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a b s t r a c t 

Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye 

diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on 

an existing mathematical model of RP that focused on the interaction of the rods and 

cones. We non-dimensionalize the model and examine the stability of the equilibria. We 

then numerically investigate other stable modes that are present in the system for various 

parameter values and relate these modes to the original problem. Our results show that 

stable modes exist for a wider range of parameter values than the stability of the equilib- 

rium solutions alone, suggesting that additional approaches to preventing cone death may 

exist. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Retinitis Pigmentosa (RP) is an inherited disease affecting both the rod photoreceptors and cone photoreceptors in the

retina. Particularly puzzling to researchers is that all manifestations of RP are caused by mutations in the rods, which cause

them to die first, yet cone death always follows [12,13,23–25] . The cones are necessary for daylight vision and acuity while

the rods are responsible for night vision. Thus it is crucial to find a way to stop the demise of the cones. Unfortunately,

patients typically come to the doctor and are diagnosed with RP once their daylight vision is beginning to be lost, which is

often far into the disease progression. While numerous therapies exist that can slow the progression of RP, there is no cure

for it [9,10,12,13,15,23,24,26,28] . 

The photoreceptors (rods and cones) are the most metabolically active cells in the body. Each rod and cone is made up

of outer segment (OS) discs that receive and process the light that falls on the retina. There are about 10 0 0 OS discs present

in each rod and cone cell and each cell undergoes daily periodic shedding of about 10% of these spent discs. To offset these

shed discs, there is a continual renewal of them occurring with the height of the photoreceptor remaining approximately

constant [2,11,14,20,29–31] . Once a rod or cone dies, it cannot regenerate itself [21,22] . However, the shedding and renewal of

the OS discs support the interpretation of birth and death of photoreceptors for the mathematical model in this manuscript

as well as fractions of photoreceptors. 

The process of renewal of the discs involves nutrients, glucose, and other trophic factors, most of which pass through the

retinal pigment epithelium (RPE) as it is supplied to the photoreceptors [4,5,18,19] . We do not distinguish between any of

these and consider them collectively as nutrients. Previous work proposed and detailed this mathematical model, including a
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discussion of the parameter values obtained from data and examining the inverse problem [3,8] . The mathematical analysis

focused on the stability of the equilibrium solutions of the model. These solutions predict how a patient suffering from

RP can go from a state in which all the photoreceptors are alive to one of complete blindness through different pathways

(in parameter space). With numerous different disease progressions experimentally observed in RP patients as well as the

various animal models of the disease, the model predictions of various mathematical pathways to blindness is consistent

with this. 

More specifically, the previous analysis examined stability of equilibrium solutions and saw the progression of the disease

represented mathematically as a series of trancritical bifurcations leading to blindness as certain key parameters changed

[8] . For a given set of parameter values, it appeared that exactly one stable equilibrium solution existed based on numerical

evidence. However, stable limit cycles were observed in certain parameter ranges in this 3- and 4-dimensional phase space.

As it is crucial to prevent the loss of the photoreceptors since their complete death results in blindness, we focus our

effort s in this paper on the presence of stable limit cycles and the co-existence of multiple stable modes. These stable limit

cycles have the physiological interpretation of periodically varying levels of OS discs, which could result from the rhythmic

shedding and renewal of the OS discs if their period is near 24 h or some other type of stable behavior even if the period is

not near 24 h. Thus, even if no stable equilibrium point exists, the presence of a stable limit cycle or other stable attracting

structure could give insight into mechanisms and parameters in which experimental researchers could focus their effort s in

attempting to slow or stop the disease. Current experimental research is focusing on ways to increase the supply of glucose

and nutrient uptake into the cell [1,27] . Our work ties into this as it may suggest other areas of parameter space in which

experimentalists could explore. 

This paper examines dynamic behavior (Hopf bifurcations, fold bifurcations, etc.) in realistic parameter ranges and we

find this same type of behavior in a wider parameter range, although not as realistic. Our extensive numerical investigation

gives confirmation that the same qualitative behavior is observed for both realistic parameter ranges and less-realistic pa-

rameter ranges. However, the narrowness of realistic parameter ranges makes it difficult to visualize all the rich behavior of

the system. Thus for the purpose of visualization we will focus on the larger (less-realistic) parameter range for this article.

2. Mathematical model 

The work of Camacho et al. [6] and Camacho and Wirkus [8] considers a mathematical model of photoreceptor

interactions: 

˙ R n (t) = R n (a n T − μn − m ) , 

˙ R m 

(t) = R m 

(a m 

T − μm 

) + mR n , 

˙ C (t) = C(a c T − μc + d n R n + d m 

R m 

) , 

˙ T (t) = T (� − kT − βn R n − βm 

R m 

− γC) , (1) 

where all variables are functions of t and 

R n = number of outer segments of normal rods, 

R m 

= number of outer segments of “sick” rods, 

C = number of outer segments of cones, 

T = number of RPE cells (trophic pool for R n , R m 

, C ), 

μi = shedding (energy consumption) rates of R n , R m 

, C (units = 1/day), 

m = rate at which rods phenotypically express mutation and rod functionality is compromised (i.e., become “sick”), 

d n , d m 

= direct help of RdCVF (Rod-derived Cone Viability Factor) given to cones by rods (units = 1/(day · rod OS)),

[7,16,17] , 

βn , βm 

, γ = rate of trophic pool usage by photoreceptors (units = 1/(day · OS)), 

a i = renewal (energy uptake) rate of trophic pool into new outer segments (proportional to β i , γ ; units = 1/(day · RPE)),
�
k 

= carrying capacity of trophic pool in absence of photoreceptors (units = RPE). 

The realistic ranges of the various parameters and variables are orders of magnitude apart. For example, the contribution

of RdCVF from the rods is estimated to be d ≈ 1 × 10 −11 , the shedding rates μi ≈ 0.1, and the rod population R (0) ≈ 1 ×
10 8 [8] . Thus, we nondimensionalize the system with the substitutions 

x = 

R n d n 

μc 
, w = 

R m 

d n 

μc 
, y = 

Cγ

�
, z = 

T a n 

μn 
, 

b 1 = 

a c 

μc 

μn 

a n 
, b 2 = 

βn μc 

�d n 
, b 3 = 

k 

�

μn 

a n 
, b 4 = 

a m 

μm 

μn 

a n 
, 

b 5 = 

d m 

d n 
, b 6 = 

βm 

μc 

�d n 
, M = 

m 

�
, τ = 

t 

�
, 

γ1 = 

μn 

�
, γ2 = 

μc 

�
, γ3 = 

μm 

�
(2) 

and obtain the dimensionless equations 

x ′ = γ1 x (z − 1) − Mx, 
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w 

′ = γ3 w (b 4 z − 1) + Mx, 

y ′ = γ2 y (b 1 z − 1 + x + b 5 w ) , 

z ′ = z(1 − b 3 z − b 2 x − b 6 w − y ) , (3)

where the derivatives are now with respect to rescaled time τ . This is the system that we analyze in this current paper.

While it is equivalent to System (1) , the rescaling allows for more stable numerical methods and for the solutions to be

obtained much more quickly than with the original system because the parameters and variables are now near the same

orders of magnitude. The equilibria of System (1) and their stability have been examined in [8] ; however, only transcritical

bifurcations were presented. As we will see in the ensuing discussion, the rescaled system does have stable periodic motions

and we use bifurcation theory to determine their origin. Additionally, for the purposes of interpretation of the physiological

meaning of some of our solutions, we introduce 4 key ratios (each of which is dimensional): 

D T = 

�

k 
, D m 

= 

μm 

a m 

, D c = 

μc 

a c 
, D n = 

μn + m 

a n 
. (4)

The first of these ratios, D T , can be interpreted as the carrying capacity of the nutrient flow into the system in the absence

of photoreceptors. The next two ratios, D m 

and D c , can be interpreted as the ratio of the energy consumption to energy

uptake of the photoreceptors for the sick rods and cones, respectively. The final ratio, D n , is a modification of the energy

consumption to uptake ratio of the healthy rods that includes the exiting from this class of healthy rods. In examining the

existence and stability of the equilibria, we will see that the difference of these ratios will be crucial in interpreting the

solutions. 

Equilibria 

There are seven equilibrium solutions (x, w, y, z) : 

E 1 = (0 , 0 , 0 , 0) ; E 2 = 

(
0 , 0 , 0 , 

1 

b 3 

)
; E 3 = 

(
0 , 

b 4 − b 3 
b 4 b 6 

, 0 , 
1 

b 4 

)
;

E 4 = 

(
0 , 0 , 

b 1 − b 3 
b 1 

, 
1 

b 1 

)
; E 5 = 

(
0 , 

b 4 − b 1 
b 4 b 5 

, 
b 5 (b 4 − b 3 ) − b 6 (b 4 − b 1 ) 

b 4 b 5 
, 

1 

b 4 

)
;

E 6 = (x ∗, w 

∗, y ∗, z ∗) , with 

z ∗ = 

γ1 + M 

γ1 

, y ∗ = 0 , x ∗ = 

γ3 (b 3 z 
∗ − 1)(b 4 z 

∗ − 1) 

b 6 M − γ3 b 2 (b 4 z ∗ − 1) 
, w 

∗ = 

1 − b 3 w 

∗ − b 2 x 
∗

b 6 
;

E 7 = (x ∗, w ∗, y ∗, z ∗) , with 

z ∗ = 

γ1 + M 

γ1 

, w ∗ = 

M(b 1 z ∗ − 1) 

γ3 (b 4 z ∗ − 1) − b 5 M 

, x ∗ = 1 − b 1 z ∗ − b 5 w ∗, y ∗ = 1 − b 3 z ∗ − b 2 x ∗ − b 6 w ∗. 

As the cones are completely responsible for day vision, we are most interested in the solutions E 4 , E 5 , and E 7 in which

the cone population still exists. In the disease RP, the typical progression to blindness in RP is given by E 7 → E 5 → E 4 →
E 2 and numerous paths in parameter space can be found that give this progression [8,24] . 

Stability 

While we are most concerned with equilibria E 4 , E 5 , and E 7 as these equilibria correspond with daylight vision, we will

still consider each equilibrium as their locations and their eigenvalues demonstrate the series of transcritical bifurcations

that correspond to the progression to blindness observed in RP. It will also allow us to see potential coexistence of stable

modes. The Jacobian of the system is 

J = 

⎛ 

⎜ ⎝ 

γ1 (z − 1) − M 0 0 γ1 x 
M γ3 (b 4 z − 1) 0 γ3 b 4 w 

γ2 y γ2 b 5 y γ2 (b 1 z − 1 + x + b 5 w ) γ2 b 1 y 
−b 2 z −b 6 z −z 1 − b 2 x − b 6 w − y − 2 b 3 z 

⎞ 

⎟ ⎠ 

. 

The eigenvalues for E 1 are easily seen to be 1 , −γ2 , −γ3 , −(γ1 + M) . Hence E 1 is always a saddle. Equilibrium E 2 always

exists physiologically and corresponds to complete blindness and is the final stage in RP. The eigenvalues of E 2 are easily

seen to be −1 , 
γ2 (b 1 −b 3 ) 

b 3 
, 

γ3 (b 4 −b 3 ) 
b 3 

, 
γ1 (1 −b 3 ) 

b 3 
− M. In terms of our key physiological ratios, it is stable when D T < min{ D n , D m 

,

D c }. Thus, if the nutrient supply is small enough, all photoreceptors will die. 

The eigenvalues of E 3 are seen to be 

λ1 = γ1 

(
1 

b 4 
− 1 

)
− M, λ2 = γ2 

(
b 1 
b 4 

− 1 + 

b 5 (b 4 − b 3 ) 

b 4 b 6 

)
, λ3 , 4 = 

−b 3 ±
√ 

b 2 
3 

− 4 b 4 γ3 (b 4 − b 3 ) 

2 b 4 
. 
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While there are parameter values for which this solution can be stable and physiologically relevant, this state corresponds to

no cones and occurs in the far-less common reverse RP [12,13,25] . Equilibrium E 4 is the final state in which cones exist and

is physiologically relevant when D T > D c , i.e., when the nutrient supply is sufficiently large compared to the consumption

to uptake ratio of the cones. Its eigenvalues are seen to be 

λ1 = γ1 

(
1 

b 1 
− 1 

)
− M, λ2 = 

γ3 (b 4 − b 1 ) 

b 1 
, λ3 , 4 = 

−b 3 ±
√ 

b 2 
3 

− 4 b 4 γ2 b 1 (b 1 − b 3 ) 

2 b 1 
. 

We can again interpret the stability in terms of our key ratios. E 4 will be stable when D c < min{ D T , D n , D m 

}, which suggests

that the consumption to uptake ratio of the cones needs to be smaller than that of both types of rods together with a

sufficient nutrient supply. Thus there is a region in parameter space for which this solution is stable and physiologically

relevant. This also suggests that the demise of the rods and concurrent survival of the cones can be interpreted as either a

change in D c or a change in both D n , D m 

for a fixed D T to satisfy the inequalities or, alternatively, a change in D T for the

other parameters fixed. 

Another state of crucial interest is E 5 in which some rods and most cones remain. As mentioned earlier, patients typically

do not report problems to the doctor regarding difficulty seeing at night but rather report problems with daylight vision

(once cones have begun to degenerate) [12,13,25] . Thus while it is best to theoretically focus on E 7 , which would represent

a case of early detection, understanding E 5 represents the more realistic scenario. One eigenvalue of E 5 is given by λ1 =
γ1 ( 

1 
b 4 

− 1) − M, and the three others are given by the equation: 

λ3 − Aλ2 + λ

[
γ3 b 6 (b 4 − b 1 ) 

b 4 b 5 
+ 

γ2 b 1 K 

b 2 
4 
b 5 

]
+ 

γ2 γ3 K(b 4 − b 1 ) 

b 2 
4 
b 5 

= 0 , (5) 

where K = b 5 (b 4 − b 3 ) − b 6 (b 4 − b 1 ) , and A = 1 − b 6 (b 4 −b 1 ) 
b 4 b 5 

− K 
b 4 b 5 

− 2 b 3 
b4 

. Explicit solutions for this are complicated, but the

λ = 0 bifurcations are given by 

γ2 γ3 (b 4 (γ1 + M) − γ1 )(b 4 − b 1 )(b 5 (b 4 − b 3 ) − b 6 (b 4 − b 1 )) 

b 5 b 4 
2 

= 0 . 

It is also straightforward to check whether this equilibrium could go through a Hopf bifurcation for any parameter values.

At a Hopf parameter point, two eigenvalues have to be complex numbers, so that the equation above would be of the form 

(λ − a )(λ2 + τ 2 ) = λ3 − aλ2 + τ 2 λ − aτ 2 = 0 . 

Comparing the previous equation with (5) gives a = A and τ 2 = 

γ3 b 6 (b 4 −b 1 ) 
b 4 b 5 

+ 

γ2 b 1 K 

b 2 
4 

b 5 
, thus leading to the following two

conditions: 

γ3 b 6 (b 4 − b 1 ) 

b 4 b 5 
+ 

γ2 b 1 K 

b 2 
4 
b 5 

> 0 and A 

[
γ3 b 6 (b 4 − b 1 ) 

b 4 b 5 
+ 

γ2 b 1 K 

b 2 
4 
b 5 

]
+ 

γ2 γ3 K(b 4 − b 1 ) 

b 2 
4 
b 5 

= 0 . (6) 

These conditions are satisfied in many circumstances. For example, one may fix all parameters except b 1 , and study the

system’s sensitivity to changes in b 1 . Since K depends linearly on b 1 , there could be as many as two Hopf points along the

curve E 5 ( b 1 ). 

For the equilibria E 6 , one eigenvalue is λ3 = 

y ∗γ2 (γ3 (b 4 (γ1 + M) −γ1 ) −b 5 Mγ1 ) 
b 2 γ3 (b 4 (γ1 + M) −γ1 ) −b 6 Mγ1 

. The λ = 0 bifurcations are given by 

(γ1 + M)(b 4 (γ1 + M) − γ1 )(b 3 (γ1 + M) − γ1 ) γ3 

γ 2 
1 

= 0 . 

As with E 3 , we do not focus on E 6 since it is a state in which cones have already degenerated. 

For the equilibria E 7 , the stability is more difficult to establish analytically as the eigenvalues are given by a complicated

fourth order polynomial. The λ = 0 bifurcations are given by 

y ∗γ2 γ3 (γ1 + M)(b 4 (γ1 + M) − γ1 )(b 1 (γ1 + M) − γ1 ) 

γ 2 
1 

= 0 . 

It is easy to illustrate, however, that E 7 is likely to undergo interesting bifurcations when one or two parameters are varied.

3. Numerical results 

Previous work has suggested that no more than one equilibrium point is stable for a given set of parameter values and

that changing the parameters can lead to a sequence of transcritical bifurcations that corresponds to the progression of

the disease [8] . However, we have observed stable limit cycles in the model in both 3- and 4-dimensional phase space and

want to examine the possible co-existence of various stable modes. These stable modes have the physiological interpretation

of periodically varying levels of OS discs, which could result from the rhythmic shedding and renewal of the OS discs. As

mentioned earlier, as of yet there is no therapy that can stop the progression of RP [12,13,16,23–25] . Thus gaining a better

understanding of the stable solutions that exist for various parameters can suggest to researchers what parameter ranges

may be targeted or desired. We will focus on the equilibria E 5 and E 7 in which both cones and some rods still exist and

explore other stable modes with MatCont. 
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3.1. Large parameters 

We will investigate numerically the local behavior of the system in a parameter range based at b 2 = 

5 
4 , b 3 = 

2 
21 , b 4 = 

513 
560 ,

b 5 = 

55 
2 , b 6 = 

5 
4 , M = 

1 
150 , γ1 = 

4 
15 , γ2 = 

1 
60 , γ3 = 

4 
15 , where for certain b 1 -values a stable limit cycle has been observed. If b 1

is allowed to change, one can compute the Hopf points along the curve E 5 ( b 1 ) to be at b 1 ∼ −12 . 9566 and at b 1 = 0 . 5817 . We

want to illustrate the behavior at the Hopf bifurcation points, and observe the evolution and stability-changing bifurcations

of the limit cycles that resulted at the Hopf point. To do this, we used the MatCont package, as follows. 

Start, for example, at b 1 = 0 . 8 , where it can be checked that equilibrium E 5 = (0 , 0 . 0046 , 0 . 8903 , 1 . 0916) is stable. Then

the equilibrium curve for E 5 , tracked as b 1 changes, runs into Branch Points at b 1 = 0 . 91 and b 1 = −17 . 14 , Neutral Saddles

at b 1 = 1 . 12 and b 1 = −19 . 95 , and into two supercritical Hopf points, as expected, at b 1 ∼ 0.58 and b 1 = −12 . 95 . 

For each Hopf point, we extend the cycle with respect to b 1 (and the Period), while monitoring singularities. The evo-

lution of the cycles is illustrated in a (w, y ) slice of the phase space in Fig. 1 (using integration parameters: ntst = 50,

ncol = 4, InitStepsize = 1, MinStepsize = 0.1, MaxStepsize = 5 Adapt = 3). Bifurcation diagrams for the two Hopf points are

shown in Fig. 2 (using integration parameters: ntst = 50, ncol = 4, InitStepsize = 0.5, MinStepsize = 0.1, MaxStepsize = 1,

Adapt = 30). Further local bifurcations of the cycles are illustrated in Figs. 1 and 2 . For example, the cycle sprouting out of

the positive Hopf point undergoes two fold bifurcations, one at b 1 ∼ 0.4161 and one at b 1 ∼ 0.4282, so that in the small

window between these two values, the system has multistability: an unstable equilibrium and three cycles (two of which

are stable). 

We can further track down the Hopf point when changing another parameter simultaneously with b 1 (e.g., b 3 , for Fig. 3 ).

On one side of the Hopf curve from Fig. 3 we have an attracting equilibrium (i.e., for the initial conditions in its basin of

attraction, solutions converge asymptotically to an attracting point); on the other side of the curve, the convergence is to a

stable limit cycle (i.e., the system starting with the same initial conditions will go into sustained oscillations). The parameter

values at each of these bifurcations give E 7 as stable and E 5 as unstable with both physiologically relevant. Thus, the stable

limit cycle represents a potential stable mode that could be present in an early stage of RP. 

We now illustrate a series of phenomena for the equilibrium E 7 . At the same initial parameters as at the start of this

section, E 7 is stable and can be calculated: E 7 = (0 . 0147 , 0 . 006 , 0 . 8765 , 1 . 025) . Integrating backwards with respect to b 4 ,

one finds a supercritical Hopf bifurcation at b 4 ∼ 1.04418. Extending the stable cycle, we run into other local bifurcations

(Neutral Saddle, Period Doubling and Limit Point Cycles (as shown in Fig. 4 )). Equating mathematically stable modes with

physiologically relevant possibilities of photoreceptor life suggests that identifying RP early in a patient may be crucial to

helping prolong the life of the photoreceptor since the stable modes were born from E 7 . 

3.2. Small parameters 

Still within reasonable parameter ranges, we now investigate numerically the local behavior of the system with parame-

ters b 1 = 1 . 5 , b 2 = 5 . 8 , b 3 = 0 . 79 , b 4 = 0 . 8 , b 5 = 1 , b 6 = 5 . 8 , γ1 = 0 . 071 , γ2 = 0 . 075 , γ3 = 0 . 071 , M = 2 . 4 · 10 −7 . For this set

of parameters, we can calculate the equilibrium E 5 = (0 , −0 . 875 , 5 . 0875 , 1 . 25) . 

We initiate the equilibrium at this point, and compute backward for the parameter b 3 , with the default setup. The al-

gorithm will run into a supercritical Hopf point at b 3 ∼ −0 . 04554 (with very small, but still negative Lyapunov coefficient).

We extend the stable cycle (locally) from the Hopf point, with amplitude = 0.1, ntst = 60, ncol = 4, InitStepsize = 0.1, Min-

Stepsize = 0.1, and MaxStepsize = 5 (or smaller, for a more opaque diagram). This evolution is shown in the phase space ( y ,

z ) in Fig. 5 (a), and as a bifurcation diagram with respect to the parameter b 3 in Fig. 5 (b). 

We return to the original equilibrium, and compute backward for the parameter b 6 , with the default setup. The algorithm

will run into a Hopf point at b 6 ∼ −0 . 0275 . We extend the cycle from the Hopf point, with amplitude = 0.01, ntst = 60, ncol

= 4, InitStepsize = 0.1, MinStepsize = 0.1, and MaxStepsize = 5. This runs into a limit point cycle around b 6 ∼ −0 . 0282 . The

cycle evolution is shown in the phase space (z, w ) in Fig. 6 (a), and as a bifurcation diagram in Fig. 6 (b). 

The evolution of the Hopf bifurcation as both parameters b 3 and b 6 change simultaneously is shown in Fig. 7 (a) and

(b). We illustrate this as a Hopf curve, on which we mark the codomension 2 bifurcations: the Bogdanov–Takens point (BT,

purple) occurs at ( b 3 , b 6 ) ∼ (0.8, 0); the Neutral Saddle (HH) point (HH, orange) (b 3 , b 6 ) ∼ (0 . 014 , −1 . 362) ; the Zero Hopf

point (ZH, brown) occurs at (b 3 , b 6 ) ∼ (0 , −1 . 142) ; the Generalized Hopf (GH, red) occurs at (b 3 , b 6 ) ∼ (−0 . 029 , 0 . 322) . The

figure also presents the bifurcation diagram showing the z -coordinate of the Hopf point with respect to b 3 and the same

Hopf curve represented in the ( b 3 , b 6 ) parameter plane. 

This is a range more compatible with the parameter ranges estimated empirically. Quite interestingly, the windows of

bistability created by the fold bifurcations (in which a stable equilibrium coexists with a stable cycle) are extremely small,

so that bistable behavior requires very fine tuning of the parameters. 

4. Discussion 

We have found numerous stable solutions that co-exist with the equilibria E 5 and E 7 in the progression of RP, some of

which are physiologically relevant (nonnegative variable-values). These stable solutions have the physiological interpretation

of periodically varying levels of OS discs, which could result from the rhythmic shedding and renewal of the OS discs. In

particular, the presence of a stable limit cycle from E when E is still stable represents a highly desirable stable mode in
5 7 
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Fig. 1. Hopf points (H) and cycles in the phase plane, for the E 5 equilibrium curve with respect to the parameter b 1 . The projection of the equilibrium 

curve E 5 ( b 1 ) is shown in the (w, y ) phase space slice (top left panel; superimposed in bottom panel). The two Hopf points are shown as red stars, the two 

branch points (BP) are shown as green stars, and the two neutral saddles are shown as yellow stars. The evolution of the stable cycles created through the 

Hopf bifurcations is illustrated in the (w, y ) plane (top right panel; superimposed in bottom panel). The stable cycle created at the b 1 ∼ 0.58 undergoes 

two further fold (stability changing) bifurcations (Limit Point Cycle (LPC), red) at b 1 ∼ 0.4161 and b 1 ∼ 0.4282, and the stable cycle created at the Hopf 

point b 1 ∼ −12 . 95 undergoes a Neutral Saddle bifurcation (NS, purple) at b 1 ∼ −12 . 5160 and a Period Doubling bifurcation (PD, green) at b 1 ∼ −9 . 9223 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

the early stage of the disease RP. Comparing with realistic parameter values [8] , we observe that all known values are close

to their reasonable ranges of a healthy patient or one in a patient in the early or mid-stages of the disease. 

As described earlier, in RP it is the rods that die first followed inevitably by the cones. While the mutation is present only

in the rods, current experimental research has yet to identify precisely why the cones also die. Some experiments suggest

that keeping the supply of glucose and nutrients at high enough levels may help prevent or delay cone death [1,27] . Our

results confirm this as the quantity D T is seen to play a role in the death of each type of photoreceptor. However, keeping

the cones alive could also be a matter of making their uptake of nutrients more efficient and this would involve changes in

D c or b 1 in the rescaled model. For example, the plots in Fig. 2 (b) suggest that experimentalists could also focus on changes

in either the uptake or consumption within the cones in order to identify ways to prolong their life. 
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Fig. 2. The Hopf bifurcation (H) on E 5 ( b 1 ), near b 1 = 0 . 58 . We represent, in the y cross-section, how the cycle from b 1 ∼ 0.58 evolves with respect to the 

changing parameter b 1 . The red star represents the subcritical Hopf bifurcation, the red vertical segments are the projections of the cycle (LPC) at the two 

fold points (at b 1 = 0 . 4158 and b 1 ∼ 0.426). In the interval of b 1 values between these two folds, three cycles coexist with the equilibrium. Neutral saddle 

bifurcations (NS) and Period doubling bifurcations (PD) also occur. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 3. Hopf curve when changing both b 1 and b 3 : (a) in the (w, y ) phase space slice; (b) in the ( b 1 , b 3 ) parameter slice. The stars represent codimension 

2 bifurcations: generalized Hopf (GH, red), Zero Hopf (ZH, green) and Neutral Saddles (HH, yellow) (compare with Eq. (6) ). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Local bifurcations with respect to b 4 obtained by extending the cycle obtained through the supercritical Hopf bifurcation at b 4 ∼ 1.0441 along the 

equilibrium E 7 . From the Hopf point outwards: Neutral Saddle (NS, purple) at b 4 ∼ 0.0609; successive Period Doublings (PD, green) at b 4 ∼ 1.0831 and 

b 4 ∼ 1.1223; successive folds, or Limit Point Cycles (LPC, red) at b 4 ∼ 1.12912 and b 4 ∼ 1.12913. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 5. Stable cycle extended out of the Hopf bifurcation at b 3 = −0 . 0455436 , when b 3 changes. (a) Cycle evolution in a ( y , z ) slice of the phase space. 

(b) Cycle evolution shown as a z -coordinate versus b 3 bifurcation diagram. The cycle continuation runs into a Limit Point Cycle (or fold) bifurcation (LPC, 

red curve) at b 3 = −0 . 04554 96 88 , with the change of the cycle’s stability. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 6. Unstable cycle extended out of the Hopf bifurcation at b 6 = −0 . 027528815 , when b 6 changes. (a) Cycle evolution in a ( y , z ) slice of the phase space. 

(b) Cycle evolution shown as a bifurcation diagram of the (z, w ) phase space slice versus b 6 . The cycle continuation runs into a Limit Point Cycle bifurcation 

at b 6 = −0 . 0282 , with the change in the cycle’s stability (LPC, shown in both cases as a red curve). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Our numerical results also identified the existence of alternate stable solutions to E i that are present for lower nutrient

levels corresponding to the patient being closer to blindness. This further suggests the need to focus on additional parameter

ranges to sustain the life of the cones. Additional experiments in which the photoreceptor levels are carefully measured

could suggest additional parameter ranges in which the life of the photoreceptors may be prolonged. While we were not

able to do so, further work could also examine whether a region of parameter space could be found in which E 2 was the

only stable equilibrium point yet a stable limit cycle also existed. This would be of utmost physiological importance as it

would suggest that identifying RP in its early stages could avoid permanent blindness. Retinal implants, currently under

development and in which photoreceptors are transplanted into an RP retina, could also give initial conditions that would

sustain one or more types of photoreceptors even after blindness had occurred. 

Our previous work showed the importance of nutrients in preventing the disease from progressing [8] . The smaller b 3 -

value corresponds to nutrient levels observed at a more advanced stage of the disease; see Figs. 5 and 7 . The parameter b 5 
being larger would correspond to an elevated RdCVF contribution from the mutated rods compared with the normal ones;

see Fig. 6 . No experiments have yet been done to distinguish the levels of RdCVF produced by the two rods, except to say

that both produce it. Having a more accurate set of parameter values for these two quantities could help identify desirable

parameter ranges that may be achieved. 
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Fig. 7. Hopf curve for changing b 3 and b 6 , with codimension two bifurcations marked with colored stars: the Bogdanov–Takens point (BT, purple) occurs at 

( b 3 , b 6 ) ∼ (0.8, 0); the Neutral Saddle (HH) point (HH, yellow) (b 3 , b 6 ) ∼ (0 . 014 , −1 . 362) ; the Zero Hopf point (ZH, green) occurs at (b 3 , b 6 ) ∼ (0 , −1 . 142) ; 

the Generalized Hopf (GH, red) occurs at (b 3 , b 6 ) ∼ (−0 . 029 , 0 . 322) . (a) Bifurcation diagram showing the z -coordinate of the Hopf point with respect to 

b 3 . (b) The same Hopf curve represented in the ( b 3 , b 6 ) parameter plane. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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