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Abstract Due to climate change, the interest in studying our climatic system using
mathematical modeling has become tremendous in recent years. One well-known
model is Budyko’s system, which represents the coupled evolution of two variables,
the ice-line and the average Earth surface temperature. The system depends on
natural parameters, such as the Earth albedo, and the amount A of carbon in the
atmosphere.

We introduce a 3-dimensional extension of this model in which we regard A as the
third coupled variable of the system. We analyze the phase space and dependence
on parameters, looking for Hopf bifurcations and the birth of cycling behavior. We
interpret the cycles as climatic oscillations from a hot Earth with high iceline to a cold
Earth with low iceline. We illustrate how long-term oscillations between an ice-free
and an ice-ball Earth can be crucially perturbed by even small changes in human CO2

emission patterns, with predictions aligned with current theories of global warming.

Introduction

Earth’s climate is constantly changing. This change has become much more prominent
over the past century, during which time the average surface temperature of the Earth
has increased by almost a full degree Celsius. Figure 1 shows together the average
annual surface temperature of the Earth (on the top), and the annual concentration
of carbon dioxide (on the bottom). Both graphs show a similar, almost exponential
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increase with time. The correlation between the two trends suggests that surface
temperature is related to carbon dioxide levels.

Figure 1: Earth’s average temperature and carbon dioxide concen-
tration annually. Top. Earth’s average surface temperature over the past
century. Bottom. Measured levels of carbon dioxide concentrations annually.

Over the past hundreds of millions of years the Earth’s average surface tempera-
ture has gone through many different cycles. There have been times where it was so
warm that reptiles could survive above the arctic circle and times when glaciers cov-
ered most of the Earth. The average surface temperature has been rising consistently
over the past hundred years. One important question is whether this increase is a
steady trend, or whether it is the upper side of a cyclic pattern. In either case, how
long until this high maximum temperature value makes Earth uninhabitable? Can
our behavior, such as green house gas emissions or excess use of fossil fuels, change
the established cycles?
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The Budyko model

Russian Climatologist Mikhail Budyko [1] formulated the following integro-differential
equation (1) by assuming Earth’s annual average surface temperature at a given
latitude T = T (t, y) (in oC) can be represented as a function of time (t) and the sine
of the latitude (y = sin(θ)):

R
∂T

∂t
= Qs(y)(1 − α(y, η)) − (A +BT ) +C(T − T ) (1)

where

T (t) = ∫
1

0
T (t, y) dy.

This energy balance model (EBM), referred to as Budyko’s model [10], is based
on simplifications of factors that cause the Earth’s surface temperature to change.
The temperature is assumed to be constant on a given latitude circle and symmetric
across the equator (hence y ranges from 0 at the equator to 1 at the north pole). It is
assumed that the average temperature is a continuous function with respect to time.
T is the global annual mean temperature.

Both sides of the equation are expressed in W /m2 (since the parameters R, rep-
resenting the average heat capacity of the Earth’s surface, is measured in J/m2 ○C,
and the temperature T is measured in ○C. Parameter values and their corresponding
units are shown in Table 1.

A key component of the equation is α(y, η), which represents the albedo (amount
of shortwave solar radiation reflected back into space) for the Earth, which is defined
by

α(y, η) = { αw, if y < η,
αs, if y > η. (2)

The albedo function is defined piecewise and depends on the latitude y and on the
position η of the iceline (the glacier line), so that for y > η the Earth is covered in ice,
with an albedo of αs = 0.62, and for y < η the Earth is ice-free, with αw = 0.32. More
radiation is reflected for ice than water, producing a larger albedo α for above-iceline
latitudes.

The parameter Q represents the “solar constant,” or the annual global mean
insolation. The distribution of that insolation over latitude is represented by s(y),
with ∫

1

0 s(y) dy = 1. Putting these pieces together, one can interpret the first term
on the right of (1) as the amount of incoming solar energy absorbed by the Earth.

Outgoing longwave radiation (OLR) is approximated by the second term on the
right A+BT (the values of A and B, determined by satellite measurements, are shown
in Table 1). This term can be looked at as a measure of the amount of carbon (or
more generally, greenhouse gases) in the atmosphere. If there is more carbon in the
atmosphere, less radiation escapes, therefore this term will be smaller.

The final term on the right represents convection, i.e., heat transfer between lat-
itudes. In Budyko’s model it is assumed that over the period of a year this transfer
of heat can be represented as the difference between the average global surface tem-
perature T and the surface temperature at the current latitude, then multiplying this
difference by a proportionality constant (C) (also determined by satellites).

Iceline dynamics

More recent work by McGehee and Widiasih incorporated temperature-triggered ice-
line variability in the original EBM, and formulated the temperature-iceline dynamics
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Parameter Value Units

Q 343 W/m2

s2 -0.482 Dimensionless
A 202 W/m2

B 1.9 W/m2 ○C
D 3.04 W/m2 ○C
R 4 × 109 J/m2 ○C
αw 0.32 Dimensionless
αs 0.62 Dimensionless
Tc -10 ○C
Ω 1.5 ⋅ 1011 J/m2

ε 3.9 ⋅ 10−13

Table 1: Model parameter values and units, as per the original references.

as a system of two coupled differential equations [9, 10]. Below, we only briefly outline
the derivation of the coupled equations; a comprehensive explanation can be found
in the original reference.

First, a simpler approximation was introduced for the distribution of insolation
s(y), which was expressed in terms of the angle β between the Earth’s axis of rotation
and perpendicular to plane of Earth’s orbit [8]. A quadratic approximation (to within
2% error) led to an expression for s(y) of the form:

s(y) ≈ 1 + s2

2
(3y2 − 1) (3)

It was shown [8] that s2 ≈ −0.482. This approximation allowed for simpler methods
of solving for equilibrium solutions T ∗η (y) to Budyko’s model for a fixed iceline η,
without taking a large toll on accuracy. The discontinuity of the albedo function
α(y, η) at y = η leads to the question of defining T ∗η (y) at y = η. This was taken to
be the average of the two side limits:

T ∗η (η) =
T ∗η (η−) + T ∗η (η+)

2

leading to the equilibria T ∗η (y).
It has been observed that glaciers form at a temperature of approximately −10○C.

So if it is assumed that the ice line is stationary, the average temperature across that
iceline should be a critical temperature, Tc = −10○C. However, in light of observations
of iceline dynamics over many years, the stationarity assumption is not realistic [8].

That is because if the equilibrium temperature profile is greater than the critical
temperature, the ice line will retreat towards η = 1 and the opposite if the temperature
is below Tc. According to these considerations, Widiasih [16] introduced the rate of
change of the ice line latitude as being proportional to the difference between the
equilibrium temperature profile and the critical temperature (with proportionality
constant ε extremely small, since it represents the time scale of glacier dynamics):

dη

dt
= ε(T ∗η (η) − Tc) (4)

The energy required to melt ice was also included in the original EBM, via a
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parameter Ω, representing the amount of energy required to melt a square meter of
ice:

Ω = 1.5 ⋅ 1011J/m2 (5)

With these extensions, the Budyko model with iceline dynamics becomes a system
of coupled equations in (T, η):

dη

dt
= ε(T ∗η (η) − Tc)

R
∂T

∂t
= Qs(y)(1 − α(y, η)) − (A +BT ) +C(T − T ) −Ω

dη

dt
(6)

In the original reference [10], the authors use a Legendre expansion and change of
variables to find a two dimensional invariant subspace that yields to a simple system
of two coupled differential equations:

dη

dt
= ε [w + Qs2

2
(1 − αw + αs

2
)(3η2 − 1

B +C
) − Tc]

R
dw

dt
= Q(1 − αw + αs

2
) −A (7)

+ QC

B +C
(αs − αw) (η −

1

2
+ s2

2
(η3 − η)) −Bw −Ω

dη

dt
.

Nonlinear dynamics

These two coupled equations define a two-dimensional, continuous time, nonlinear
dynamical system. A typical analysis of such a system begins with finding nullclines
and equilibria, with a linear analysis around equilibria to establish local stability, and
may continue with a search for global stability features, with searching for limit cycles
and with an analysis of the system’s dependence on parameters. Often times, however,
even seemingly simple nonlinear systems may be too complicated to solve directly,
and this plan of action may fail, due to the difficulty of solving nonlinear algebraic
equations, right at the first step: that of locating equilibria. In this case, numerical
methods may offer adequate support (although numerical algorithms themselves may
be problematic in the context of certain nonlinear features).

The two-dimensional system (7) was approached with a combination of analyt-
ical and numerical computations to find the system’s two equilibria, estimate their
position and determine their stability (one was found to be a node with η ∼ 0.95, and
one a saddle with η = 0.25). The authors also study the sensitivity of the system with
respect to the parameter A (see Figure 2), to find a saddle node bifurcation. A bifur-
cation is a state of the system that represents a sharp transition from one dynamic
behavior to another, which may occur with changes in the number of equilibria and
their stability, or with the formation or dissolution of a limit cycle (in the Numerical
simulations section, we will show more examples of different types of bifurcations).

The bifurcation diagram of the system (7) with respect to A (shown in Figure 2)
describes a sharp transition at a tipping point of A ∼ 212. For values of A smaller
than A ∼ 198, the system evolves away from the only unstable equilibrium in the
natural range, and converges to an iceline η = 1 (ice free Earth). For values of
the parameter larger than A ∼ 212, the system has no equilibria, and the system
is driven to η = 0 (snowball Earth). For intermediate values of A, the system will
settle to a high iceline, and a livable average surface temperature of about 5 ○C. This
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Figure 2: Saddle node bifurcation with respect to A. The red plot rep-
resents a stable equilibrium curve w.r.t. A, and the blue curve an unstable
(saddle) equilibrium. They collide at the bifurcation point A = 212 [15].

implies, as expected, that excessive CO2, reflected in low values of A, leads to an
excessively hot Earth, but also suggests that too low values of CO2, reflected in high
A, lead to an equally undesirable outcome (frozen Earth). The existence of a range
of CO2 (and subsequently A) producing optimal temperatures for sustaining life on
Earth motivated our interest in studying the coupling between CO2 levels and surface
temperature, and the effects of this coupling on the system dynamics.

We worked on conceptually extending the original results in [9] by introducing A
as a third variable in the system, then we investigated the nonlinear behavior of this
extension. We focused in particular on the system’s dependence on parameters, and
on establishing whether it has any codimension one bifurcations (i.e., sharp transitions
in dynamics that appear when only varying one parameter of the system). We looked
in particular for saddle-node and Hopf-fold bifurcations (see [7] for comprehensive
definitions):

A saddle node (or limit point) bifurcation is a local bifurcation where two equilibria
with different stability (typically a saddle and a node) collide and disappear (see
Figure 2).

A Hopf bifurcation is a local bifurcation where an equilibrium point changes stability,
with the birth of a limit cycle. This happens if an eigenvalue λ of the system’s Ja-
cobian matrix around the fixed point traverses the imaginary axis, i.e., changes from
having Re(λ) > 0 to a Re(λ) < 0, with the bifurcation occurring at Re(λ) = 0. A Hopf
bifurcation can be supercritical (with a stable spiral equilibrium changing stability
with the birth of a stable cycle) or subcritical (with an unstable equilibrium changing
stability with the birth of an unstable cycle). One can establish the type of a Hopf
bifurcation by considering the quadratic nonlinear terms of the system and compute
the Lyapunov coefficient σ, which is σ < 0 at a supercritical Hopf, and σ > 0 at a
subcritical Hopf. When σ = 0, the bifurcation is critical, and the fixed point changes



An energy balance model of carbon’s effect on climate change 7

stability with formation of infinitely many cycles (as previously described in [5] and
[6]).

Since the direct computation of all the dynamic invariants that would permit classi-
fications of these bifurcations would be practically intractable, we used the Matcont
software package to assist our analysis (see the Numerical simulations section).
Matcont [4] uses numerical continuation algorithms to track the changes in the behav-
ior of the system as parameters are changed. In addition, we used direct computation
of phase space trajectories for specific parameter values, in order to verify the pres-
ence of more subtle phenomena (such as critical Hopf points, which are notoriously
difficult to locate by automated bifurcation-searching packages [6]).

Introducing dependence of carbon on temperature

To begin constructing our extension of the classical model (7), we start with the
assumption that accumulation of greenhouse gases has a strong effect on the Earth
OLR. Indeed, CO2 absorbs energies with a wavelength of around 15 micrometers
very easily. This happens to be included in the infrared region of the spectrum of
light which has wavelengths ranging from 700 nanometers - 1 millimeter. This range
of wavelengths is within the OLR wavelengths assumed in Budkyo’s model (see [3]).
CO2 is circulated throughout our atmosphere in many ways. The main four processes
are: decomposition of organic materials, respiration, photosynthesis, and combustion.
Other than planting trees (or breathing less) the only control we humans have on the
levels of CO2 in the atmosphere is combustion (which we are clearly overdoing as a
species). Although CO2 is only present at a level of approximately 400 ppm (parts
per million), small changes in CO2 levels can have enormous effect on the Earth’s
climate.

Recall that in our model the term A + BT , representing outgoing longwave ra-
diation (OLR), depends on the level of greenhouse gases, which clearly affect OLR.
Observing that CO2 is by far the dominant greenhouse gas, we regard A as a measure
of the levels of CO2 in the atmosphere, with lower values of A representing high atmo-
spheric levels of CO2, and high values of A making low CO2. Since the levels of CO2

are changing in time (as suggested by Figure 1), A will also be time dependent; we
introduce A(t) as a new (third) coupled variable in our dynamic model. Supported
by the correlation between the graphs in the two figure panels, we suggest that A
depends implicitly on time by depending directly on the surface temperature. Indeed,
a variety of studies have been quantifying with increasing success over the years the
dependence of the carbon footprint on temperature [14].

For example, there are geography-specific seasonal oscillations in levels of CO2,
believed to be based both on human activity and the life cycles of vegetation [13].
In the geographic zones where winter exists, photosynthesis slows during the winter
months, causing less CO2 to be removed from the atmosphere, followed by a fast
increase in spring and summer, when the vegetation recovers and restarts photosyn-
thesizing. In fall, large portions of the vegetation die and, through the decay process,
emit large amounts of CO2 back into the atmosphere. Humans, in turn, affect CO2

levels by emitting large amounts of greenhouse gases (through maintenance needs like
heating or cooling, transportation, industrial and agricultural activities). These also
fluctuate throughout the year.

For our model, however, we are not primarily interested in studying annual pat-
terns in the the CO2 levels in specific geographic zones, but rather more global
and longer-term effects produced by the coupling between temperature (w(t), in our
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model) and CO2 (A(t), in our model). While a precise quantitative dependence of A
on w has not yet been established, and would require considerable effort to express
accurately, the literature in the field provides strong evidence of specific qualitative
trends. For example, it was noted that the carbon footprint differs by country, which
is likely consequential primarily to climatic factors and resource availability. Recent
climatology studies have suggested accounting for geography and climate in ranking
countries’ CO2 emissions [12, 11]. Cooling in the hot summer months raises signifi-
cantly the consumption of electricity, which is the primary cause of raising CO2, as
does heating during cold winters (some believe that the excessive cold during recent
winters is responsible for some of the 2013/4 raise in CO2 emissions reported by the
US Energy Infomation Administration). The relationship between climate and car-
bon emissions is clearly mediated by the human response and resource availability,
but other factors have been discussed, such as the influences of climate on the Earth’s
biota, which in turn contributes to driving CO2 levels [12].

Incorporating these ideas in our model, we specifically assume the following:
Within an ideal range of temperatures (centered around w0 = 20○C), live organ-
isms require less energy for artificial maintenance, and rather contribute themselves
to maintaining function of the whole system in an optimal range. Plants strive and ef-
ficiently remove atmospheric CO2 through photosynthesis; people use reduced energy
for heating and cooling, altogether increasing A to a reasonable range, by keeping
dA/dt positive. Deviations from the optimal range for w lower the values of A: both
excessively high and very low temperatures will diminish plant function and sub-
sequently CO2 removal, and will increase human carbon footprint, with an overall
negative differential between these two effects that leads to high CO2 levels, hence
switching dA/dt to negative values and decreasing A. These effects exacerbate with
larger ∣w −w0∣, up to the point where life becomes unsustainable. For a start, we will
assume that, past this threshold, plants slowly die out, and eventually human activity
will also extinguish, so that, with no positive or negative contributions to the CO2

levels, dA/dt will return asymptotically to zero.
While the quantitative implementation is speculative, below we give a simplified

possible shape for dA/dt that incorporates these details, with a positive peak at
w0, decreasing to two negative dips, then slowly returning asymptotically to zero.
For now, we consider, for simplicity, that the deviations towards the high and low
temperature range have symmetric effects on A:

dA

dt
= a [1 − g(w −w0)2] e−f(w−w0)

2

(8)

where w0 = 20, a = 200 and f and g are sensitivity parameters which tune the width
and steepness of the graph. Figure 3 shows the graph of dA/dt plotted with respect
to temperature, w, based on different values for the parameters, f and g. We will first
study the behavior of the system with this particular form for temperature effects on
CO2 emissions. Based on these results (illustrated in Figures 4 and 5), as well as on
a more in depth understanding of the physical underpinnings of this dependence, we
then make some necessary adjustments to this analytic equation.

While the shape of the graph remains qualitatively the same, the function is highly
sensitive quantitatively to small perturbations in either parameter. Since these pa-
rameters influence the dependence of carbon emissions on temperature, they encom-
pass the effects of human behavior on this dependence. When interpreting our model,
we view fine tuning of these parameters as corresponding adjustments in the human
response to temperature changes. For a fixed f , changing g affects primarily the
negative critical values; that is, smaller values of g lead to the graph reaching much
shallower negative dips, without changing the position of the relaxation time. We
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Figure 3: Dependence of dA/dt on w. Left. For f = 0.001 and different
values for g. B. For fixed g = 0.003, and different values of f .

interpret a decrease in g as an increase in the rate of change of A around the critical
temperatures corresponding to the negative dips. For a fixed g, changing f affects not
only the negative critical values, but also the positions of the critical points, and the
relaxation time, with imperceptible changes, however, on the graph in the positive
value range. We interpret these changes as different positions for extrema of dA/dt.

Numerical simulations

The first numerical difficulty we had to overcome was inherited from the original
two-dimensional fast-slow system. The huge difference of almost four orders of mag-
nitude between the time constants R and 1/ε is unpleasant for both numerical and
visualization purposes. Hence, before using any integration methods in our analysis,
we performed a change of scale (i.e., a change in units of our time constants). Using
a millennium (103 years ∼ 3.16 × 1010 seconds) as our time unit, the original values
of our time constants R = 4 ⋅ 109, Ω = 1.5 ⋅ 1011, ε = 3.9 ⋅ 10−13 become R = 0.1266,
Ω = 0.474, ε = 0.01264. All simulations are performed with these transformed values,
hence the results will be expressed on a time scale measured in thousands of years.

To simulate the asymptotic behavior of our system, we used Matcont continua-
tion algorithms for finding equilibria, extending equilibrium curves with respect to
the sensitivity parameters f and g and detecting bifurcations of codimension 1 along
these curves. To better understand and cautiously back-up the automated algorithms
provided by Matcont (where an unoptimal choice for the integration step in conjunc-
tion with a sensitive state of the system may sometimes lead to spurious results), we
used phase space trajectories for specific parameter values.

Our simulations detected rich behavior along equilibrium curves, among which
saddle node and subcritical Hopf bifurcations, implying the presence of limit cycles
(see Figures 4 and 5). But at a closer inspection, we found some aspects of the
simulations need additional justification and tuning in order to be representative of
plausible behavior. For example: both our parameters g and f tune the sensitivity
of A to temperature – for a fixed f , increasing g exacerbates the negative effects of
w on A, and so does increasing f when keeping g fixed.

However, unlike one may expect at a first glance, the simulated effects of increasing
the parameters f and g were very different. Increasing g for fixed f pushed the system
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Figure 4: Subcritical Hopf bifurcation with respect to the parame-
ter g. Left. The plot shows the equilibrium curve with respect to g, for fixed
f = 0.001. The Hopf point (which occurs approximately at g = 0.000854 is
marked on the curve by a red star; we also illustrate the evolution of the un-
stable cycle sprouting from the Hopf point, as we allow g and the period to
change. Right. The same equilibrium curve and Hopf point are shown; the
unstable cycle is extended instead with respect to both g and f simultaneoulsy.
The wider coordinate window also includes in this case a limit point occurring
approximately at g = 0.00066 on the equilibrium curve (shown as a green star).
All other system parameters were fixed for this simulation to: B = 1.9, C = 3.04,
αw = 0.32, αs = 0.62, s2 = −0.482, w0 = 20, Tc = −10, R = 0.1266, Ω = 0.474,
ε = 0.01264, a = 20.

through a Hopf bifurcation and changed the stability of the equilibrium from repelling
to attracting spiral coexisting with an unstable cycle (Figure 4). This was surprising,
since one rather expects that, by increasing the sensitivity to CO2, the system would
become less stable. On the other hand, the effect was the opposite when decreasing
f for fixed g, and the equilibrium undergoes a Hopf bifurcation and becomes stable
(Figure 5). These differences may be due to the fact that g affects the dA/dt curve
along the whole effective range of temperatures, and f is more focused at the center
of the domain, hence they may affect differently the dynamics within our phase and
parameter ranges.

Altogether, we realized that our construction needed more clarification, and a
more qualitatively accurate set of sensitivity parameters to describe the dependence
of dA/dt on w. In this next section, we present a refinement of our model.

Introducing water vapor

One major effect which was omitted in our first extension was the difference be-
tween physical and chemical behavior of elements at high and low temperature ex-
tremes. Unlike low temperatures, high surface temperature raise the amounts of
vapors present in the atmosphere, which, aside from CO2, may contribute substan-
tially to the greenhouse effect (hence to the behavior of our A in the model). Although
the subject is still controversial in the climatology literature, some studies claim in
fact that the largest greenhouse effect is in fact that of water vapors in the atmo-
sphere (rather than CO2). To investigate the possible consequences of these ideas,
we decided to introduce the effect of evaporation in the model, and study how this
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Figure 5: Supercritical Hopf bifurcation with respect to the parameter
f . Left. The plot shows the equilibrium curve as f changes in the correspond-
ing interval, for fixed g = 0.001. The Hopf point (which occurs approximately
at f = 0.002 is marked on the curve by a red star; we illustrate the evolution
of the stable cycle sprouting from the Hopf point, as we allow f and the period
to change. Right. The same equilibrium curve and Hopf point are shown;
the stable cycle is extended with respect to both f and g simultaneoulsy. All
other system parameters were fixed for this simulation to: B = 1.9, C = 3.04,
αw = 0.32, αs = 0.62, s2 = −0.482, w0 = 20, Tc = −10, R = 0.1266, Ω = 0.474,
ε = 0.01264, a = 20.

changes the model predictions. We increased the negative effect on A at high temper-
atures, where the water is expected to become vapor and raise up in the atmosphere,
contributing to the greenhouse effect, so that

dA

dt
= [1 − g(w −w0)2] e−f(aw−w0)

2

(9)

where a governs the asymmetry in the graph due to vapor bias at high temperatures:
more water vapor leads to less OLR and the negative rate of change will be larger in
a range of very high temperatures where evaporation occurs. For temperatures even
beyond that range, the graph decays to zero, as before. Figure 6 shows a few examples
of curves dA/dt for a few representative values of f , g and a, illustrating the effect
that each has on the shape of the graph. This shape is not only more appropriate
in the assumptions that it makes, and in incorporating a physical condition relevant
to the model, but it also renders more plausible systemic behavior, as we show next
(see Figure 6 for an illustration of possible dynamic behaviors).

In our simulations, we again observed the effects of changing the sensitivity pa-
rameters f and g, for various values of a chosen so that the evaporation range (and
the corresponding local minimum) remain within plausible bounds. The effects are
now closer to what one would expect from a system of such complexity.

First, aside from stable equilibria, the system exhibits locally stable limit cycles
for certain parameter ranges, and may have other stable invariant sets which we have
not yet investigated. A locally stable cycle is very significant, since it can stabilize
long-term behavior (for initial conditions in a certain attraction basin) to oscillations
between low and high temperatures/iceline states. These could be fast oscillations (if
the cycle has small period), or long oscillations, on the time-scale of ice ages (if the
period is large).
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Figure 6: Graphs of dA/dt (with water vapor included) with respect
to w. On the left we see different values of f with fixed g = 0.001 and a = 0.2.
On the right we see different values of a with fixed f = 0.001 and g = 0.001

In addition, we found very interesting behavior specifically within a range of
parameters compatible with the physical interpretation of our model (see Figure 7).
For a fixed, “critical” value of f ∼ 0.002, the system crosses a critical Hopf bifurcation
when g is varied, so that a locally attracting equilibrium loses stability with formation
of infinitely many non-isolated cycles. In this situation, the system performs the
particular oscillation that is dictated by the initial conditions, so that even small
changes in the initial state can push trajectories along a different oscillatory pattern
(with smaller or larger amplitude and period).

It is believed that complex natural systems invest a lot of effort to achieve function
in a critical range (close to a bifurcation state) where these types of transitions are
facilitated, allowing the system to converge to different outcomes depending on the
initial conditions, and to respond swiftly to environmental changes. Typically, such
perfect (critical) transitions are very fragile, and can be destroyed by parameter per-
turbations. However, in our case, the behavior of the system remains quantitatively
(if not qualitatively) similar to the critical behavior under perturbations of f . This is
due to the fact that, as f changes in an interval around the critical value f = 0.002, the
Hopf point remains close to a codimension two generalized Hopf bifurcation. Hence
perturbations of f maintain the system close enough to the critical state for the be-
havior to be almost indistinguishable from critical, at least over periods of a few cycles
(i.e., hundreds of thousands of years).

Discussion

Our paper shows how small changes in the parameters of our climatic system may
lead to dramatic variations in its long term dynamics. We focused in particular on
parameters that described in our model the impact on the climate of known human
activity (interpreted from the way in which they affected the level of green house
gases produced).

For example, one can interpret the critical transition described in Figure 7 as
a possible prediction of systemic behavior when increasing the sensitivity of human
activity to temperature (by increasing the value of g). Many view our climatic system
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Figure 7: Critical Hopf-fold bifurcation with respect to the parameter
g. A. For a plausible choice of parameter values (see below), the equilibrium
curve with respect to g has a critical Hopf bifurcation (marked as H) at approx-
imately g = 0.0011512, with the birth of infinitely many non-isolated cycles.
The following panels show phase-plane behavior, in a (w,n) projection of the
three-dimensional phase space, for different values of g, on both sides of the
Hopf bifurcation: B. For g = 0.0011511, situated to the left of the Hopf bi-
furcation, there are infinitely many neutral cycles (shown in different colors),
corresponding to different initial conditions. The cycles have large periods (e.g.,
the largest cycle shown in the panel has period 98, measured in thousands of
years, as per our unit conversion). C. For g = 0.0012, at the right of the Hopf
bifurcation, there is a locally stable spiral (shown as a blue star). We show
two different trajectories with initial conditions in the attraction basin. D. For
g = 0.002, further to the right of the Hopf point, the equilibrium becomes an
stable degenerate node (shown as a blue star). We show, in different colors, a
few trajectories converging to this node. For all panels, all other system param-
eters were fixed for this simulation to: B = 1.9, C = 3.04, αw = 0.32, αs = 0.62,
s2 = −0.482, w0 = 20, Tc = −10, R = 0.1266, Ω = 0.474, ε = 0.01264, α = 0.008,
f = 0.002.

as currently operating in a fragile regime where even small state perturbations may
push the system into a different (faster, or wider) oscillatory pattern. However,
oscillations from snow-free to snow-ball Earth are currently expected (and faithfully
rendered by our model) to occur over periods of hundreds of thousands of years.
According to our model, an increase in the human sensitivity g may lead to faster-
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spiraling trajectories. While fast damped oscillations may be dramatic in the short
term, they are not necessarily bad in the long range, since the spiral eventually leads
to a stable equilibrium. However, the position of this equilibrium in the phase space
is predicted to change with increasing g, climbing into a range of higher and higher
surface average temperatures and ice-lines, compatible to the intuitive eventual effects
of global warming: a permanently hot and ice-free Earth.

We may conclude that even subtle changes in our patterns (e.g., exercising moder-
ation – or alternative, non-polluting resources – when using heating/cooling according
to seasonal variations, or in response to major cold or hot waves) may lead to a bet-
ter climatic prognosis. This may be harder in a climate which is already progressing
towards dramatic swings (e.g., of temperature, or precipitation) over short periods
of time, which may induce people to use more gas-producing resources in order to
maintain their current life style. Hence we find it crucial to point out how important
it is to try to stick with more conservative patterns of traditional energy consumption.
Let us notice, based on our predictions of climate evolution along this degradation
path, that factors which would originally help the system regain convergence to less
dramatic oscillations may in fact be precisely the factors leading it along an ultimately
doomed path.

Climate change is an important subject in the field of mathematical modeling.
The Budyko system had been studied a lot over the past few decades, and we believe
that there is much more to be done. It is an over simplified model of Earth’s climate,
but studying it can help us understand the essential behavior of our climate, and how
our patterns affect it.

Altogether, it is extremely important to understand, mathematically and philo-
sophically, how the term of “global warming” (defined as the effects of greenhouse
gases on the Earth’s climate) does not necessarily imply only a steady increase in the
planet’s annual average temperature (concept still unfortunately used by some scien-
tist to deny these effects, see e.g. [2]), but can in fact refer to much more complex
phenomena. Wild cycling between extreme phenomena such as hot and cold periods
(from hotter summer and colder winters, to hotter decades and colder decades, etc)
may lead to seemingly steady average behavior, without describing the essence of the
climatic dynamics.

There is a great amount of work yet to be done on the model, on aspects such as:
(1) further refine the model of dA/dt, fine tune parameters to integrate the behavior
within realistic functional ranges and, if possible, validate it with empirical mea-
surements; (2) interpret more carefully the contribution of each parameter, trying to
segregate the aspects that can be controlled by human behavior from the aspects that
cannot be altered, but only understood.
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