = z2 + cj. When coupled as a network with adjacency A, each node will act as
a quadratic modulation on the sum of the inputs received along the incoming edges (as specified by the
values of Ajk , for 1 ≤ k ≤ n). In particular, if gjj = 0 (that is if there is no loop from node j to itself, i.e.,
Ajj = 0), then the node j’s evolution is based purely on the current state of the other nodes, and not on its
own’s, which is a situation which is not precluded in natural systems.

We are generally investigating whether one can use properties of multi-dimensional orbits in C
n, in

particular their asymptotic behaviour (via the topological and fractal structure of Julia and Mandelbrot
multi-sets), to classify dynamic behaviour for different network architectures. One may impose additional
structural conditions on edge density (i.e., the fraction of oriented edges in the adjacency graph, expressed
out of the possible total of n2) or distribution (i.e., the edge configuration in the adjacency graph, for fixed
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4 A. RǍDULESCU AND S. EVANS

density). One can then investigate whether it is possible to predict the geometry of Julia and Mandelbrot
sets from specific information on the network hardwiring. We aim to tease apart the instances in which
small perturbations in the position or strength of one single connection may lead to dramatic topological
changes in the asymptotic sets, from the instances in which these sets are robust to much more significant
changes.

In our previous work [20], when suggesting possible ties of our results with broader applications
to the life sciences, we interpreted iterated orbits as describing the temporal evolution of an evolving
system (e.g., learning neural network). An escaping initial condition (whether in the complex plane C,
for a single iterated map, or in C

n, for an iterated network) may be seen as an eventually unsustainable
feature of the system, while an initial condition with a bounded forward orbit (a ‘prisoner’) may represent
a trivial, or inefficient feature. The Julia set is formed of all the boundary points between prisoners and
escapees, hence we suggested that it can be regarded as the ‘critical locus’ of states with a complex
temporal evolution, characteristic to living systems operating within an optimal range.

In the same paper [20], we defined the network Mandelbrot set, for simplicity, as the node parameter
range for which the critical point (i.e., all nodes equal zero) is bounded (i.e., functionally sustainable)
under ensemble iterations of the network. In the traditional case of a single iterated quadratic map, this
is equivalent to defining the parameter locus for which the Julia set is connected. Indeed, the Fatou–Julia
Theorem delivers in this case a well-known duality: a bounded critical orbit implies a connected Julia set,
and an escaping critical orbit implies a totally disconnected Julia set. We do not expect this equivalence
to remain true when iterating networks. For networks, we have already noticed that the situation is a lot
more complicated: the Julia set may not necessarily be connected or totally disconnected, and may have
a finite number of connected components. What we conjectured, in a slightly different form, is that a
connected ‘uni-Julia set’ implies a bounded critical orbit, but not conversely.

One may further interpret that, in the case of a network with connected Julia set, all sustainable initial
conditions (i.e., prisoners, or initial points leading to bounded orbits) can be reached by perturbations from
rest (i.e. from the critical point, with all nodes set at zero), without having to leave the prisoner set. Totally
disconnected Julia sets represent a scattered, measure zero locus of sustainable initial states. We further
conjectured that one would always have to traverse an intermediate asymptotic region characterized
by Julia sets which are disconnected without being totally disconnected, when transitioning from the
parameters locus for connected Julia sets to the parameter locus for totally disconnected Julia sets.

1.3 Prior results in small networks

In order to establish a conceptual framework, in previous work we considered simple, low-dimensional
networks, which are both analytically tractable and allow easy visualization and interpretation of the
results, suggesting a baseline for extensions to higher dimensional, more complex networks.

We considered in particular three-dimensional networks with various coupling geometries between
their complex nodes z1, z2, z3. For fixed logistic parameters c1=c2=c3=c, we described the dependence of
the Julia and Mandelbrot sets and of their one-dimensional slices on the graph wiring and of the strengths
of the connections between nodes.

Our prior work [20] suggests that even basic results from the case of a single iterated quadratic map
may have to be rediscovered in the context of networks (one yet needs to prove, for example, even the
existence of an escape radius). Although out prior work focused on studying dynamics in small quadratic
networks, we had to first give some general definitions for extensions in C

n of some of the traditional
concepts: multi-orbits, Julia and Mandelbrot sets, as well as their one-dimensional complex slices, which
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 5

we called uni-Julia and equi-Mandelbrot sets. For completeness purposes, these definitions are reproduced
below:

Definition 1.1 For a fixed parameter (c1, ..., cn) ∈ C
n, we call the prisoner set of the network, the locus

of (z1, ..., zn) ∈ C
n which produce a bounded multi-orbit in C

n. We call the uni-prisoner set, the locus
of z ∈ C so that (z, ...z) ∈ C

n produces a bounded multi-orbit. The multi-Julia set (or the multi-J set)
of the network is defined as the boundary in of the multi-prisoner set (as a subset in C

n, with the product
topology). Similarly, one defines the uni-Julia set (or uni-J set) of the network as the boundary in C of
the uni-prisoner set for that network.

Definition 1.2 We define the multi-Mandelbrot set (or the multi-M set) of the network the parameter
locus of (c1, ..., cn) ∈ C

n for which the multi-orbit of the critical point (0, ..., 0) is bounded in C
n. We call

the equi-Mandelbrot set (or the equi-M set) of the network, the locus of c ∈ C for which the critical
multi-orbit is bounded for equi-parameter (c1, c2, ...cn) = (c, c, ...c) ∈ C

n. We call the kth node-wise
equi-M set the locus c ∈ C such that the kth component of the multi-orbit of (0, ..., 0) ∈ C

n remains
bounded in C.

In our previous article, we applied these definitions to a variety of three-dimensional systems and we
pointed out new, network phenomena. We proposed new versions of the traditional theorems for the case
of networked nodes. We showed that even in networks where all nodes have the same parameter c (i.e.,
the same quadratic map is used for all components in C

n), their behaviour may not be ‘synchronized’, in
the sense that different nodes may have different asymptotic behaviour (reflected in differences between
node-wise Mandelbrot and Julia sets). Node coupling seems to enhance this ‘de-synchronization’ between
two or more nodes, and additional networking may generally lead to smaller network Mandelbrot and
Julia sets. Unlike for the traditional single map iterations, the definition requirement for the M-set that the
origin has a bounded multi-orbit is no longer equivalent with that of the J-set being connected, in either
of its forms (multi-J or uni-J set). In our previous work, however, we have conjectured a weaker version
of the Fatou–Julia theorem in this case, which remains to be verified analytically. We also analysed
and interpreted the distinct effects of varying the signed connection strengths, and those of introducing
feedback into the network.

We finally pointed out that complex natural networks are typically a lot larger than the three and four
node networks we had studied. At the same time, however, natural networks (such as brain circuits, for
example) tend to be highly hierarchic, with the behaviour of each one node at a certain complexity level
integrating the behaviour of a collection of lower-level nodes. Hence, at each complexity level, the size
of the network to be studied may be in fact relatively small (tens or hundreds of nodes). While for small
networks the effects of architecture on asymptotic dynamics can still be observed and studied by looking
at each configuration individually, and for very large networks one may take the large size limit approach
traditional in random graph theory, for these intermediate networks one has to build different approaches,
which we further explore here.

Within this article, we will focus on studying equi-M and uni-J sets for networks with identical nodes (i.e.,
network dynamics for equi-parameters c ∈ C). The article is organized as follows. In Section 2, we state
sufficient conditions for existence of an escape radius. Under these conditions, we calculate the radius
in terms of the network parameters. In Sections 2.2 and 2.3, we consider a particular three-dimensional
model, and for this model we explore under what conditions (i.e., for which network configuration and
edge weights) the network Mandelbrot set preserves the connectivity and the hyperbolic bulb structure
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6 A. RǍDULESCU AND S. EVANS

that are its signature in the case of single map iterations. In Section 2.4, we investigate, for the same
low-dimensional example model, a form of the Fatou–Julia Theorem for networks. We test whether the
uni-Julia set connectedness locus coincides with the post-critically bounded locus, both considered as
subsets in the space of edge weights. Since the result does not hold in a similar form to the original theorem
for single iterated maps, we use numerical computations to conjecture an extension. In Section 3, we
introduce new methods applicable to higher dimensional networks. We investigate the robustness of the
asymptotic sets under changes in the graph structure, and investigate whether one can use the network
Mandelbrot set to define classes of asymptotic dynamics within the set of dynamic networks with n
nodes and all possible edge configurations. We introduce a statistical book-keeping method developed
in our previous work [7] to define probabilistic (or average) versions of the Julia and Mandelbrot sets,
illustrating the likelihood that each initial state of the network remains bounded when iterated under a
random network configuration with certain given properties. Using this framework, one can attempt to
tease apart graph theoretical features determinant of certain dynamics of the network, from those less
consequential to temporal behaviour. Finally, in Section 4, we interpret our results and comment on
potential applications.

2. Extensions of traditional results

2.1 Escape radius

A simple and well-known result in the case of single quadratic map iterations is the existence of escape
radius [21]. More precisely:

Theorem 2.1 For any value of the parameter c ∈ C, the function fc(z) = z2 + c has the escape radius
Re = max(|c|, 2). That is: for any arbitrary orbit z(n), with n ≥ 0, if the N th iterate |z(N)| > Re for some
N ≥ 0, then |z(n)| > Re for all n ≥ N , and |z(n)| → ∞ as n → ∞.

Proof. Suppose |z(n)| > Re for some n ≥ N and calculate:

|z(n + 1)|
|z(n)| = |fc(z(n))|

|z(n)| = |z(n)2 + c|
|z(n)| ≥ |z(n)|2 − |c|

|z(n)| = |z(n)| − |c|
|z(n)|

Since |z(n)| > |c|, it follows that
|z(n + 1)|

|z(n)| ≥ |z(n)| − 1. We also have that |z(n)| > 2, hence it follows

that |z(n + 1)| > |z(n)|. If we assume |z(N)| > max(|c|, 2), the conclusion of the theorem follows easily
by induction. �

We are interested in finding whether/when this is also the case for networks. What we mean by a network
N having the escape radius property is the following:

Definition 2.2 Consider a network N = (zi)
n
i=1, with coupled complex dynamics on its nodes, and

define the norm of the network as ‖z(k)‖2 = ∑n
i=1|zi(k)|2, at each iteration step k ≥ 0. We say that N

has the escape radius property if there exists a large enough R > 0 such that if ‖z(K)‖ > R at some
iterate K ≥ 0, then ‖z(k)‖ > R for all k > K , and ‖z(k)‖ → ∞ as k → ∞.

We expect the answer to vary with the network, so that both existence and size of the escape radius
would depend on the network’s architecture and edge weights. While in general it would be desirable
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 7

to find equivalent conditions for a network to have the escape radius property, here we describe two
sufficient conditions (two relatively broad classes of networks which cover our subsequent numerical
investigations).

Definition 2.3 Let N be a network with n nodes, with the edge connecting the node j to the node i having
weight gij (for all 1 ≤ i, j ≤ n, where gij = 0 when there is no edge connecting the nodes). Suppose that
these weights are so that, for each node 1 ≤ j ≤ n, there exists a node σ(j) for which

|gσ(j)j| >
∑
l �=j

|gσ(j)l|

In other words, each node sends to another node of its choice a projection edge, which is stronger in
absolute value than the sum of the absolute values of the strengths along all other incoming edges to the
receiving node. Then we say that N is a dominated network.

Theorem 2.4 Dominated networks with identical c values for all nodes have escape radius.

Proof. We will show that there exists δ > 1 and M0 > 0 such that, for all M ≥ M0 and all K ≥ 0, if

|zi(k)| ≤ M, for all nodes 1 ≤ i ≤ n and all iterates 0 ≤ k ≤ K + 1 (1)

then

|zi(k)| ≤ M

δ
, for all nodes 1 ≤ i ≤ n and iterates 0 ≤ k ≤ K (2)

This implies that, if |zi(k)| > M/δ for some node 1 ≤ i ≤ n and some iterate k ≥ 0, then there exists a
node 1 ≤ l ≤ n for which |zl(k + 1)| > M. In other words, we show that once a node gets large enough
in modulus, at each future iteration step one of the nodes (not necessarily the same one each time) will
be even larger, causing the norm to escape to infinity. This is equivalent to the definition of the escape
radius property, as previously stated.

Indeed, suppose we have (1) for some M > 0. We want to see what conditions M needs to meet in
order to satisfy (2). Fix an arbitrary node 1 ≤ j ≤ n. Since the network is dominated, there will exist a
node σ(j) such that |gσ(j)j| >

∑
l �=j|gσ(j)l|. Then:

|zσ(j)(K + 1)| =
∣∣∣∣[∑ gσ(j)lzl(K)

]2 + c

∣∣∣∣ ≥
∣∣∣∣∣
∑

l

gσ(j)lzl(K)

∣∣∣∣∣
2

− |c|

Hence ∣∣∣∣∣
∑

l

gσ(j)lzl(K)

∣∣∣∣∣ ≤ √|zσ(j)(K + 1)| + |c|

and

|gσ(j)jzj(K)| ≤ √|zσ(j)(K + 1)| + |c| +
∣∣∣∣∣∣
∑
l �=j

gσ(j)lzl(K)

∣∣∣∣∣∣
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8 A. RǍDULESCU AND S. EVANS

Using (1), it follows that:

|gσ(j)jzj(K)| ≤ √
M + |c| + M

∣∣∣∣∣∣
∑
l �=j

gσ(j)l

∣∣∣∣∣∣
If we required that the right side be smaller than M

δ
|gσ(j)j|, it would follow automatically that |zj(K)| ≤

M/δ. We want to find out whether we can choose M so that this stricter condition is satisfied:

√
M + |c| + M

∣∣∣∣∣∣
∑
l �=j

gσ(j)l

∣∣∣∣∣∣ ≤ M

δ
|gσ(j)j| ⇐⇒

√
M + |c| ≤ M

δ

⎛
⎝|gσ(j)j| − δ

∣∣∣∣∣∣
∑
l �=j

gσ(j)l

∣∣∣∣∣∣
⎞
⎠

Since |gσ(j)j| >
∑

l �=j|gσ(j)l|, there exists M(j)
0 > 0 and δ(j) > 1 such that the inequality is satisfied for any

M > M(j)
0 and δ < δ(j).

Since this is true for any arbitrary 1 ≤ j ≤ n, we can define M0 = max
j

M(j)
0 . Then (2) is satisfied for

any M ≥ M0, for δ = min
j

δ(j). This concludes the proof. �

Definition 2.5 We say that a network is feed-forward with self loops if gii �= 0 for all 1 ≤ i ≤ n, and if
for all nodes 1 ≤ j ≤ n and all iterations k ≥ 0 we have

zj(k + 1) =
⎡
⎣∑

l≤j

gjlzl(k)

⎤
⎦

2

+ c

(in other words, if its adjacency matrix is lower triangular and has no diagonal zeros).

Remark. A network is feed-forward with self loops if each node is only coupled with its predecessors
and with itself. Notice that in this case the adjacency matrix is nonsingular. All the networks considered in
our numerical experiments in the rest of this article are feed-forward with self loops. Studying dynamics
in feed-forward networks may present additional interest, since it may relate to existing work on skew
products in C

n [22–25].

Theorem 2.6 Feed-forward networks with self loops and identical c values for all nodes have the escape
radius property.

Proof. Fix δ > 1. We will show that there exists M0 > 0 such that for all M > M0, if |zj(k)| ≥ M for
some 1 ≤ j ≤ n and some k ≥ 0, then |zl(k + 1)| ≥ δM, for some 1 ≤ l ≤ n. This implies that if one
node gets larger in modulus than M0 at some stage k of the iteration, then ‖z(k)‖ → ∞ as k → ∞. In
other words, M0 would act as an escape radius for the network.
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 9

We will prove this by induction over the network size n. For the first node z1, the result is equivalent
to the existence of escape radius for a single quadratic map (hence we can take M(1)

0 = max(|c|, 2),
according to Theorem 2.1).

Suppose that the result holds for the feed-forward network consisting of the first (n − 1) nodes, for
some M(n−1)

0 . That is: for all M > M(n−1)

0 , if |zj(k)| ≥ M for some 1 ≤ j ≤ n − 1 and some k ≥ 0, then
|zl(k + 1)| ≥ δM, for some 1 ≤ l ≤ n − 1. We will show that it holds for the feed-forward network of
n nodes with self loops, for an M(n)

0 large enough. More precisely, as it will become apparent along the
rest of the proof, it is sufficient to make a choice that satisfies the following conditions:

(i) M(n)

0 > M(n−1)

0

(ii) M(n)

0 > M(n−1)

0

∑
l<n|gnl|
|gnn| (the right hand is finite because |gnn| �= 0 for all n)

(iii)

(
M|gnn| − M(n−1)

0

∑
l<n

|gnl|
)2

> |c|M

Since the last condition is satisfied by M(n)

0 being larger than the larger root M+ of the quadratic equation(
M|gnn| − M(n−1)

0

∑
l<n

|gnl|
)2

− |c|M = 0, a sufficient condition for M(n)

0 is that

M(n)

0 > max

(
M(n−1)

0 , M(n−1)

0

∑
l<n|gnl|
|gnn| , M+

)
(3)

Consider an M(n)

0 satisfying property (3). Fix an arbitrary M > M(n)

0 , and suppose we have
|zl(k)| ≥ M ≥ M(n)

0 , for some 1 ≤ l ≤ n and some k ≥ 0. We have two cases:

Case 1. If |zj(k)| ≥ M for some 1 ≤ j ≤ n − 1 and the k in the hypothesis above. Then, since
M ≥ M(n)

0 > M(n−1)

0 , we can use the result from the n − 1 induction step, and get that |zl(k + 1)| ≥ δM,
for some 1 ≤ l ≤ n − 1.

Case 2. If |zj(k)| < M for all 1 ≤ j ≤ n − 1, then it must be that |zn(k)| ≥ M.
Since the iteration in the nth node is given by:

zn(k + 1) =
(∑

l

gnlzl(k)

)2

+ c

we can use the triangle inequality to get

|zn(k + 1)| ≥
∣∣∣∣∣
∑

l

gnlzl(k)

∣∣∣∣∣
2

− |c|
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10 A. RǍDULESCU AND S. EVANS

Hence

√|zn(k + 1)| + |c| ≥
∣∣∣∣∣
∑

l

gnlzl(k)

∣∣∣∣∣ ≥ |gnn| · |zn(k)| −
∑
l<n

|gnl| · |zl(k)|

≥ M|gnn| − M(n−1)

0

∑
l<n

|gnl|

Since the right side of the inequality is positive (from requirement (ii) on M(n)

0 ), the condition is then
equivalent with:

|zn(k + 1)| ≥
(

M|gnn| − M(n−1)

0

∑
l<n

|gnl|
)2

− |c|

From requirement (iii) on M(n)

0 , it follows that |zn(k + 1)| ≥ δM.

In conclusion, in both cases it follows that |zl(k + 1)| ≥ δM for some 1 ≤ l ≤ n, which concludes the
induction. �

2.2 Main cardioid and periodic bulbs

Possibly, the most striking geometric features of the traditional Mandelbrot set are its periodic Fatou
components. Indeed, one may consider the set M′ of all parameters c for which the map fc has an
attracting periodic orbit. It has been established that M′ is a subset of the interior of M. For example,
the c-locus for which the map has an attracting fixed point represents the interior of the main cardioid
of M, and the locus for which the map has an attracting period two orbit is the interior of the disc
of radius 1/4 centred at (−1, 0). Whether M′ is in fact identical to the interior of M, or M contains
other (‘ghost’, persistently non-hyperbolic [26]) interior points—is still an open question, known as the
Density of Hyperbolicity conjecture. While the conjecture was solved for real polynomials over twenty
years ago [27, 28], it still represents one of the most important open problems in complex dynamics.

In the traditional case of single iterated maps, each hyperbolic component (bulb) of the Mandelbrot
set represents a parameter subset for which the map has an attracting orbit of period k. For example, the
locus in C for which the map has an attracting fixed point is the interior of the main cardioid, defined as

c = eiθ

2
− e2iθ

4
, with 0 ≤ θ ≤ 2π .

We ask whether one may be able to define (and set to compute in a similar fashion) hyperbolic
components for a network of quadratic complex nodes. To fix our ideas, we aim to calculate the main
hyperbolic component (representing the locus of c ∈ C for which the network has an attracting fixed
point) for a very simple network of three nodes (which we had considered in previous work). We will
illustrate how the boundary of this region differs from the main cardioid from the traditional case, and
compare it with the numerical illustrations of the corresponding equi-M sets.

Consider the following ‘simple dual’ network with two input nodes and one output node (as considered
in our previous work [20]):

z1 → z2
1 + c

z2 → (az1 + z2)
2 + c

z3 → (z1 + z2)
2 + c
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 11

where a is the level of cross-talk between the input nodes. We ask that (z1, z2, z3) be a fixed point: z2
1+c = z1

(with roots z(1)

1 and z(2)

1 ) and (az1 + z2)
2 + c = z2 (producing two roots z(1,1)

2 and z(1,2)

2 corresponding to
z1 = z(1)

1 , and two roots z(2,1)

2 and z(2,2)

2 corresponding to z1 = z(2)

1 ). Hence, there are in general four fixed
points for the subnetwork formed of the first two nodes, namely: (z(1)

1 , z(1,1)

2 ), (z(1)

1 , z(1,2)

2 ), (z(2)

1 , z(2,1)

2 ) and
(z(2)

1 , z(2,2)

2 ). With this, the third component z3 = (z1+z2)
2+c is fixed automatically (since it is independent

of z3), producing four corresponding fixed points for the original three-dimensional network, which we
will call z∗

1,1, z∗
1,2, z∗

2,1 and z∗
2,2. The Jacobian matrix of this network

J(z1, z2, z3) =
⎛
⎝ 2z1 0 0

2a(az1 + z2) 2(az1 + z2) 0
2(z1 + z2) 2(z1 + z2) 0

⎞
⎠ (4)

has eigenvalues λ1 = 2z1, λ2 = 2(az1 + z2) and λ3 = 0 (super-attracting component). To find the
boundary of the hyperbolic component, we calculate the curve |λ1| = |λ2| = 1 at each of the fixed points,
separating the region where these fixed points are stable (attracting) from the region where they have
unstable (saddle) behaviour. For simplicity, call ϕ = az1 + z2, and notice that the eigenvalue condition
implies 2z1 = eiθ , with 0 ≤ θ ≤ 2π , and 2ϕ = eiτ , with 0 ≤ τ ≤ 2π .

The first condition implies that c = z1 − z2
1 = eiθ

2 − e2iθ

4 , which is precisely the main cardioid from
the traditional case. The second condition will add another restriction, which will depend on parameter
a. It follows immediately, however, that the network hyperbolic component will always be a subset of
the interior of the main cardioid from the traditional case of single map iterations.

Notice now that the first fixed point equation multiplied by a and added to the second delivers:
az2

1 = ϕ − ϕ2 − (a + 1)c, while the second gives us: ϕ2 + c = ϕ − az1, hence az1 = ϕ − ϕ2 − c. In
conclusion:

a2z2
1 = aϕ − aϕ2 − a(a + 1)c = (ϕ − ϕ2 − c)2

Calling ξ = ϕ − ϕ2, we obtain the quadratic equation in c:

c2 + (a2 + a − 2ξ)c + ξ 2 − aξ = 0

which gives the solution curves:

c = 2ξ − a − a2 ±√
a2(a + 1)2 − 4a2ξ

2

= 2(ϕ − ϕ2) − a − a2 ±√
a2(a + 1)2 − 4a2(ϕ − ϕ2)

2

where ϕ = eiτ /2. We represented these curves and the regions between them in Fig. 1.
Notice that having an attracting fixed point for the network no longer implies that the origin will be in

the attraction basin of this fixed point, hence the critical orbit can still escape (as shown in Fig. 1). Hence
even in networks as simple as this family of examples, structuring the interior of M-set as a union of
hyperbolic bulbs fails. While some of the bulb geometry is preserved (e.g., the cusp seems robust under
network transformations), some of the landmarks lose their dynamic context (e.g. the origin c = 0, while
still in the network Mandelbrot set, can no longer be regarded as the centre of a main cardioid).
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12 A. RǍDULESCU AND S. EVANS

Fig. 1. Main hyperbolic component of the network equi-M set, for a simple dual network with different cross-talk values a (see the
main text for the node-wise iterations corresponding to this model). The panels show the boundary of the equi-M set (computed
numerically) and the curves obtained analytically, for two different values of the parameter a: (A) a = −1/3 and (B) a = 1/3. The
red curve represents the traditional Mandelbrot cardioid, and the green and blue curves represent the additional restriction curves
for c, as described in the text. With the notation for the four fixed points z∗

1,1, z∗
1,2, z∗

2,1 and z∗
2,2 introduced in the main text, the

colours represent different stability behaviours of the critical components, as follows: in the olive region, |λ2| < 1 at z∗
1,1; in the

blue regions, both |λ1| < 1 and |λ2| < 1 at z∗
1,1; in the yellow regions, both |λ1| < 1 and |λ2| < 1 at z∗

1,1 and |λ2| < 1 at z∗
2,1; in

the gray regions, |λ2| < 1 at z∗
1,1 and z∗

2,1; in the pink regions, |λ2| < 1 at z∗
2,1; in the green region, |λ2| < 1 at z∗

1,2 and z∗
2,1; in the

orange region, |λ1| < 1 at z∗
1,1. In conclusion, the network has an attracting fixed point within the union of the yellow and blue

regions.

The properties of higher period bulbs get perturbed even more dramatically. We can track, for example,
what becomes of the period two bulb/disc (originally centred at the c = −1) in the two parameter family of
simple three-dimensional networks given by z1 → z2

1 +c, z2 → (az1 +z2)
2 +c, z3 → (z1 +z2 +bz3)

2 +c,
with a, b ∈ R. While part of the topological behaviour of the original Mandelbrot set is conserved
in some networks, it completely collapses in others, depending on the configuration and connectivity
parameters. To illustrate, we first show in Fig. 2 a comparison between the network Mandelbrot sets for
our model network, for three different parameter pairs: (a, b) = (−1, −1); (a, b) = (−1/3, −1/3) and
(a, b) = (−2/3, −1/3). In all cases, the M-set is disconnected (see Section 2.3 for detail); in the first two
cases, c = −1 is still part of the set; in the third, it is not.

2.3 Connectedness of the Mandelbrot set

A set in C is said to be disconnected if it is as subset of the disjoint union of two open sets, both of which
it intersects. A set is connected if it is not disconnected. Establishing connectedness of the traditional
Mandelbrot has been historically challenging, with an original conjecture (based on numerical and visual
consideration) stating the exact opposite. Connectedness of the set was finally determined by Douady
and Hubbard [29], with a proof based on the construction of a conformal isomorphism between the
complement of the Mandelbrot set and the complement of the closed unit disk.

It has been hypothesized that the Mandelbrot set is locally connected (the MLC conjecture). While
local connectivity has been established at many special points in the Mandelbrot set (for example, Yoccoz
proved that this is the case at all finitely renormalizable parameters [30]), the general conjecture remains
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 13

Fig. 2. Examples of disconnected equi-M sets for two networks with N = 3 nodes. All three networks belong to the family:
z1 → z2

1 + c, z2 → (az1 + z2)
2 + c, z3 → (z1 + z2 + bz3)

2 + c. (A) Connectivity weights a = −1, b = −1; (B) Connectivity
weights a = −1/3, b = −1/3; (C) Connectivity weights a = −2/3, b = −1/3. The colours represent the escape rate of the critical
orbit out of the disc of radius Re = 20, so that the critical orbit is bounded in the central black region, and escapes faster with
increasingly lighter colours.

open. Establishing local connectedness of the Mandelbrot set is extremely desirable, since it implies
Density of Hyperbolicity [29].

It is not entirely surprising that most of these results no longer apply in this form for networked complex
maps. For example, connectedness fails in general for network equi-Mandelbrot sets. To fix our ideas, we
illustrate and prove disconnectedness for an example network in the three-dimensional family considered
previously [20] (see Fig. 2). This family (which we called the ‘self-drive model’) is interesting and easy to
analyse, since each node depends only on the ones with smaller indices: z1 → z2

1 +c, z2 → (az1 +z2)
2 +c,

z3 → (z1 + z2 + bz3)
2 + c (i.e., this is a family of feed-forward networks, having from one to three self

loops, since a and b are allowed to be zero).

Proposition 2.7 The equi-M set for the network in the self-drive family (equations described above)
with connectivity weights a = −1, b = −1 is disconnected.

Proof. Notice first that, in general, all three node-wise projections of the critical orbits are real. We
will show that the equi-M set described in the proposition has at least two connected components (the
component of the origin and that of c = −1), separated by the line Re(z) = −3/4 (see Fig. 3).

Indeed, the critical orbit is fixed for c = 0, so that c = 0 is trivially in the equi-M set of the network.
Also, one can easily see that this particular self-drive network is post-critically finite when c = −1. Indeed,
the first component of the critical orbit has in this case period two (0 → −1); the second component has
period four (0 → −1 → −1 → 0) and the third component has period four (0 → −1 → 0 → 0).

Finally, one can easily prove that no point on the line Re(c) = −3/4 is in the equi-M set of this network.
Indeed, notice that c = −3/4 is the only point in the traditional Mandelbrot set with Re(c) = −3/4 (it is
the point joining the main cardioid and the period two bulb). Since the network M-set is a subset of the
node-wise M-set for z1 (which is the traditional Mandelbrot set), it also cannot contain any other points
with Re(c) = −3/4. Furthermore, for our network, it can be shown that the third component z3 of the
critical orbit escapes when c = −3/4. Hence no point on the vertical line c = −3/4 is in the equi-M set
of the network. It is interesting that the node that causes the pinch in the traditional M-set and renders the
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14 A. RǍDULESCU AND S. EVANS

Fig. 3. Example of disconnected equi-M set for a network with N = 3 nodes. The curve traces the boundary of the equi-M set
shown in Fig. 2a, separated into two connected components, separated by the line Re(z) = −3/4: the one containing c = 0, to the
right of the line, and the one containing c = −1, to the left of the line. The network is given by z1 → z2

1 + c, z2 → (az1 + z2)
2 + c,

z3 → (z1 + z2 + bz3)
2 + c, with connectivity weights a = −1, b = −1.

network M-set disconnected is in fact the ‘output’ node, which receives control from both of the other
two nodes; yet it is the orbit of z3 that escapes, while the other two remain bounded when initiated at
zero. Since the calculations are a little technical, we include them for completion in Appendix A. �

More generally, one can take advantage of the fact that values of c on the real axis deliver real critical orbits
in combination with the real coupling strengths, hence one can use real map iterations and bifurcation
diagrams to understand the conditions for super-attracting, or for post-critically bounded networks in the
self-drive network model. Below, we carry out an example of such a bifurcation analysis with respect to
the coupling parameters a and b, for the special case of fixed c = −1. This is a point where computations
are relatively simple, since it represents a parameter value for which the critical point of the traditional
quadratic map has period two. We are additionally interested in this special case, since we want to
investigate the potential relationship between the combinatorics at the former hyperbolic bulb centres
and the connectivity of the equi-M set. Since c = −1 is the simplest nontrivial centre, this discussion
represents a first step towards this goal.

Fix c = −1 and a = −1, keeping the critical orbits of the first two nodes periodic (z1 performs a
period two oscillation between 0 → −1, and z2 has a period four oscillation 0 → −1 → −1 → 0), and
study the effect of changing the self-drive parameter b on the critical orbit of the node z3. The bifurcation
diagram in Fig. 4 illustrates that in the parameter slice a = −1, there are at least three intervals for b for
which c = −1 is in the equi-M set.

These intervals include the windows corresponding to attracting fixed points, but also encompass
period-doubling cascades and chaotic windows (not shown in Fig. 4). Given with three decimal places
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 15

Fig. 4. Bifurcation diagram with respect to the coupling parameter b for the function f (ξ) = f4 ◦ f3 ◦ f2 ◦ f1(ξ), which computes
every fourth iteration of the node z3, when a = −1, so that f1(ξ) = b2ξ2 − 1, f2(ξ) = (bξ − 2)2 − 1, f3(ξ) = (bξ − 1)2 − 1
and f4(ξ) = f3(ξ). The diagram shows three equilibrium curves, with a green diamond marking saddle node bifurcations (limit
points/LP), and purple squares marking the first period doubling point of period doubling cascades to chaos. Stable equilibira are
shown as solid lines, and unstable equilibria are shown as dotted lines. The intervals on which there is a stable equilibrium are
b ∼ −2.001 (PD1) to b ∼ −1.995 (LP1); b ∼ −1.01 (PD2) to b ∼ −0.996 (LP2); b ∼ −0.34 (LP3) to b ∼ 0.58 (LP4), with a
second stable fixed point between b ∼ 0.56 (LP5) and b ∼ 0.57 (PD3). The subsequent period doubling and chaotic windows are
not shown, for clarity of the diagram (since two of these windows are extremely small), but the critical orbit remains bounded within
this extended parameter range (as mentioned in the text). The diagram was created using the MatContM software for continuation
and bifurcations in discrete map iterations [31], implemented in Matlab, with double precision.

of approximation, these intervals for the parameter b are: [−2.016, −1.995], [−1.028, −0.996] and
[−0.34, 0.611].

Even more generally, one can compute the range for the coupling parameter a which guarantees that
c = −1 remains in the node-wise Mandelbrot set for the second node z2. Since the critical orbit is real for
real values of c and a, we can study this by tracking the bifurcations of the function f (ξ) = (ξ 2−1−a)2−1
(which represents the transition between even iterations of z2) with respect to a. We show the bifurcation
diagram schematically in Fig. 5. The initial condition z2(0) = 0 escapes for a < −2; it converges to a
stable fixed point starting at a = −2, and then to a stable period two orbit (after the period doubling
at a = −5/4). The attracting period two orbit survives (and attracts the origin) until a = −0.4 (with a
superattracting stage at a = −1), and then collapses back into a stable fixed point. As a is increased,
the system undergoes a cascade of period doubling bifurcations, starting with the first one at a ∼ 0.15,
birthing periodic cycles which continue to attract the critical orbit; this continues along on the route to
chaos, maintaining z2 bounded. Eventually, the origin escapes the trapping interval when the parameter
crosses the value a ∼ 0.7.

Hence c = −1 is in the z2 Mandelbrot set for the relatively large interval [−2, 0.7] for a, and is not
in the node-wise Mandelbrot set outside this parameter range. The two endpoints of this interval have
different significance and mechanisms. On one hand, when lowering a past the low critical state a = −2,
the point c = −1 pinches out and separates the z2 Mandelbrot set into two connected components (to
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16 A. RǍDULESCU AND S. EVANS

Fig. 5. Bifurcation diagram with respect to the coupling parameter a for the function f (ξ) = (ξ2 − 1 − a)2 − 1 (representing the
even iterations of the z2 component of the critical orbit in the feed-forward family when c = −1). The diagram shows equilibrium
curves, with a green diamond marking saddle node bifurcations (limit points/LP), and purple squares marking the first and second
period doubling points in the cascades to chaos. The subsequent period doubling and chaotic windows are not shown, for clarity of
the diagram. Stable equilibira and periodic orbits are shown as solid lines, and unstable equilibria and periodic orbits are shown as
dotted lines. The bifurcation values for a and the transitions are further discussed in the text. As before, the diagram was created
using the MatContM software for discrete map iterations.

the right and to the left of the line Re(z) = −1, see Fig. 6a). On the other hand, when raising a in the
positive range, the tail of the z2 Mandelbrot set shortens, so that past the high critical state a = 0.7, the
point c = −1 is left out, and the whole set is to the right of the line Re(z) = −1 (see Fig. 6b). Along this
interval, there are values of a for which the node z2 has a super-attracting orbit at c = −1 (for example,
the critical orbit is periodic at a = −2, a = −1.6, a = −1, a = 0, a = 1/5, a = 0.3). There are also
values of a for which the z2 component of the critical orbit is pre-periodic at c = −1 (a = −0.5).

One can then further look at the third component of the critical orbit corresponding to the node z3.
For example, in the case when the critical orbit of z2 stabilizes asymptotically to an attracting period two
oscillation, this oscillation is represented by a fixed point ξ0 for the function f (ξ) = (ξ 2 − 1 − a)2 − 1
above. In this case, in order to study the asymptotic behaviour in the third node z3 under the original
quadratic function that applies to this node, one can instead study the behaviour of the orbit formed by
every fourth iteration of z3, by considering the function g(ξ) = (ξ0 + bξ)2 − 1. For ξ0 in the intervals
found above, one can study asymptotic dependence on b as before, by constructing a bifurcation diagram
similar to that constructed in Fig. 5.

We can use these observations to further investigate whether there is a relationship between how the
former centres of hyperbolic components are being affected by perturbations in the network structure
(i.e., whether they still belong to the equi-M set) and the connectedness of the equi-M set as a whole.
Below, we try to understand this comparison, using a more comprehensive illustration of asymptotic
behaviour within the particular three-dimensional family of feed-forward networks considered above. In
Fig. 7a, we show the connectivity parameter locus (a, b) (represented along the horizontal and respectively
vertical coordinate axes) for which the complex parameter c = −1 is in the equi-M set. In Fig. 7b, we
show the result of a rough computation of the number of connected components in the equi-M set, for
each parameter pair (a, b). Due to difficulty in the reduced resolution (that was necessary for ensuring
feasible computation time), we used a ‘blow-up’ algorithm that expanded each equi-M set by a small
margin before assessing its connectedness. While this may be introducing some negative error in detecting
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 17

Fig. 6. Node-wise Mandelbrot sets for z2, illustrated for different values of a along the bifurcation diagram in Fig. 4. In each equi-M
set, the cyan dot represents the point c = −1. (Top) From left to right: a = −2.1 (M-set is pinched at c = −1 and z2 component
of the critical point escapes); a = −1 (super-attracting orbit of period two at c = −1) ; a = −0.5 (z2 component of critical point
is pre-periodic at c = −1). (Bottom) a ∼ 0.2 (super-attractive orbit of period two at c = −1); a ∼ 0.4 (super-attractive orbit of
period five at c = −1); a = 0.75 (M-set falls short of c = −1 and z2 component of the critical point escapes).

distinct connected components, we found that it substantially reduces positive detection error (due to the
inability of the numerical code to identify filaments in the original equi-M sets represented in reduced
resolution, as further explained in Appendix B).

It is interesting to reinterpret the bifurcation diagram in Fig. 4 in the broader context of Fig. 7a. The
former represents the slice a = −1 of the latter, so that one can observe the three black intervals for
b along the vertical line a = −1, representing the three windows in the bifurcation diagram where the
critical orbit is bounded for c = −1. It is also interesting, although less trivial, to compare the left and
right panels of Fig. 7. Although the presence of c = −1 in the equi-M set does not imply connectedness,
it is clearly related to the connectedness locus, with a break in connectedness (around the yellow region
representing the boundary between one and two connected components in Fig. 7a) seemingly related to
the boundary of the inner white region in Fig. 7a, where c = −1 is pinched out of the M-set).

2.4 Fatou–Julia Theorem extended

In our previous work [20], we noticed that existence of uni-Julia sets with finitely many connected
components breaks, in the case of networks, the connected/dust duality on which the Fatou–Julia Theorem
is based in the traditional case of single iterated quadratic maps. We relied on a few numerical illustrations
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18 A. RǍDULESCU AND S. EVANS

Fig. 7. Parameter loci in the (a, b) plane, for the network family given by: z1 → z2
1+c, z2 → (az1+z2)

2+c, z3 → (z1+z2+bz3)
2+c.

(A) Locus (shown in black, computed within the rectangle [−2.75, 0.75] × [−2.75, 0.75]) of pairs (a, b) for which c = −1 is in
the equi M-set. (B) Connectedness locus for the equi-M set, within the same rectangle [−2.75, 0.75] × [−2.5, 0.75], computed
using the blowup algorithm before assessing connectivity of the sets. The colour corresponding to each c represents the estimated
number of connected components of the equi-M set (as shown in the colour bar).

of uni-Julia sets for a variety of parameters c, chosen both inside and outside of the equi-M set for their
respective network, to conjecture that the uni-J set is connected only if c is in the equi-M set of the
network, and it is totally disconnected only if c is not in the equi-M set of the network.

Here, we illustrate this relationship in greater detail, while still using numerical approaches. In Fig. 8,
we show the equi-M set for one of our self-drive example networks, together with a the uni-J sets
corresponding to a collection of points c chosen close to the boundary of the equi-M set (so that some of
them are inside the equi-M set, and some are outside). The illustration supports the idea that, although
the connectivity of the uni-J sets (from one, to finitely many, to infinitely many components) degrades
near the boundary of the M-set, there is no sudden break that happens precisely on the boundary, like in
the case of single map iterations.

For a more systematic view, we computed and illustrated together, for a few example networks, the
boundary of the equi-M set and the connectedness locus for the uni-J set. While the former was relatively
easy to compute as the critically bounded locus for the network, the latter presented some difficulties in
reconciling computational efficiency with obtaining uni-J sets in sufficiently good resolution to allow us
to estimate their number of connected components. This was problematic in particular for the situations
where the Julia set had short, thin filaments, likely to escape detection in low resolution, in which case we
suspected the code to report ‘fake’ connected components, and thus over-count the number of components.
To eliminate this positive error without increasing the z-plane resolution (which impacts computational
time quadratically), we also used a common ‘blowup’ technique, adding a small border to each uni-J
set to account for the possible connections due to filaments. This, of course, may introduce the opposite
type of error (that of under-counting components). However, computations with and without blowup
produced similar results qualitatively, in the sense of identifying the same loci of connectedness and total
disconnectedness. In the transitional region, the connected component counts were higher with the first
algorithm versus the second, as one would have expected (see Appendix B, Figs B1 and B2).
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 19

Fig. 8. Uni-Julia sets for a self-drive network with a = −1/3 and b = −1/3, for different values of the equi-parameter c. We
magnified three rectangular windows around the boundary of the network’s equi-M set: [−0.2, 0.2] × [0.245, 0.285] (around the
cusp), [−0.2, 0] × [0.58, 0.78] (top) and [−1.3, −0.6] × [−0.3, 0.3] (around the tail). For each window, we show several uni-Julia
sets corresponding to the c values marked in colours. For each magnification window, as the dots are listed from left to right, the
corresponding uni-Julia sets are represented from left to right and then top to bottom.

In Fig. 9, we illustrate the implementation of the blow-up algorithm on the three self-drive networks
shown in Fig. 2. We computed both the equi-M set in C (in the sense defined in Section 1.3), as well as
the connectedness locus (also in C) for the uni-J set of the network. While it does not come as a surprise
that the two are no longer identical, we found that they are clearly related. Future work will focus on
obtaining an analytic understanding of this relationship.

3. Network methods

3.1 Spectral versus dynamic classes

For small or very simple networks, one can try to identify specifically the effect of different graph architec-
tural properties on the ensemble asymptotic dynamics. As we have done in previous work for continuous
time systems, we first investigate possible relationships between the network adjacency spectrum and the
class of ensemble dynamics. For a network with discrete quadratic nodes, it seems natural to characterize
the network by the properties of its asymptotic sets: the equi-M set and the uni-Julia set for a fixed
equi-parameter c.
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20 A. RǍDULESCU AND S. EVANS

Fig. 9. Comparison between the equi-M set and the uni-J connectedness locus for the self-drive networks illustrated in Fig. 2. (A)
a = −1, b = −1; (B) a = −1/3, b = −1/3; (C) a = −2/3, b = −1/3. The panels represent the square [−2, 1] × [−1.5, 1.5]
in the equi-parameter plane. The cyan curve represents the boundary of the equi-M set, computed with 50 iterations. The colours
correspond to the number of connected components for the respective uni-J set (computed approximately using the numerical
algorithm discussed in Appendix B), with the colour scheme going from black (inside region, one connected component) through
tones of red and yellow, as the number of connected components increases to 2, 3, etc. (see colour bar). White corresponds to the
locus where the uni-J set was found to be dust (the numerical computations could not capture the totally disconnected points, so it
returned the answer as ‘zero’ components, which we then scaled by hand to appear as white background).

Definition 3.1 We say that two networks N1 and N2 are in the same asymptotic class if, for any initial
condition (z1

0, z2
0, . . . , zN

0 ) ∈ C
N , its multi-orbit under N1 iterates out of the escape disc in the same number

of iterations as when iterated under N2. We say that they are in the same uni-asymptotic class if the same
applies for the multi-orbits of all initial conditions (z0, z0, . . . , z0) ∈ C

n.

Remark. Visually, this means that the corresponding prisoner sets (or uni-prisoner sets, respectively)
are identical between two networks in the same uni-asymptotic class, and so are the escape sets, with
identical ‘escape colours’ assigned to corresponding points.

Conjecture 3.2 Within certain ranges of the equi-parameter c, network uni-asymptotic classes are
invariant under changes in c.

The conjecture states a potentially very useful result: that two distinct configurations, which produce
identical uni-asymptotic dynamics for one value of the parameter c will also do so for all any other value
of c and two configurations, which produce different asymptotic structure under one value of c will still
do so under any other value of c.

To investigate this hypothesis numerically, we focused on replicating the result in networks with two
types of general restrictions: (1) networks with a fixed number of nodes N and a fixed number of edges
j, with no additional conditions on the configuration; (2) bipartite networks with N nodes in each of the
two interconnected cliques (previously used to represent interacting neural populations in our modelling
work), and with specified number of edges i and j between the two cliques, respectively. In Appendix C,
we illustrate one example from each category.

In Fig. C1, we considered all networks with N = 3 nodes and j = 7 edges, with all edge weights set
as g = 1/N . The panels illustrate the uni-J sets for the equi-parameter values c = −1.15 + 0.26i and
c = −0.13 + i. In Fig. C2, we considered all bipartite networks with N = 2 nodes per clique, i = 1 and
j = 3, with positive weights g = 1/2 for the edges connecting nodes within the cliques, and negative
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ASYMPTOTIC SETS IN NETWORKS OF COUPLED QUADRATIC NODES 21

weights g = −1/2 for the edges between the cliques. The panels illustrate the uni-J and equi-M sets for
the equi-parameter value c = −0.117 − 0.856i.

Spectral and asymptotic classes are not in a one-to-one correspondence, either way. Notice, in both
tables, that two distinct matrices from the same spectral class may produce in some cases identical, in
other cases different uni-asymptotic dynamics. Conversely, two matrices in different spectral classes may
produce the same uni-asymptotic dynamics. However, even though not determined by the adjacency
spectrum, uni-asymptotic classes remain consistent for all value of c.

3.2 Core asymptotic sets

In previous work, we have explored a statistical approach to relating graph structure to asymptotic
dynamics in networks [7]. When interested in all network configurations with a specific property P
(e.g., density of oriented edges), one may consider, for each initial point (or alternately for each point in
parameter space) the fraction of all configurations which produce a specific asymptotic behaviour. Then,
a ‘probabilistic’ bifurcation can be defined in terms of the likelihood of a system to transition between
two different behaviours when the edge configuration is slightly perturbed, given that the only knowledge
we have on the network configuration is property P .

For example, fix an equi-parameter c, and, for simplicity, set all edge weights in the network equal
to 1/N , where N is the size of the network. Consider the property P to be fixing the number of edges to
a positive integer k, with 0 ≤ k ≤ N2. For each z0 ∈ C, we count the fraction of configurations with P
for which the multi-orbit of (z0, z0, . . . z0) is bounded in C

n.

Definition 3.3 We call the core uni-prisoner set the set of all points z0 ∈ C, for which the initial
condition (z0, ...z0) ∈ C

N produces a bounded multi-orbit when iterated under all network configurations
with property P . We call the core uni-J set1 the boundary of this set in C.

Instead of inspecting connectivity of each configuration-specific uni-J set at a time, one can instead study
topological properties of the level sets of P in the complex z-plane, in particular connectivity of the core
uni-J set (which is the boundary of the 1-level set). One can track how the core uni-J set is affected when
changing the edge weights g, the equi-parameter c, the network size N or, finally, even the network fixed
property P . Furthermore, one can distinguish between the parameter values for which the core uni-Julia
set remains connected for all edge configurations with property P , versus parameter values for which
changes in edge density alter connectivity of the core uni-J set.

To fix our ideas, we discuss the concept of core uni-J set in the case of property P being ‘fixed edge density
δ = k/N2’. Figures 10 and 11 illustrate core uni-J sets in networks of size N = 3 and uniform edge
weights g = 1/3, for different equi-parameters c, and different edge densities δ. The colour associated
to each point z0 ∈ C represents the likelihood (over all network configurations) for the initial condition
(z0, z0, z0) to remain bounded under iterations of a network with node-wise dynamics specified by c and
edge density specified by δ. In particular, the black central region represents the core uni-prisoner set. For
example, Fig. 10a and b show the core Julia sets corresponding to the two classes of asymptotic dynamics
described respectively in the left and right columns of Fig. C1 in Appendix C.

1 This term was chosen in order to emphasize the analogy with a similar concept defined by Sumi in the case of random iterations
of post-critically bounded polynomials [32, 33]
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22 A. RǍDULESCU AND S. EVANS

Fig. 10. Core uni-J sets over all network configurations with N = 3 nodes, edge density δ = 7/9, for fixed edge weights g = 1/3,
and fixed equi-parameter c. (A) c = −1.15 + 0.26i; (B) c = −0.13 + i. All panels were computed for 50 iterations, with spatial
resolution 200×200, and escape radius Re = 20. The colours code likelihood values from one (black) to zero (cyan), via intermediate
values represented in red and yellow tones.

Fig. 11. Core uni-J sets over all network configurations with N = 3 nodes, edge density δ = 8/9, for fixed edge weights g = 1/3,
and fixed equi-parameter c. (A) c = −1.15 + 0.26i; (B) c = −0.13 + i. All panels were computed for 50 iterations, with spatial
resolution 200 × 200, and escape radius Re = 20. The colour coding is the same as in Fig. 10.

Intuitively speaking, as one would expect, the network dynamics becomes generally more rigid for
higher edge densities δ, and more fluid for lower densities, since more edges are expected to increase
communication and ‘synchronization’ between nodes. This effect is clearly captured in the comparison
between the lower density δ = 7/9 panels in Fig. 10, and the corresponding panels for the next higher
density δ = 8/9 in Fig. 11. The level curves appear closer together in the case of higher density, so that
small perturbations in the initial condition can more dramatically change the likelihood of a multi-orbit
to escape. At a finer level, however, one can clearly notice that the effect of increasing the edge density δ

on the core uni-J set varies with the network. For example, depending on the equi-parameter c, the core
uni-prisoner set may gain in area and connectedness with increasing edge density (as seen in left panels
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of the two figures), or may shrink (as in the right panels). One can define and investigate the same concept
similarly in equi-M sets:

Definition 3.4 We call the core equi-M set the set of all points c ∈ C for which the critical multi-orbit
is bounded in C

n, when computed for all network configurations with property P .

For small networks, the equi-M set is highly sensitive to small changes in the network architecture,
as one can see for example in the Appendix C illustrations. By simply adding, deleting or moving one
single edge, one can transition between asymptotic classes, thus altering substantially the geometry and
properties of the equi-M set, and of the uni-J sets for all values of the parameter c. One is interested to
ask the same type of questions in the context of higher-dimensional networks. Do small perturbations in
the architecture affect the asymptotic behaviour to a similar extent, or do the rest of the edges stabilize
the network? Does the presence of this ‘vulnerability’ depend on global properties such as overall edge
density, or on local information, such as on the place where the addition/removal happened? These are
important theoretical questions which relate to counterparts in modelling and the life sciences.

In Fig. 12, we show a core uni-J set and the core equi-M set for the collection of all networks of
N = 10 nodes, with P being common edge density δ = 80/100. The total number of configurations with
property P is extremely large (for the network size N = 10, which is still relatively small, one obtains(

100

80

)
, which is of the order 1020). Even considering the equivalence classes of asymptotic dynamics

(assuming we have identified them and their size), averaging over all possibilities is extremely challenging
computationally. In our previous work, we have shown that sample-based means are quite accurate, even
for very small samples. In Fig. 12, we used samples of size S = 20 configurations out of the total of
approximately 5 × 1020 to illustrate our core sets.

These types of illustrations offer concomitant (while sample-based) stochastic information on the
asymptotic dynamics within a large collection of networks. They could be important in that they may

Fig. 12. Core sets for network configurations with N = 10 nodes. (Left) Core uni-J set for fixed equi-parameter c = −1.15+0.26i,
edge density δ = 80/100, and fixed edge weights g = 1/N . (Right) Core equi-M set for edge density δ = 60/100 and edge weights
g = 1/N . All panels were computed for k = 50 iterations, with spatial resolution 200 × 200, and escape radius Re = 20. The
colour coding is the same as in Fig. 10.
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24 A. RǍDULESCU AND S. EVANS

help detect asymptotic properties which are robust to changes in architecture, and distinguish them
from those which are sensitive to change. For example, one of the features which we had previously
noticed consistently is the persistence of the cusp structure in all equi-M sets (with small variations
in its position, depending on network architecture and node-wise dynamics). Figure 12b confirms this
observation, showing minimal variability in the cusp area compared to regions of high sensitivity, such
as the tail area, where even a small change in c may lead from certainty (black) to very small likelihood
(yellow and red) of a bounded critical orbit.

4. Discussion

4.1 Specific comments

In this article, we reformulated some well-known questions from single map quadratic dynamics in the
context of iterations of ensemble quadratic maps, coupled up in a network, according to an underlying
adjacency graph structure. We investigated whether single map results regarding orbit convergence,
escape radius and the topological structure of asymptotic sets change when studying a small network of
n quadratic complex nodes. We focused in particular on one-dimensional complex slices of these sets in
C

n, which we called uni-J sets and equi-M sets.
We found that some of the structure of the traditional Mandelbrot set is conserved in network Man-

delbrot slices, such as fractality on the boundary, or the presence of a cusp at its rightmost point along
the real axis. It is interesting that the cusp seems persistent under changes in both network configuration,
as shown in our previous article [20]) and set of weights, as shown in the current study (even though its
position varies slightly with these parameters). In contrast, other features of the equi-M set are not as
robust. We showed, for example, that the tail of the set is really fragile to perturbations in both config-
uration and weights. Equi-M sets no longer exhibit the traditional hyperbolic bulb structure and are not
necessarily connected. Depending on the architecture of the network and the strength of the connections
between nodes, the original centres of the hyperbolic components may no longer be within the equi-M
set altogether. This affects in particular the tail of the set, where the former hyperbolic bulb with centre
c = −1 may pinch and break under slight perturbations of the weights in a certain range, as shown by
our bifurcations diagrams.

Since one of our aims is to use the topological properties of the network equi-M set for classification
purposes, it is important to understand where these properties are likely to change. To address this, we
computed the equi-M set connectivity locus in a slice of the parameter space of weights. Since testing for
connectivity is computationally more expensive and less reliable, we investigated the relationship between
the connectivity of the equi-M set and the reshaping of the former hyperbolic bulbs. We observed in
particular the deterioration of the bulb centred at c = −1, and related the parameter locus (in the space of
weights) for which the network with nodes c = −1 is post-critically bounded to the connectedness locus
of the equi-M set. We found that the boundaries of these two parameter loci agree to some extent, but not
enough to justify using the presence of c = −1 in the equi-M set as an alternative test for connectedness
of the equi-M set. Future work towards this goal may involve further study of the relationship between
the integrity of the former hyperbolic components and connectedness of the equi-M set.

Another question we explored in this study is whether any relationship can be drawn (for fixed
network configuration and weights) between the equi-M set and the Julia set connectedness locus. Their
interplay is a lot more complicated in networks than the well known result for single map iterations. We
investigated numerically a variant of this result. Since relating the network Julia and Mandelbrot sets as
loci in C

n is a more difficult computational problem, which may warrant a separate study, here we started
by comparing the structure of the equi-M slices with the connectedness locus of the two-dimensional
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uni-Julia sets (which are both sets in C
2). Our simulations, supporting previous work on this question,

suggested that a gradual break in connectedness of the uni-J sets occurs near the boundary of the equi-M
set. In other words, all c values which deliver connected uni-J sets lie in a region within the interior of
the equi-M set, and all c values corresponding to totally disconnected uni-J sets are in a region contained
in the complement of the equi-M set. The space between these two regions contains the boundary of
the equi-M set, and is the locus of c values for which the uni-J set has a finite number of connected
components. A more precise, qualitative description of this transitions requires an analytic approach that
is the focus of our future work.

While, as illustrated by the examples considered in this article, analytic work is quite possible
and seems promising in the case of small networks, it is likely that obtaining any useful results for
higher-dimensional systems will require different, or additional techniques. We presented two possible
approaches, one based on classification, and one based on statistics.

A few simulations found network structures which have identical asymptotic dynamics which continue
to do so under changes of the quadratic parameter c within a certain range. This is interesting, since it
suggests that, within a certain parameter locus, some information on the long-term outcome in a dynamic
network is wired into the architecture, rather than in the node-wise dynamics. However, it is likely that this
property is not general, but rather confined to a specific locus of c values, possibly related to the equi-M
connectivity locus. Since this is a very important feature, which may help with the difficult problem of
differentiating between the effects of configuration and those of node-wise dynamics, we will consider
it more specifically in a separate project, as described in Section 4.2.

Our other proposed approach to large networks is to consider an ‘average’ view of asymptotic dynam-
ics. This expands on previous work on continuous-time networks [7], where we defined a probabilistic
version of bifurcation diagrams to simultaneously study the asymptotic behaviour of a large number
of configurations. Similarly, in the case of discrete dynamics, one can consider a set of configurations
characterized by a common property P (e.g., edge density, or number of a certain motif) and count the
fraction of those which produce a certain behaviour (e.g., post-critically bounded). One can construct
in this fashion core uni-Julia and equi-Mandelbrot sets, and study how these vary when changing the
property P of the configuration.

4.2 General comments and future work

We have chosen to study discrete networks of quadratic maps because they present well-posed, feasible
mathematical problems. As we have mentioned in the Introduction, the same questions can easily become
intractable when using more complicated node dynamics. This supports the strategy of using such simple
models to begin understanding the behaviour of more complex systems, in which direct results are
otherwise unreachable. When using a simple model of quadratic networks, one can put results in the
perspective of the long-standing work with single-node iterations, and better understand the mechanisms
of transition between a simple system with one operating unit and a complicated dynamic ensemble.

One natural course to follow from this point is to investigate which of the answers that we are obtaining
in networks of quadratic nodes can be extended to other types of networks. We do not expect all our results
to be universal, especially since some of our measures and techniques pertain specifically to complex maps.
From the viewpoint of applications, we are primarily interested in further understanding the classification
aspects, and then comparing them across networks with different types of node dynamics. A gradual,
step by step investigation path may start by checking if the classification carries through for node-wise
tent maps (as a canonical choice for a unimodal family), then for threshold linear maps (where we can
compare with the results obtained by Curto et al. [9]), then for piecewise linear maps approximating
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a sigmoidal function (in the manner of Caiola et al. [8]), then finally for standard Wilson-Cowan type
nonlinear nodes (which triggered the original question and relates directly to many applications).

In this study, we suggested that a statistical outlook on classifying asymptotic dynamics may be
efficient in describing networks with a prescribed architectural property. Another approach to resolving
network complexity in a computationally practical way is to reduce the dimensionality of the graph while
preserving the dynamics, by collapsing specific sets of nodes to single nodes. For example, as suggested
in our prior research, in a graph with communities, rich clubs or strong components (within which the
nodes are more tightly connected), it is possible that the dynamics is more robust to changes of structure
within these modules, and more vulnerable to changes in the coupling between the modules. Then, we
will investigate the possibility of classifying the ensemble dynamics based on simplified representations
of the underlying graph, obtained by identifying the robust formations to simple nodes. This can reduce
the classification problem to a working framework of much simpler graphs (e.g. trees, cycles), and would
also offer a plausible explanation to the preference of natural systems for such hierarchic structures.

Another possible direction in our future work is aimed at investigating a somewhat different temporal
coupling scheme for networks, built on principles of random iteration (reminiscent of Markov chains).
From each node j, there is a probability pjk for the information to travel along the outgoing edge Ejk to
the adjacent node k, so that zj will be iterated according to the map zk(t) → zk(t + 1) attached to that
respective node. This defines a random n-dimensional iteration on (z1, z2, ...zn). The probabilities pjk are
nonzero only when there is an oriented edge connecting zj and zk . Additionally, the probabilities out of
each node (including self cycles) have to add up to one:

∑n
k=1 pjk = 1. Comerford [34] and Sumi [35] have

made, for the past ten years, major contributions to the field of random iterations in the one-dimensional
case, proving convergence of the Julia sets under random iterations of hyperbolic polynomial sequences,
and describing a phenomenon of cooperation between generating maps as a factor decreasing the chaos
in the overall system [36]. The extension of any of these concepts and results to dynamic networks would
be not only mathematically significant, but also of potentially crucial interest to studying networks in the
life sciences which may be governed precisely by these rules.

Finally, an extension with potentially high relevance to computational neuroscience would be intro-
ducing time and state-dependent edge weights. One of the most fundamental rules in neurobiology,
quantifying the plasticity of brain connections that underlies processes like learning and memory for-
mation, is Hebb’s rule. In its most general form, the rule states that the system strengthens connections
between neuron/nodes which have correlated (hence potentially causal) activity. One of the simplest his-
torical implementations of Hebb’s rule has been to adjust the weight of the each edge by a ‘learning’ term
proportional to the product of the states of the adjacent nodes, at each iteration step. Then the dynamics
of the system of network edge weights becomes as significant as the dynamics of the nodes themselves,
with which they are coupled. The weights converge to an attracting state when the network has learned
a certain configuration.
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Appendix A

Lemma .1 The point c = −3/4 is not in the equi-M set for the network given by: z1 → z2
1 + c,

z2 → (az1 + z2)
2 + c, z3 → (z1 + z2 + bz3)

2 + c, with connectivity weights a = −1, b = −1.

Proof. It is easy to see that the interval [−3/4, 0] is invariant under the iteration of the function z1 →
z2

1 − 3/4 (since the minimum value of the function f (z) = z2 − 3/4 for z ∈ [−3/4, 0] is f (0) = −3/4,
and the maximum value is f (−3/4) = −3/16 < 0. Since z1(0) = 0 ∈ [−3/4, 0], it follows by induction
that z1 ∈ [−3/4, 0] for all iterates, hence the first node is bounded.

We will show, using induction, that −3/4 ≤ z2 ≤ 0 also for all iterates. This is satisfied for z2(0) = 0.
Suppose that z2(t) ∈ [−3/4, 0] for some t ≥ 0; we will show that z2(t + 1) is also within this interval.
We know that −3/4 ≤ z1(t) ≤ 0, and −3/4 ≤ z2(t) ≤ 0, hence −3/4 ≤ −z1(t) + z2(t) ≤ 3/4, and
0 ≤ (−z1(t) + z2(t))2 ≤ 9/16. Then z2(t + 1) ∈ [−3/4, −3/16] ⊂ [−3/4, 0], which concludes the
induction and shows that the critical point z2 is bounded. Moreover, since z1, z2 ∈ [−3/4, 0], it follows
that −1 ≤ z1 + z2 + 1/2 ≤ 1/2, hence |z1 + z2 + 1/2| ≤ 1, which we will use below.

It is easy to calculate that the orbit of z3 grows relatively fast for the first portion of the iteration, so
that z3(8) > 5. We will use this to show that, in fact, the orbit of the third node escapes to infinity. First
notice that, for all iterates (in particular for t ≥ 8), we have:

|z3(t + 1)| = |(z1 + z2 − z3)
2 − 3/4| ≥ |(z1 + z2 − z3)|2 − 3/4

For simplicity, we left out the index for the current iterate (e.g., z1 above represents z1(t)). This further
implies that:√|z3(t + 1)| + 3/4 ≥ |(z1 + z2 + 1/2) + (−z3 − 1/2)| ≥ |−z3 − 1/2| − |z1 + z2 + 1/2|

Since |z1 + z2 + 1/2| ≤ 1, we further have that√|z3(t + 1)| + 3/4 ≥ |z3| − 1/2 − 1 ≥ |z3| − 3/2

Since z3 > 5, we can square both sides:

|z3(t + 1)| ≥ (|z3| − 3/2)2 − 3/4

We want to show that (|z3| − 3/2)2 − 3/4 ≥ 2|z3|. Consider the quadratic function

f (ξ) = (ξ − 3/2)2 − 3/4 − 2ξ = ξ 2 − 5ξ + 3/2,
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with roots 0 < ξ1 < ξ2 < 5. Since |z3| > 5, it follows that f (|z3|) > 0, hence

(|z3| − 3/2)2 − 3/4 − 2|z3| > 0

It follows that, as needed

|z3(t + 1)| ≥ 2|z3(t)| for t ≥ 8

In conclusion, the node-wise orbit z3 escapes to infinity. �

Appendix B

Fig. B1. Comparison between detection of connected components of uni-J sets, using the standard algorithm from the Matlab
image processing toolbox versus an improved version including an initial blowup of the Julia set by a one pixel margin. (A) High
resolution (400 × 400 pixels) Uni-J set for the self-drive network a = −2/3, b = −1/3, corresponding to c = −0.06 − 0.68i;
(B) Count of connected components in low resolution (100 × 100 pixels) using the standard algorithm found 29 components; (C)
Count of connected components in low resolution (100 × 100 pixels) using the improved algorithm found three components.

Fig. B2. Comparison between the uni-J set connectedness locus computed using a direct estimate of the number of connected
components versus using the blowup technique. Both panels represent the square [−2, 1]× [−1.5, 1.5] in the equi-parameter plane.
The cyan curve represents the boundary of the equi-M set, computed with 50 iterations. The colours correspond to the number of
connected components for the respective uni-J set, computed directly (left) versus using a blowup of 1.5 pixels for the Julia set
(right). The panels are almost identical in the black (connected) and white (totally disconnected) regions, while the scale/ number
of connected components are very different in the transitional coloured region (as shown by the ranges on the colour bars).
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Appendix C
⎡
⎣ 1 1 1

1 1 0
1 1 0

⎤
⎦ (Ai)

⎡
⎣ 1 1 0

1 1 1
1 1 0

⎤
⎦ (Ai)

⎡
⎣ 1 1 0

1 1 0
1 1 1

⎤
⎦ (Biv)

⎡
⎣ 1 1 1

1 1 1
1 0 0

⎤
⎦ (Aii)
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⎣ 1 1 1
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1 0 1

⎤
⎦ (Ci)

⎡
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1 1 1
1 0 1

⎤
⎦ (Dv)
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1 0 1
1 1 0

⎤
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⎡
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1 0 0
1 1 1

⎤
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⎡
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⎤
⎦ (Fiii)

⎡
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⎣ 1 0 1

1 1 1
1 1 0

⎤
⎦ (Fiii)

⎡
⎣ 1 0 1

1 1 0
1 1 1

⎤
⎦ (Dv)

⎡
⎣ 1 0 0

1 1 1
1 1 1

⎤
⎦ (Bvi)

⎡
⎣ 1 0 1

1 1 1
1 0 1

⎤
⎦ (Biv)

⎡
⎣ 1 0 1

1 0 1
1 1 1

⎤
⎦ (Ai)

⎡
⎣ 1 1 1

1 1 1
0 1 0

⎤
⎦ (Aii)

⎡
⎣ 1 1 1

1 1 0
0 1 1

⎤
⎦ (Dv)

⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦ (Ci)

⎡
⎣ 1 1 1

1 1 1
0 0 1

⎤
⎦ (Bvi)

⎡
⎣ 1 1 1

1 0 1
0 1 1

⎤
⎦ (Fiii)

⎡
⎣ 1 0 1

1 1 1
0 1 1

⎤
⎦ (Dv)

⎡
⎣ 1 1 1

0 1 1
1 1 0

⎤
⎦ (Fiii)

⎡
⎣ 1 1 1

0 1 0
1 1 1

⎤
⎦ (Bvi)

⎡
⎣ 1 1 0

0 1 1
1 1 1

⎤
⎦ (Dv)

⎡
⎣ 1 1 1

0 1 1
1 0 1

⎤
⎦ (Dv)

⎡
⎣ 1 1 1

0 0 1
1 1 1

⎤
⎦ (Aii)

⎡
⎣ 1 0 1

0 1 1
1 1 1

⎤
⎦ (Ci)

⎡
⎣ 1 1 1

0 1 1
0 1 1

⎤
⎦ (Biv)

⎡
⎣ 0 1 1

1 1 1
1 1 0

⎤
⎦ (Ei)

⎡
⎣ 0 1 1

1 1 0
1 1 1

⎤
⎦ (Fiii)

⎡
⎣ 0 1 0

1 1 1
1 1 1

⎤
⎦ (Aii)

⎡
⎣ 0 1 1

1 1 1
1 0 1

⎤
⎦ (Fiii)

⎡
⎣ 0 1 1

1 0 1
1 1 1

⎤
⎦ (Ai)

⎡
⎣ 0 0 1

1 1 1
1 1 1

⎤
⎦ (Aii)

⎡
⎣ 0 1 1

1 1 1
0 1 1

⎤
⎦ (Ai)

⎡
⎣ 0 1 1

0 1 1
1 1 1

⎤
⎦ (Ai)

Fig. C1. Spectral classes versus asymptotic classes for all networks with N = 3 nodes and j = 7 edges. Spectral classes are
designated by letters A − F for all adjacency matrices on the left; the asymptotic classes, designate by indices i-vi, are illustrated
on the right for two distinct values of the equi-parameter: c = −1.15 + 0.26i (left column) and c = −0.13 + i (right column). The
edge weights were fixed to g = 1/3. The figure panels show, top to bottom, all asymptotic classes i-vi and were created based on
100 iterations, in 400 × 400 resolution.
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Fig. C2. Adjacency and dynamics classes for N=2, density type (Mxy,Myx)=(1,3) and gxx = gyy = 0.5, gxy = gyx = −0.5. Adjacency
matrices are represented as block binary matrices, with the empty corners representing all 1 blocks. Spectral adjacency classes are
designated by letters (A − C) and asymptotic classes denoted by the subscript (i − iv). The top figure panels represent the equi-M
sets for all asymptotic classes i-iv. The bottom figure panels show the i-iv uni-planes for the equi-parameter (c = −0.117−0.856i),
with prisoners plotted in black and escapees plotted in colours according to the escape rate. Notice that in this case one can achieve
all dynamics classes by changing either one of the diagonal block matrices, while keeping the other fixed.
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