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Anca Rǎdulescu · Ariel Pignatelli

Received: 19 May 2015 / Accepted: 15 January 2016
© Springer Science+Business Media Dordrecht 2016

Abstract The behavior of orbits for iterated polyno-
mials has been widely studied since the dawn of dis-
crete dynamics as a research field, in particular in the
context of the complex quadratic family f : C → C,
parametrized as fc(z) = z2 + c, with c ∈ C. While
more recent research has been studying the orbit behav-
ior when the map changes along with the iterations,
many aspects of non-autonomous discrete dynamics
remain largely unexplored. Our work is focused on
studying the behavior of pairs of quadratic maps (1)
when iterated according to a rule prescribed by a binary
template and (2) when the maps are organized as nodes
in a network, and interact in a time-dependent fash-
ion. We investigate how the traditional theory changes
in these cases, illustrating in particular how the hard-
wired structure (the symbolic template, and respec-
tively the adjacency graph) can affect dynamics (behav-
ior of orbits, topology of Julia and Mandelbrot sets).
Our current manuscript addresses the first topic, while
the second topic is the subject of a subsequent paper.
This is of potential interest to a variety of applica-
tions (including genetic and neural coding), since (1)
it investigates how an occasional or a reoccurring error
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in a replication or learning algorithm may affect the
outcome and (2) it relates to algorithms of synaptic
restructuring and neural dynamics in brain networks.

Keywords Julia set · Non-autonomous iterations ·
Symbolic template · Connectedness · Hausdorff
measure · Hybrid Mandelbrot set · Propagating error ·
Parameter sensitivity · DNA replication

1 Introduction

1.1 Discrete dynamics of the quadratic family

The family of logistic maps has been over the years
one of the most studied examples in the theory of dis-
crete dynamical systems. In the context of real inter-
val maps, typically parametrized as fμ : [0, 1] →
[0, 1], fμ(x) = μx(1 − x), for μ ∈ [0, 4], results
from kneading theory classify the possible orbits, and
provide a relationship between the combinatorics of
critical orbits and the complexity of the correspond-
ing map (measured, for example, via its topological
entropy). In the context of complex functions fc : C →
C, fc(z) = z2 + c, for c ∈ C, results going all the way
back to the original theory of Fatou and Julia describe
thoroughly the behavior of the orbits in the dynamic
complex plane, as well as phenomena in the parameter
plane. On the practical side, discrete iterations in gen-
eral, and the dynamics of quadratic functions in par-
ticular, have been used to model natural processes. For
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example, the quadratic family has been used for more
than a decade to model integrate and fire neurons [2,9],
and iterations of simple discrete maps are the ideal can-
didate for modeling replication in genetic algorithms.

The prisoner set of a map f is defined as the set of
all points in the complex dynamic plane, whose orbits
are bounded. The escape set of a complex map is the
set of all points whose orbits are unbounded. The Julia
set of f is defined as their common boundary J ( f ).
The filled Julia set is the union of prisoner points with
their boundary J ( f ).

For polynomial maps, it has been shown that the
connectivity of a map’s Julia set is tightly related to the
structure of its critical orbits (i.e., the orbits of themap’s
critical points). Due to extensive work spanning almost
one century, from Julia [13] and Fatou [10] until recent
developments [1,15], we now have the following:

Fatou–Julia Theorem For a polynomial with at least
one critical orbit unbounded, the Julia set is totally dis-
connected if and only if all the bounded critical orbits
are aperiodic.

1.2 Random iterations of quadratic maps

In nature, it is unlikely that systems evolve accord-
ing to the same identical dynamics along time. Rather,
one expects that occasional or periodic errors may be
made in the iteration process, or even that the iteration
scheme may change in time, according to the system’s
new needs as it is adapting. Therefore, a more realistic
mathematical context to model such phenomena is to
consider time-dependent (non-autonomous) iterations,
in which the iterated map may change between steps,
evolve in time, or appear (with variable frequency) in
conjunction with other maps in the iteration.

Random iterations have been studied since the early
1990s, starting with the pioneering work of Fornaess
and Sibony [11]. More recent work has been fur-
ther addressing dynamic of the system and topologi-
cal properties of the Julia and Mandelbrot set in the
context of non-autonomous iterations [4,5,23]. Some
studies have looked in particular at how the traditional
theory extends when alternating two quadratic com-
plex maps [6,7] and showed that alternation is suffi-
cient to break the dichotomy in the classical single-
map case. For one iterated map of degree two [3,8],
the Fatou–Julia Theorem implies that the Julia set is

either totally connected, for values of c in the Man-
delbrot set (i.e., if the orbit of the critical point 0 is
bounded), or totally disconnected, for values of c out-
side of theMandelbrot set (i.e., if the orbit of the critical
point 0 is unbounded). For alternated maps, Danca et
al. showed that the Julia set can be disconnected with-
out being totally disconnected [7]. They further related
this extension to the Fatou–Julia theorem for complex
polynomials of degree four and showed that alternated
Julia sets exhibit graphical alternation.

In our work, we are looking at the iteration process
of two different functions, fc0 and fc1 , according to a
general binary symbolic sequence, in which the zero
positions correspond to iterating the function fc0 and
the one positions correspond to iterating the function
fc1 . We view this as a more appropriate framework
for replication or learning algorithms that appear in
nature, with patterns that evolve in time, and which
may involve occasional, random, or periodic “errors”.
We investigate, primarily from a visual and numerical
perspective, the questions that arise for random com-
plex iterations of twomaps.While we relate our results
with existing general results in non-autonomous itera-
tions, our interest resides primarily in understanding the
dependence of the dynamic behavior on three different
aspects of the system’s hardwiring: (1) the complex
parameter pair (c0, c1) that fixes the iterated maps; (2)
the fraction (frequency) of 0s versus 1s in the symbolic
template which determines the iteration scheme; and
(3) the particular succession (timing) of these 0s and
1s along the template.

1.3 Definitions and notations

As with the traditional Julia set, we will be working
with the complex quadratic family

{ fc : C → C | fc(z) = z2 + c, with c ∈ C}
However, for each iteration process, we will be using a
pair of maps in this family, fc0 and fc1 , as follows:

Definition 1.1 Fix c0, c1 ∈ C, and a sequence s =
(sn)n≥0 ∈ {0, 1}N (which we will call the symbolic
template of the iteration). For any ξ0 ∈ C, the template
orbit os(ξ0) = (ξn)n≥0 is the sequence constructed
recursively, for every n ≥ 0, as:

ξn+1 = fcsn (ξn)
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In other words, for each n ≥ 0, we iterate fc0(z) =
z2 + c0 if the corresponding entry sn = 0 in the sym-
bolic template, and we iterate fc1(z) = z2 + c1 oth-
erwise (i.e., if sn = 1). The Julia set for a symbolic
template system is naturally defined as an extension of
the traditional one:

Definition 1.2 Fix c0, c1 ∈ C. Then we define, for any
s ∈ {0, 1}N:

The template prisoner set:
Pc0,c1(s) = {ξ0 ∈ C | os(ξ0) is bounded}
The template escape set:
Ec0,c1(s) = {ξ0 ∈ C | os(ξ0) is not bounded}
The template Julia set:
Jc0,c1(s) = ∂Pc0,c1(s) = ∂Ec0,c1(s)

Since, in order to construct a template Julia set, we need
both a complex parameter pair (c0, c1) and a symbolic
template, we can consider phenomena in two different
parameter spaces: in C2 (for a fixed template s) and in
the template space of binary sequences {0, 1}N (for a
fixed pair (c0, c1)). We define two types of “Mandel-
brot” sets, as follows:

Definition 1.3 Fix s ∈ {0, 1}N symbolic sequence.
The corresponding (fixed)-template Mandelbrot set is
defined as:

Ms = {(c0, c1) ∈ C
2 | os(0) is bounded}

Definition 1.4 Fix (c0, c1) ∈ C
2. The corresponding

(fixed)-map Mandelbrot set is defined as:

Mc0,c1 = {s ∈ {0, 1}N | os(0) is bounded}
Properties of the fixed template Mandelbrot set have
been previously studied for period two templates (i.e.,
alternatingmaps). In [6], the authors illustrate theMan-
delbrot set as a subset of the quaternion filed, as well
as some of its two-dimensional cross sections. In our
context, we investigate a few directions:

– Assessing the topological (e.g., connectedness) and
fractal properties (e.g., Hausdorff dimension of the
boundary) of template Mandelbrot sets Ms, and
how these vary with changing the template.

– Understanding topological andmeasure theoretical
properties ofmapMandelbrot setsMc0,c1 , and how
these depend on changing the parameters c0 and c1.

Recent studies [4,17,23] have made great progress
in extending classical dynamical systems properties

to systems obtained by non-autonomous iterations of
polynomials. It was shown [24] that the dynamics for
randomly iterated complex polynomials are stable over
large parameter loci. Systems defined by random iter-
ations have much weaker chaotic features than the
dynamics generated by single-map iterations (the chaos
of the averaged system disappears, due to the coop-
eration of the generators [23]). However, they do not
lose variety, because of the existence of multiple attrac-
tors [24].

Some of these studies have discussed topologi-
cal properties and have established upper bounds for
the Hausdorff dimension of Julia sets defined in this
extended context [19]. Of particular interest has been
the question of how the topology and geometry of Julia
sets are related to the properties of the critical orbits
under random iterations. A natural question to ask is
whether the classical result for polynomials of degree
d ≥ 2 (that the Julia set is connected if and only if the
polynomial has bounded postcritical set) holds in this
more general context. Sumi et al. have been investi-
gating relationships between the planar postcritical set
of a non-autonomous iteration of polynomials and the
corresponding Julia set [17,20–22], by addressing the
questions in the framework of semigroups of polynomi-
als (and rational maps, more generally) on the Riemann
sphere.

One can consider the semigroup G = {gin ◦ . . . ◦
gi1 |n ∈ N, gi j ∈ �}, generated by the compact subset
� of polynomials with degree ≥ 2, and then define the
Fatou set:

F(G) = {z ∈ Ĉ | G normal in a neighborhood of z}
and the Julia set associated with this semigroup:

J (F) = Ĉ\F(G)

If one simply requires that the planar postcritical set

P(G) =
⋃

g∈G
{y ∈ C critical value for g}

be bounded, the corresponding J (G) is not necessar-
ily connected (see [20] for a counterexample). How-
ever, one may consider the compact space �N = {γ =
(γ1, γ2, . . .) | with γ j ∈ �,∀ j ∈ N} with the shift
map σ : �N → �N, and the cross-product �N × Ĉ,
with the canonical projections π : �N × Ĉ → �N and
π
Ĉ

: �N × Ĉ → Ĉ. Sumi [21,22] defined the skew
product associated with the family � as the map

f : �N × Ĉ → �N × Ĉ
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defined by f (γ , z) = (σ (γ ), γ1(z)) (such that π ◦ f =
g ◦ π ). It was noted that, for all n ∈ N, the fiber-
wise restriction fγ on each π−1({γ }) � Ĉ acts as
f nγ (z) = γn ◦ . . . ◦ γ1(z), so that the dynamics of
f can be established by looking at the dynamics of
sequences generated by the family of fiberwise maps
{ fγ }γ∈�N with the shift map σ . The fiberwise Julia set

J γ ( f ) can thus be defined for each γ ∈ �N, and it was
shown [21] that

π
Ĉ

⎛

⎝
⋃

γ∈�N

{γ } × J γ ( f )

⎞

⎠ = J (G)

This tightly connects the dynamics of f to the dynamics
of G. One can further consider the fiber postcritical set
of f :

P( f ) =
⋃

n∈N
f ◦n(C( f )) ⊂ Ĉ

where

C( f ) = {
(γ , y) ∈ �N × Ĉ | y critical point
for π

Ĉ
( f (γ , z))

}

Sumi [22] showed that if π
Ĉ
(P( f ))\{∞} is bounded

inC, then the fiberwise Julia sets J γ ( f ) are connected
for any γ ∈ �N.

In our particular case of binary template iterations
of quadratic polynomials, we have � = { fc0 , fc1}. For
any γ ∈ �N (i.e., for a fixed parameter pair (c0, c1) ∈
C
2 and a given binary template s ∈ {0, 1}N), we can

consider the compactmetric space X � ⋃
n∈N σ n(s) ⊂

{0, 1}N, and the associated skew product with the shift
map σ : X → X :

f : X × Ĉ → X × Ĉ, f (t, z) = (σ (t), fct1
(z))

for any t = (tn)n∈N ∈ {0, 1}N and any z ∈ Ĉ. Then

C( f ) = {(t, z) ∈ X × Ĉ | z critical point for fct1
}

= {(t, 0)}
Hence, P( f ) = ⋃

n∈N{(σ n(t), ( fctn ◦ . . . ◦ fct1
)(0))},

so that the fiberwise Julia set J γ ( f ) is connected if
{( fctn ◦ . . . ◦ fct1

)(0), n ∈ N} is bounded in C, i.e., if
the infinite template orbit o(t) is bounded.
In the following sections, we investigate the template
orbits of complex quadratic maps in the family fc(z) =
z2+c for a variety of templates, andwe discuss particu-
lar questions that appear when performing random iter-
ationswithin this restricted subset of polynomial gener-
ators. The paper is organized as follows: In Sect. 2, we

discuss properties of template Julia sets for fixed tem-
plates, both periodic and random.We focus in particular
on coupling an arbitrary quadratic map fc(z) = z2 + c
with the trivial map f0(z) = z2 (whose Julia set is the
unit circle). We observe how the connectivity patterns
of the fixed template Julia and Mandelbrot sets change
when the template itself is modified, to incorporate the
two iterations in a different mixture. In Sect. 2.3 in par-
ticular, we view the insertion of the second map as an
“error” in the iteration process of the first map, and we
study the effects of such an error propagating along
the template on the structure of the corresponding Julia
set. In Sect. 3, we examine properties of Mandelbrot
sets. We first focus on template Mandelbrot sets in and
on properties of their slices in C

2. Then, we view the
fixed mapMandelbrot set as a subset of [0, 1]2, and we
define hybrid Mandelbrot sets. Finally, in Sect. 4, we
briefly discuss potential applications of this theory to
the modeling of natural systems.

2 Template Julia sets

2.1 Periodic template Julia sets

In this section, we consider k-periodic templates: s =
[s1, ..., sk], with sk+ j = sk , for all j ≥ 0. In previ-
ous work, Danca et al. have considered iterations of
alternating quadratic maps [6,7]. In our context, this
corresponds to considering the two possible symbolic
templates of period two s = [01] and s = [10].

In the references, the authors show that some basic
properties and results are still inherited from the tradi-
tional single-map case, but also that some new results
emerge. For example, for any alternating orbit, the
sequence of even and odd iterates is simultaneously
bounded or unbounded, so that the Julia set of the alter-
natedmaps fc0 and fc1 is the same as the Julia set of the
quartic map fc1 ◦ fc0 , for any c0, c1 ∈ C. The authors
further investigate numerically, graphically, and ana-
lytically the relationship between the connectivity type
of Julia sets and the boundedness of the critical orbits of
alternating maps, verifying the first part of the Fatou–
Julia theorem in this case. Other questions, such as
conditions for local connectivity of the 4-dimensional
Mandelbrot set or of 2-dimensional Mandelbrot slices,
remain open to further investigation.

Similar properties extend to periodic template iter-
ations for periods k > 2, with each template Julia set
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identical to a classic Julia set for a degree 2k polyno-
mial. Notice that a j-shift σ on a periodic template
σ(s) = σ [s1, . . . sk] → [s1+ j , . . . sk+ j ] = s j trans-
lates as a polynomial transformation of degree j on the
Julia set:

J (s j ) = fcs j−1
◦ . . . ◦ fcs1 (J (s))

One may look at classes defined by shifts on periodic
templates, so that Julia sets within the same class are
all related by such transformations. The connectedness
properties of a Julia set may be preserved or not by the
transformation, depending on the parameters c0 and c1,
and on the critical orbit properties produced by their
combination.

For templates of period 3 for example, there are 3
such classes (or types):

(0.) All zero entries: s = [000]
(1.) A single one entry: s = [001], s = [010], s =

[100]
(2.) Two one entries: s = [011], s = [101], s = [110]
(3.) All one entries: s = [111]

While higher period template Julia sets show simi-
lar symmetry properties as observed in the alternating
case [6], new questions add to the discussion for higher
periods. These refer to understanding how the structure
of the periodic template block affects the resulting Julia
set, in combination with the parameter pair (c0, c1).
The structure of the Julia set is now influenced by three
factors: (i) the maps c0 and c1, (ii) the balance of how
often onemap is iterated versus the other (i.e., the num-
ber of 1s versus 0s in the template block), and (iii) the
location of these 1s and 0s along the block.

Figures 2, 3, 4, and 5 show, for example, template
Julia sets for 3-periodic templates, for combinations of
the map c0 = 0 with the maps c1 = −0.117 − 0.76i ,
c1 = −0.62 − 0.432i c1 = −0.5622 − 0.62i , and,
respectively, c1 = −1 − 0.55i . For the first two of
these (c0, c1) pairs, the classical Julia sets are shown in
Fig. 1; the other two Julia sets are totally disconnected.

The template type seems to affect connectivity of
the template Julia set as significantly as the parameters
(c0, c1). It is not surprising that, for fixed c0 and c1,

Fig. 1 Classical Julia sets for four different values of the para-
meter c, for which the sets are connected: a c = −0.75; b c =
−0.117−0.76i ; c c = −0.62−0.432i ; d c = −0.117−0.856i .

We will be using these values in our subsequent illustrations, for
combinations of two such functions iterated along a symbolic
template

Fig. 2 Period 3 template
Julia sets for c0 = 0 and
c1 = −0.62 − 0.432i , for
templates of type 1 (top
row) and type 2 (bottom
row). a s = [011];
b s = [101]; c s = [110];
d s = [001];
e s = [010]; f s = [100]
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Fig. 3 Period 3 template
Julia sets for c0 = 0 and
c1 = −0.117 − 0.76i , for
templates of type 1 (top
row) and type 2 (bottom
row). a s = [011];
b s = [101]; c s = [110];
d s = [001]; e s = [010];
f s = [100]

Fig. 4 Period 3 template Julia sets for c0 = 0 and c1 =
−0.5622 − 0.62i , for templates of type 1: a s = [001]; b
s = [010]; c s = [100]. The Julia sets for the same parame-

ter values and templates of type 2, i.e., s = [011], s = [101],
s = [110], are totally disconnected (dust)

Fig. 5 Period 3 template Julia sets for c0 = 0 and c1 =
−1 − 0.55i , for templates of type 2: a s = [011]; b s = [101];
c s = [110]. The Julia sets for the same parameter values and

templates of type 1, i.e., s = [001], s = [010], s = [100], are
totally disconnected (dust)

using a different template type (e.g., 1 vs. 2 ones in the
3-periodic case) will affect the connectivity of the Julia
set. However, the results may be rather counterintuitive
(see Fig. 5). In addition to the template type, changing
the position of the 1s along the template may or may

not affect connectivity, as shown in Figs. 2 and 3 for the
three different template blocks of type 2. In particular,
the folding produced by applying a shift to the template
may break ormerge connectivity loci, depending on the
template and on the complex parameters c0 and c1 used.
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For c1 = −0.62 − 0.432i (Fig. 2), c1 = −0.117 −
0.76i (Fig. 3) and c1 = −0.5622 − 0.62i (Fig. 4) in
combination with c0 = 0, the Julia set becomes more
disconnected as a result of increasing the contribution
of c1 versus c0. Indeed, in the first case, the template
Julia set, connected for all cases of type one template (a
single one and two zeros), remains connected (although
a lot more complex) for all corresponding type 2 tem-
plates (two ones and one zero). In the second case,
while all type 1 templates render connected Julia sets,
these become disconnected for all cases of type 2 tem-
plate. In the third case, the Julia set for type 1 templates,
already disconnected, turns to dust for all type 2 tem-
plates. This is somewhat expectable, given the shape
of the Julia set for each of these maps considered in
isolation (the unit circle for c = 0, the Julia set shown
in Fig. 1c for c = −0.62 − 0.432i , in Fig. 1b, for
c = −0.117− 0.76i , and respectively a totally discon-
nected Julia set for c = −0.5622 − 0.62i). However,
for c1 = −1 − 0.55i (Fig. 5), the opposite happens:
The template Julia sets are disconnected, but not totally
disconnected for type 2 templates, and become dust for
type 1 templates, where the more substantial contribu-
tion of the map fc0(z) = z2 would suggest otherwise.

2.2 Non-periodic template dynamics

The case of periodic templates represents only a first
extension, with basic properties expected to replicate
quite naturally the theory for iterations of alternated
maps.Wenext consider themore general case, of binary
templates which are not necessarily periodic.

In Fig. 6, one non-periodic template was used to
create the Julia set for three different combinations of
parameters. Perhaps the first thing one notices is that
the Julia sets for random templates still exhibit complex

(fractal) structure, symmetry and alternations. How-
ever, we need to recall that, in all numerically gener-
ated figures, one can only use truncated representations
of infinite templates, retaining only a specific number
of iterations when representing the Julia set (for exam-
ple, in all our figures we used 200 iterations). A natural
question concerns the variability with the number of
iterations (i.e., length of the truncated template) of the
resulting approximation for the Julia set.

In Fig. 7, three different non-periodic (randomly
generated) templates were used to create the corre-
sponding Julia sets, for three different combinations
of parameter values (c0, c1). Notice that different tem-
plates introduce differences in the Julia set as signif-
icant as changes in the parameters (c0, c1). We then
fixed template 1 from Fig. 7 and c0 = 0, c1 = −1
(that is, we started with the Julia set in the middle left
panel). Using the same (c0, c1) pair, we computed the
Julia sets for a collection of templates of length 200
with identical entries up to the 10th position. The vari-
ations among the Julia sets we obtained this way are
clearly much smaller, as illustrated in Fig. 8. To better
understand this dependence,we consider the following:

Definition 2.1 For any n ∈ N, we call the k-root of a
template s = (sk) the finite sequence sk = s1, . . . , sk .
We say that two templates have the same k-root if they
agree up to their kth position.

Based on our numerical simulations (see Fig. 8), a nat-
ural direction of inquiry may be to ask (1) whether
increasingly long common roots lead to arbitrarily sim-
ilar Julia sets, or (2) whether the Julia sets for increas-
ingly long truncated templates approach the Julia set
for the infinite template.

Question 1 Fix a parameter pair (c0, c1), and a tem-
plate s. Is it true that, for any δ > 0, there exists n ∈ N

Fig. 6 Template Julia sets for one fixed non-periodic template
(identified as s1 in “Appendix 3”), and different pairs (c0, c1):
a c1 = −0.75 and c0 = −1.2; b c1 = −1.2 and c0 = −0.75;

c c1 = −1.2 and c0 = −1. For the simulation, the template
creating the Julia set was truncated to 200 iterations
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Fig. 7 Template Julia sets
for three different randomly
generated templates,
truncated to 200 iterations
(from left to right, we
illustrate, respectively,
templates s2, s3 and s4 from
“Appendix 3”). The
parameters used are c0 = 0
and, from top to bottom:
c1 = −0.75 (top), c1 = −1
(middle) and
c1 = 0.375 + 0.333i
(bottom)

Fig. 8 Template Julia sets for c1 = −1 and c0 = 0, for three
random truncated templates of length 200 with the same root of
length l = 10. From left to right, we show, respectively, tem-
plates s2, s5 and s6 from “Appendix 3”. The first template (left)

is the same as template 1 in Fig. 7; hence, the corresponding Julia
set is identical with that in the middle left panel in the referenced
figure

such that, if s1 and s2 are two templates with a common
n-root, then

d(Jc0,c1(s1), Jc0,c1(s2)) < δ

where d represents the Hausdorff distance between two
sets?

Question 2 Fix a parameter pair (c0, c1). Is it true
that, for any δ > 0, there exists N ∈ N such that:

d(Jc0,c1(s
n) − Jc0,c1(s)) < δ , for n ≥ N

These questions relate directly to a well-known result
proved by Comerford and Woodard in the context of
random iterations of hyperbolic polynomials:

Theorem [4]. If a sequence of bounded polynomial
sequences which are bounded and hyperbolic with the
same constants converges to a bounded polynomial
sequence, then the iterated Julia sets also converge in
the Hausdorff to the Julia set of the limit sequence.

Using skew products associated with polynomial semi-
groups, Sumi [18] and Sester [16] proved a similar
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Fig. 9 Julia set for iterations of the polynomial h1(z) = z2 +ρz

with irrational rotation number ρ = e2π ir , where r = 1+√
5

2 ,
in conjunction with the polynomial h2(z) = z2 + 2z. The sets
were constructed based on templates of length n = 200, with the
map h1 being iterated for the zero positions, and the map h2 for

the one positions. The panels illustrate templates sn = 0k1n−k

for increasing values of k: a k = 10; b k = 50; c k = 100;
d k = 150; e k = 195; f k = 200. The Julia sets are not get-
ting closer to the Julia sets for s200 in Hausdorff distance as k
increases

result when assuming semi-hyperbolicity of the skew
product. Semi-hyperbolicity is yet a rather strong con-
dition, and one may easily find examples of skew prod-
uctswhich are not hyperbolic. The following non-semi-
hyperbolic setup represents a class of counterexamples,
also constructed by Sumi [21], showing that Hausdorff
convergence of the Julia set is no longer guaranteed in
the absence of semi-hyperbolicity. Consider the semi-
group generated by � = {h1, h2}, where one polyno-
mial h1 has a Siegel disk, whose center ξ0 is a repelling
fixed point for the second polynomial h2. In Fig. 9,
we illustrate a few instances of the Julia set along the
sequence of templates sn = (0, . . . , 0, 1, 1, . . .) (com-
posedof an increasingblockof zeros followedbyones),
for the quadratic polynomials h1(z) = z2 + ρz, and

h2(z) = z2+2z, where ρ = e2π ir , and r = 1+√
5

2 is the
golden ratio. Themap h1 has a fixed point at z0 = 0 and
irrational rotation number; its Julia set has a Siegel disk
centered at zero, which is a repelling fixed point for h2.
As the common root of zeros is getting longer, the Julia
sets are not getting closer in theHausdorff distance, and
they are not approaching the Julia set of the map h1.

Let us note, however, that this class of counterexam-
ples does not exist within our particular quadratic poly-
nomial family, since an indifferent fixed point ξ0 for one
map fc = z2 + c cannot be a repelling fixed point for
another map in the same family. Further work would be
required to answer questions 1 and 2, and either estab-
lish that the result holds within our particular family
without additional hyperbolicity or semi-hyperbolicity
conditions, or refute the result by constructing a work-
ing counterexample.

2.3 Propagating a perturbation

One way to interpret the combination of two maps in
the iteration scheme is to think of fc1 as the desired
map, and of fc0 as an “error,” or “perturbation” in the
desired iteration. In this context, an all 1 template cor-
responds to a “perfect” replication process, in which
a specific map fc1 is iterated identically for a (large
or infinite) number of times, and any number of zero
entries in the template correspond to asmany intrusions
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of the erroneous map fc0 in this iteration process. This
intrusion can be periodic, or may occur at a random
sequence of steps. Here, we discuss the changes in the
Julia set produced by propagating a single error along
a perfect template.

In “Appendix 1,” we illustrate the effects on the Julia
set of a single propagating error, for a few combinations
of maps. In Figs. 14 and 15, the desired map fc1 is
combined with the trivial map f0(z) = z2, while in
Fig. 16, the error is a different (and unrelated) function,
with complex parameter c0 �= 0. In Fig. 17, the error
is a small perturbation of the original function, i.e.,
c0 = c1 + ε, with a small ε ∈ C.

In light of the discussion in the previous section,
longer common roots seem to lead to more similar
Julia sets. The impact of the same error on the Julia
set is more substantial when the error occurs earlier in
the iteration process. In fact, the Julia sets start to be
reminiscent of the correct Julia set less than 50 itera-
tions through the template length. Along the way, how-
ever, the connectivity and symmetry of the erroneous
Julia changes at each step, sometimes in unexpected
and counterintuitive ways. Notice, for example, that
the small perturbation to c1 (in Fig. 17) has at each
step an effect on the Julia set which is comparable with
that of a much larger perturbation (in Figs. 15, 16 ).
This promotes the possibility that, in such a replication
process, the timing of the error is equally or even more
important than the size of the error.

3 Mandelbrot sets

Since, as in the original reference, we are using two
iterated maps in combination, the templateMandelbrot
set can be seen as a 2-dimensional complex object (the
locus of (c0, c1) ∈ C

2 for which the template orbit of
zero is bounded). Onemay study topological properties
of template Mandelbrot sets, and their dependence on
template type (periodic or non-periodic). One way to
visualize the Mandelbrot set for a fixed template is by
looking at a lattice of 2-dimensional slices, each rep-
resenting the behavior with respect to c1 for a fixed c0
(see in Fig. 18 in “Appendix 2”).We are, however,more
interested in understanding how the fractal structure of
the set boundary (measured by its Hausdorff dimen-
sion) changes when varying the template type, density
or regularity.

We first observed the structure of template Man-
delbrot sets for periodic templates. When we tracked
the fractality of the boundary of template Mandelbrot
sets, we found a consistent trend of alternation between
boundary regionswith high and low complexity (which
we illustrate in Fig. 10, using consecutive zooms into
various regions along the boundary).

We then looked at the Mandelbrot boundary in the
case of non-periodic templates. Due to the lack of regu-
larity in the occurrences of c0 and c1 in the template, the
fractal dimension of the templateMandelbrot boundary
seems to be lower than that for periodic templates, but
more uniform along the whole set boundary (Fig. 11),
in contrast with the situation for periodic templates,
where high Hausdorff dimension regions were inter-
posed with portions of low Hausdorff dimension.

This is not too surprising: The phenomenon of coop-
eration between generating maps has been already pro-
posed by Sumi [23] as a contributor to decreasing the
chaos in the overall system.However, this phenomenon
was only described in the context of averaged behavior
over all initial conditions.Our numerical result seems to
support a similar effect of randomness “smoothing out
the chaotic structure” along the boundary of the Man-
delbrot set. A better understanding of the latter as well
as a possible relationship between these two phenom-
ena may become clearer with a more rigorous investi-
gation of the topology of template Mandelbrot slices.

Next, we want to suggest two alternative ways of
viewing the fixed map Mandelbrot set, and of observ-
ing how the template affects the properties of the orbit
os(0), for a fixed parameter pair (c0, c1) ∈ C. As a
book-keeping method for truncated templates, we pro-
pose to consider each binary sequence of length L as
equivalent to the binary representation of a real num-
ber 0 ≤ n ≤ 1 with precision 2−L . In other words, we
can consider, for each 0 ≤ a ≤ 1, its binary expansion
up to its Lth binary digit, always choosing the infinite
expansion (when it is the case). For fixed c0 and c1,
we can use each expansion as the symbolic template,
and check whether the orbit os(0) is bounded or not.
We can construct the function: F : [0, 1] → {0, 1},
given by F(n) = 1, if os is bounded, and F(n) = 0,
if os(0) is not bounded. In Fig. 12, we show a few
such representations, for various choices of the com-
plex parameter pair (c0, c1), connecting the discon-
tinuous points in order to make the structure of the
set more visible. It is clear that the behavior of the
fixed map Mandelbrot set F−1(1) depends crucially
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Fig. 10 Template Mandelbrot slice for c1 ∈ C, for the periodic
template [011] and fixed c0 = −0.2 + 0.6i . The figure shows
two progressively zoomed-in windows: one with low, the other
with high Hausdorff dimension along the boundary. Three con-
secutive zoom-ins of the first instance are represented on top,

and four zoom-ins of the second situation are represented on the
bottom. The pattern persists at higher and higher levels, suggest-
ing an alternation of high and low dimension intervals along the
boundary of the set

Fig. 11 Template Mandelbrot slice for c1, for a template of
length 200 generated at random (template s7 from “Appendix
3”). The zeros in the template correspond to the map c0 = 0 and
the ones to the respective map c1. Each panel shows at higher

resolution a zoomed-in window, marked on the preceding panel.
The structure persists at higher and higher levels, suggesting the
preservation of fractal features in the Mandelbrot set, even for
random templates
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Fig. 12 Fixed map
Mandelbrot sets, for
different parameter pairs
(c0, c1) ∈ C.
a c1 = −0.117 − 0.76i ,
c0 = −0.5622 − 0.62i ;
b c1 = −0.5622 − 0.62i ,
c0 = −0.5622 − 0.62i ;
c c1 = −0.117 − 0.76,
c0 = −0.75; d c1 = −0.75,
c0 = −0.117 − 0.856i . We
created binary expansions
of length L = 15 for the
numbers in the unit interval
[0, 1] (represented along the
x-axis), which we then used
as the symbolic templates
for the iteration process

Fig. 13 Hybrid Mandelbrot sets for different values of c0: a
c0 = 0; b c0 = −0.75; c c0 = 0.375 + 0.333i ; d c0 = i .
For each c1 (represented in the complex plane), we used colors

to illustrate how many templates of length L = 20 lead to a
bounded orbit os(0). The color spectrum goes from blue (low)
to red (high). (Color figure online)

on the parameter values. However, an analysis of its
topological properties (accumulation points, density
etc.), or its measure in [0, 1] remains open for further
studies of map Mandelbrot sets as fibered sets over
[0, 1].

Another interesting representation can be obtained
as a hybrid of fixing the map and fixing the template.
With a fixed c0, we can measure, for each different
value of c1 ∈ C, how likely it is (i.e., for how many of
all templates of a certain length) that the orbit os(0) is

bounded. In Fig. 13, we show a few such slices in the c1
complex plane, with the colors representing the num-
ber of templates for which os(0) is bounded. Notice
the structure reminiscent of the classical Mandelbrot
set of the hybrid slice c0 = 0, with the boundary frac-
tal behavior smoothened out. This is also potentially
related to the phenomena of “averaging out the chaos”
described by Sumi, except the averaging is performed
here in the parameter plane, rather than over the set of
initial conditions.
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4 Discussion

4.1 Comments and future work

In this paper, we described a few ideas which are, to the
best of our knowledge, new aspects of existing prob-
lems in randomdiscrete dynamics.Wedefined template
iterations of two quadratic maps, and we used standard
numerical algorithms to investigate the Julia and Man-
delbrot sets of template systems. While this study is a
first step in establishing the framework and phrasing
some questions, a lot of theoretical work remains to be
done, possibly exploring a brand new set of questions in
discrete dynamics, requiring new methods from non-
autonomous iterations, and the corresponding exten-
sions for the concepts of critical and periodic orbits.

In the meantime, in our computational work we are
continuing to investigate generalizations of the Julia
set, in particular in the context of networks of intercon-
nected complex quadraticmaps.While pairs of coupled
logistic maps have been studied before in both real and
complex case, we are interested to study the coupled
behavior in higher-dimensional networks, with possi-
ble applications to understanding dynamics in neural
networks. We are focused in particular on understand-
ing the effects of the network architecture (e.g., graph
Laplacian) and the dynamic properties of the ensemble
as a whole, and on the topology of the “Julia set” of the
networked system.

4.2 Applications to genetics

Our system can be viewed as a theoretical framework
for studying iterated replication mechanisms which are
subject to errors at each iteration step, such as DNA
replication. When a cell divides, it has to copy and
transmit the exact same sequence of billion nucleotides
to its daughter cells. While most DNA is typically
copied with high fidelity (polymerase enzymes are
amazingly precise when performing DNA synthesis),
errors are a natural part of DNA replication, with rates
of about 1 per 105 (polymerases sometimes insert-
ing too many or too few, or erroneous nucleotides
into a sequence). Human diploid cells have 6 billion
base pairs, and each cell division makes about 120,000
errors [14].

Cells have evolved highly sophisticated DNA repair
processes, aimed to promptly fix most of these errors.

Some errors are corrected right away, during replica-
tion, through a repair process known as proofreading.
Proofreading fixes about 99% of the errors, but that
is still not sufficient for normal cell functioning. Some
errors are corrected after replication, in a process called
mismatch repair. Incorrectly paired nucleotides that
still remain following mismatch repair become perma-
nent mutations after the next cell division: Once estab-
lished, the cell no longer recognizes themas errors [14],
passing them on to next generations of cells and (if the
errors occur in gametes) even to next generations of the
organism.

When the genes for the DNA repair enzymes them-
selves become mutated (the iterated function changes
in the long term), mistakes begin accumulating at a
much higher rate. Mutation rates vary substantially
among taxa, and even among different parts of the
genome in a single organism. Scientists have reported
mutation rates as low as 1 per 106–109 nucleotides,
mostly in bacteria, and as high as 1 per 102–103

nucleotides in humans [12]. Cells accumulate muta-
tions as they divide. Even mutation rates as low as
10−10 can accumulate quickly over time, particularly
in rapidly reproducing organisms like bacteria.

In genetics, polymerases replicate identically the
DNA strand at division, which in turn governs the
development of the cell, and is passed on at the next
cell division. In our model, the original system/cell
(in our case, the complex z-plane) is programmed to
evolve according to a certain sequence of steps, leading
to emergence of some features and extinction of oth-
ers. For example, an initial ξ0 which iterates to ∞ may
represent a cell feature which becomes unsustainable
after a number of divisions, while an initial ξ0 which
is attracted to a simple periodic orbit may represent a
feature which is too simple to be relevant or efficient
for the cell. Then the points on the boundary between
these two behaviors (i.e., the Julia set) may be viewed
as the optimal features, allowing the cell to perform its
complex function. An error at the level of the iteration
function at one particular iteration step is equivalent to
amutation that occurred at one of the cell division steps.
The new cell/complex plane is then used as template for
the next iteration/division; one can study how the fea-
tures of the cell are affected in the long term, when such
an error passes undetected by the repair mechanisms.
In our paper, we considered situations where such an
occurrence is singular, random/occasional, or periodic.
It is clear thatmutations accumulated over a long period
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of time may lead to serious changes in the structure of
the later cells (different topological properties of the
Julia set). Our model also addresses the timing when
the errors occur and illustrates how a mutation in the
early iterative stages can lead to substantiallymore dra-
matic consequences on the result (Julia set) than the
same error if it happens later in the process.

The construction of mathematical models to help
understandDNAreplication and repairwould be highly
desired, since these are crucially important and com-
plex mechanisms to study and understand. In eukary-
otic cells, accumulating mutations can lead to cancer.
However, if DNA replication were perfect (mutation-
free), there would be no genetic variation. Therefore,
successful organisms had to construct optimal mecha-
nisms, providing efficient DNA repair, but also enough
variability for evolution to continue. A mathematical
framework would be ideal for posing and contextual-
izing such questions.
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Appendix 1: Effect of a propagating error along the
template

See Figs. 14, 15, 16, and 17.

Fig. 14 Effect of error propagation on the Julia set for the
desired function with parameter c1 = −0.62 − 0.432i (whose
classical Julia set is shown in Fig. 1c) and error parameter
c0 = 0 (whose classical Julia set is the unit circle). The per-
turbation of fc1 to fc0 was introduced successively at the itera-
tions k = 1, 2, 3, 4, 5, 10, 30, and 200 in a truncated template of
length N = 200 (each Julia set is represented in one of the figure
panels, from smaller to larger values of k.)

123

Author's personal copy



Symbolic template iterations of complex quadratic maps

Fig. 15 Effect of error propagation on the Julia set for the
desired function with parameter c1 = −0.117 − 0.856i (whose
classical Julia set is shown in Fig. 1e) and error parameter
c0 = 0 (whose classical Julia set is the unit circle). The per-
turbation of fc1 to fc0 was introduced successively at the itera-
tions k = 1, 2, 3, 4, 5, 10, 30, and 200 in a truncated template of
length N = 200 (each Julia set is represented in one of the figure
panels, from smaller to larger values of k.)

Fig. 16 Effect of error propagation on the Julia set for the
desired function with parameter c1 = −0.117 − 0.856i (whose
classical Julia set is shown in Fig. 1d) and error parameter
c0 = −0.5622 − 0.62i (whose classical Julia set is shown in
Fig. 1e). The perturbation of fc1 to fc0 was introduced succes-
sively at the iterations k = 1, 2, 3, 4, 5, 10, 30, and 200 in a trun-
cated template of length N = 200 (each Julia set is represented
in one of the figure panels, from smaller to larger values of k.)
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Fig. 17 Effect of error propagation on the Julia set for the desired
function with parameter c1 = −0.117−0.856i (whose classical
Julia set is shown in Fig. 1d) and error parameter c0 = c1 + ε,
where ε = 0.1 + 0.1i (a small complex perturbation of c1).
The perturbation of fc1 to fc0 was introduced successively at
the iterations k = 1, 2, 3, 4, 5, 10, 30, and 200 in a truncated
template of length N = 200 (each Julia set is represented in one
of the figure panels, from smaller to larger values of k.)

Appendix 2: Template Mandelbrot slices

See Fig. 18.
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Fig. 18 Mandelbrot slices
for periodic template
s = [011]. Each panel
represents the c1 complex
plane. The panels in the
lattice was constructed for
values of c0 constructed by
taking partitions
Re(c0) = [−0.2; 0; 0.2] and
Im(c0) = [0; 0.2; 0.4; 0.6].
Mandelbrot slices are
symmetric with respect to
the real axis (not shown)

Appendix 3: Random templates used for the figures

s1 = 011100100100010011000101010011111111111

1100110010101101011011111100111010001101

001011100011010010100011000110111100000

1000101010101000000111011100011000111010

0110111011100000011111100110010010101111100

s2 = 0100110110101001011001010001001110010011

010100100100100000011001111010001011011

1001101010110001111011010001110000100100

111111001111000010111010011010100011111

0101011010011100001101111100101101001000011

s3 = 0111101111110000011110000000000101001111

111001010001111111000110100111111001000

111111010001110110011000101101111000000101

1000101001110011000100000000101001100

0111011010111010111000110100011100001001011

s4 = 0001011110111111001010101010010010111100

010000000110000011010001110000100100011

011011010010111101100000110100100001011
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0010110101010111110001001101000000011011

1110110010010000101101010110011110101011110

s5 = 0100110110100111011011100001111100110100

110001000100010001001010111011010000011

0001001101110100111010100001111100010111

100001110001010010011101101111101001101

1010110001001101000001100100001010010001101

s6 = 0100110110100111011011100001111100110100

110001000100010001001010111011010000011

0001001101110100111010100001111100010111

100001110001010010011101101111101001101

1010110001001101000001100100001010010001101

s7 = 0010100011111110010010000110011111101111

011011110011100111101100000011001101000

01001011000101001101001011011110100000111

10000010000100000111010100111111001101

1000101011110011111110100110111101100110000
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