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ABSTRACT
Much effort has been directed towards using mathematical models to understand and predict contagious disease, in
particular Ebola outbreaks. Classical SIR (susceptible-infected-recovered) compartmental models capture well the
dynamics of the outbreak in certain communities, and accurately describe the differences between them based on
a variety of parameters. However, repeated resurgence of Ebola contagions suggests that there are components of
the global disease dynamics that we don’t yet fully understand and can’t effectively control.

In order to understand the dynamics of a more widespread contagion, we placed SIR models within the frame-
work of dynamic networks, with the communities at risk of contracting the virus acting as nonlinear systems,
coupled based on a connectivity graph. We study how the effects of the disease (measured as the outbreak impact
and duration) change with respect to local parameters, but also with changes in both short-range and long-range
connectivity patterns in the graph. We discuss the implications of optimizing both these measures in increasingly
realistic models of coupled communities.
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INTRODUCTION
Background to Ebola and modeling

The evolution, prognosis and spreading of contagious diseases has been studied for a long time, with a variety of
approaches.5,3,23 While huge progress has been made in efficiently applying containment methods22,38 and treat-
ment50 in most cases, Ebola remains the 21st century’s taunting example of a disease which mankind does not seem
prepared to handle, even at small scales.12,18

While the course of the illness is quite drastic and fatality rates have ranged in past outbreaks from 45-90%46 (even
with prompt clinical intervention), it has been argued that Ebola, with a relatively small reproduction number
1 ≤ R0 ≤ 7 (varying among reports of different outbreaks),12,32 poses a lesser contagion threat than faster spreading
diseases such as small pox (R0 > 7). However, the explosive Ebola contagions that resurge periodically, and in
particular the recent simultaneous developments in a few countries around the world31 – seem to suggest that there
are components of the disease dynamics that we don’t yet fully grasp,16 as well as social,41 cultural and economic24

key parameters that we cannot yet fully control.

Much effort has been recently directed towards understanding and predicting Ebola outbreaks with the help of
mathematical modeling.32,42,34,Siettos et al. A large volume of the existing modeling work addresses disease dynam-
ics via low dimensional compartmental models,45,25,44 deterministic or stochastic.33 These models describe well
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outbreak dynamics in specific communities, and often explain the differences between outbreaks that occurred
under different parameter regimes (e.g., geographical location, promptitude of clinical measures, timely removal
of infected individuals from the community4,12,44 ). The most traditional and well-known modeling approaches to
disease spread remain the SIR-type models, which describe the progress of the contagion in a single community
through transfers between three main compartments: the susceptible (S), infected (I) and recovered (R) individuals.
Variations of the SIR model have been vastly explored, in conjunction with parameters estimated empirically, and
in increasingly complex contexts, including factors like hospitalization, treatment plans, quarantine. However,
these analyses – based on localized factors and data from remote rural areas – may all be irrelevant in the context
of utmost concern, that of a global outbreak,20,9 affecting urban areas as well as small communities, acting at mul-
tiple simultaneous foci. In order to understand the dynamics of a global contagion, predict its potential effects and
most efficiently alter its course – one rather needs to place the problem in the mathematical framework of complex
systems.37,36

The huge oriented graph that represents physical connectivity between individuals is highly modular, has hubs,
multiple-scale communities (e.g., from families to towns to states), and is constantly changing due to a variety of
factors (e.g. personal, economic, commuting patterns, long distance travel). To capture the global dynamics of
epidemics in such a system, one must consider simultaneously the state of each node as well as its interconnections
with other nodes.17 An accurate approach should bridge looking at single node dynamics to studying the effects of
connectivity patterns on the systemic behavior6 and on the outbreak aftermath (asymptotic behavior). Altering
dynamics in an optimal way requires knowledge of architecture,7 of the location and density of hubs and of rich
clubs,52 of the robust versus vulnerable network points10 (where local edge changes produce large effects).

Networked dynamic systems53 have been used in a variety of fields with a focus on understanding the behavior of
an ensemble of coupled dynamic nodes, be they cells, web servers, people, or nodes in an electric grid. However, in
recent years, there has been an emerging interest in network modeling of epidemics,17,6,26,40 trying to quantify and
better understand the effect of dynamic human interactions on the spread of disease between, as much as within
communities, and looking to identify the factors (both deterministic and stochastic28 ) most determinant of the
long term outcome.

It was noted, when studying the effects of contact heterogeneity on the dynamics of communicable disease,49 that
small differences in the contact networks (e.g., taking into account restructuring at a time resolution of minutes),
are typically not essential when attempting to describe disease spread on a longer timescale (of several weeks, or
months). On the other hand, the same studies49,48 emphasize the importance of including detailed information
about the heterogeneity of contact duration, the rate of new contacts being identified, etc. Relatively new work,
including our own, is using a combination of dynamical systems and graph theoretical methods to understand how
relatively small, local perturbations in connectivity patterns may produce, if targeted at the right vulnerability
points, very large effects on the state of the entire network. The avenue of modeling mathematically the dynamic
epidemic interactions in an infected network has been pursued in a variety of contexts, including overlay35 and
adaptable networks.21 Along these lines, we have developed methods and measures of how likely the system is to
undergo a sharp transition when perturbing local connectivity.43

The emergence of a contagion (of Ebola, or of any other viral or bacterial infection) can be then viewed as the
propagation of a perturbation in a complex network of coupled nodes.29 One can then study how adapting the
structure of the network may contribute to minimizing the global effects of the contagion. Experience has shown
that, along with other important factors, timely placement of temporary travel restrictions or quarantines may be
critical in isolating and extinguishing the contagion before it reaches catastrophic levels.19 One can then search for
the locations where a small change in connectivity is likely to produce the largest overall effects.15 This goes along
the lines of other new approaches in the field, which introduce the network structure as a system parameter,13,27
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and search for optimal quarantine measures to efficiently isolate the epidemic.

In this paper, we consider, in conjunction with our model, two measures of outbreak effects on population: the
impact, defined as the total fraction of individuals affected by the outbreak (eventually either recovered or dead),
and the outbreak duration, defined as the time from the start of the outbreak (presence of the first Ebola case), until
the outbreak extinguishes (less than one infected case in each community). Starting with a basic SIR model in a sin-
gle, relatively small (1000 individuals) community, we construct incrementally a plausible model for Ebola spread
within a network of such communities. We focus in particular on studying how our two measures of outbreak
dynamics depend on the density of potential connections between these communities and on the stochastic likeli-
hood of people to travel along these connections. The network architecture is allowed to change along the process,
controlled by factors related to the current state of the outbreak, accounting for travel interdictions and quarantines
typically introduced in such circumstances. Our model aims to inform on the most efficient quarantining strategies
and optimal timing that would minimize life loss as well as outbreak duration.

MODELING METHODS AND RESULTS
Basic model

We build upon a basic compartmental model of Ebola due to Astacio et al.,4 which was originally assembled as a
classical three-variable SIR (Susceptible-Infectious-Recovery) model. In the later iterations of the model construc-
tion, the authors introduced incubation in the model, by means of a new (fourth) variable E, representing the
“latent” (exposed) population (during the virus incubation, before development of symptoms).

dS

dt
= −βS(I + qE)/N

dE

dt
= βS(I + qE)/N − δI

dI

dt
= δI − γI

dR

dt
= γI Equation 1.

where S(t) is the susceptible population at time t (i.e., everyone who had not yet contracted the disease); E(t)

is the latent population (individuals who have contracted the virus, but are still asymptomatic); I(t) represents
the infected population (showing the signs and symptoms of Ebola); R(t) is the number of dead or recovered
individuals (i.e., in an oversimplified view, individuals who can no longer infect others with the Ebola virus). The
infection rate (i.e., the rate dE/dt = −dS/dt = βS(I + qE)/N at which people become infected) is proportional
with the product of the number of susceptible individuals and the number of individuals carrying the virus (both
latent and infected, with the latent individuals having a lesser impact, represented by the smaller weight q < 1).
The proportionality constant β is the product of the per capita contact rate and the probability of infection after
contact with an infected individual. The infection rate was normalized by the factor N(t), representing the total
population at time t: N(t) = S(t) +E(t) + I(t) +R(t). The rate of transfer from the latent to the infectious stage
is a fraction δ of the number of latent individuals – where 1/δ is the average time for a latent individual to become
infectious. The rate of death/recovery is a fraction γ of the infectious population, where 1/γ is the average time it
takes a person to die or recover once in the infectious stage.

The parameters were based on the disease dynamics described in a relatively well localized 1976 contagion in
Yambuku, Zaire. The ranges of values, as per our reference, are listed in Table 1. In our study, we worked primarily
with these values; changes and extensions, based on information on post-mortem and post-recovery potential for
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contagion, are explored in the Discussion. In this study, however, we work under the same simplifying assumption
as the one made by Astacio et al.:4 that neither deceased nor recovered individuals can contribute any further to
the perpetuation of the disease cycle, hence are represented by a common variable, whose asymptotic value R(t),
whose asymptotic value as t approaches ∞ can be viewed as measuring the impact of the outbreak (total fraction
of people affected).

Parameter Range Value Units

1/γ 4-10 7 days

1/δ 2-21 12 days

q – 0.25 –

β – 0.567 –

Table 1. Parameter values for the Yumbuku outbreak, as per the Astacio et al. reference. 4

Simple network model

We first studied contagion propagation in a small, unstructured network of interconnected communities. Although
this preliminary model makes a few coarse and rather unrealistic simplifying assumptions, this first stage helps un-
derstand some very basic problems and questions to address.

Figure 1. Model network, for n = 4 communities, (as used in some of our later simulations). A. Illustration of the network,
showing each population as a compartmental node, with its 4 coupled SEIR variables, and showing transfer between populations as
oriented arrows from the original population to the target population. B. Schematic representation of the same network, in which
each population is viewed as a node, and the connections between populations are viewed as oriented edges. C. Adjacency matrix C
corresponding to the connectivity graph described in (B).

We considered a graph in which the n nodes represent the interconnected communities, and the oriented edges
connecting node pairs represent one-way communication between the two respective nodes. Each node/population
Pk, 1 ≤ k ≤ n, represents a standard SEIR unit (as described in the previous section), characterized by a 4-
dimensional variable (Sk, Ek, Ik, Rk). The communication between nodes was set up, for consistency, also in a
compartmental fashion, so that a fraction of individuals travels through each existing outgoing edge from a specific
node to the corresponding adjacent nodes. For simplicity, each node was assumed to have originally N0 = 1000

individuals. The total number of individuals N(t) =
∑

[Sk(t)+Ek(t)+ Ik(t)+Rk(t)] is constant throughout the
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outbreak (that is, external effects such as travel in and out of the network, birth rate and death rate due to factors
independent of the disease were ignored). The corresponding coupled dynamics can then be extended from the
system Equation 1. to the following system:

dSk

dt
= −βSk(Ik + qEk)/N0 + qc[CS]k − qc

∑

j

Cj,kSk

dEk

dt
= βSk(Ik + qEk)/N0 + qc[CE]k − qc

∑

j

Cj,kEk − δEk

dIk
dt

= δEk − γIk

dRk

dt
= γIk Equation 2.

where [CS]k and [CE]k represent the kth component of the vectors CS and CE, respectively. The 4n dimensional
system Equation 2. reflects the inner SEIR dynamics of each particular node Pk = (Sk, Ek, Ik, Rk), for 1 ≤ k ≤ n,
but also captures, in a compartmental way, the population flow between the nodes. The adjacency matrix C is
defined so that Cj,k = 1 if there is directed travel (an oriented edge) from the node Pk into the node Pj . It is zero
diagonal (the graph has no self loops, since travel within one’s own community is not relevant).

The number of healthy and, respectively, latent individuals leaving node Pk at time t, headed towards each of the
adjacent nodes Pj is qcCj,kSk and, respectively, qcCj,kEk. If there is an edge between nodes Pk and Pj , these
numbers are proportional with the existing healthy and, respectively, latent population in node Pk. For simplicity,
the proportion of travelers qc between adjacent nodes was taken to be the same for all connected node pairs (and
was fixed to qc = 2.5% in our simulations of this system). The rate out of Sk due to travel to all efferent nodes is
therefore qc

∑

j

Cj,kSk, and the rate out of Ek due to travel is qc
∑

j

Cj,kEk.

Subsequently, each node will receive an incoming flow of travelers from the nodes connected to it. More specifically,
the rate due to travel of healthy people from every node Pj into node Pk is qcCkjSj , so that the total rate into
Sk due to travel from other nodes is qc

∑

j

Ck,jSj = qc[CS]k. Similarly, the total rate into Ek due to travel from

other nodes is qc
∑

j

Ck,jEj = qc[CE]k. We based this scheme on the assumption that latent individuals are able

to travel out of their own community: being asymptomatic, they have not yet been diagnosed, although they pose
a risk in spreading the disease, by adding themselves to the existing latent population at a different node.

Infected individuals cannot travel in our model. In addition, circulation of recovered individuals was ignored, since
it would have no effect on the disease dynamics (under the assumption that they can no longer contract or spread
the disease, they would only permute between the Rk compartments of different nodes).

The model was conceived having in mind typical rural structures, where people travel along established routes
between specific locations (for daily or other periodic needs), with the return not necessarily occurring immediately
or along the same path (hence the oriented edges). The graph adjacency matrix C delivers a complete description
of the communication patterns within the network, and induces instantaneous spread of contagion. Throughout
our analysis, we kept all parameters fixed and we focused primarily on how the connection density and patterns
affect viral diffusion through the network.

As a start, we studied the effect of edge density on the disease dynamics, in particular on the outbreak impact and
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Figure 2. Simulation of interactive dynamics in a network with n = 10 communities, in which the contagion was triggered by
only one latent individual in P1. A. The time evolution of all SEIR variables, obtained by numerically solving system Equation 2.,
is illustrated simultaneously for all n = 10 nodes, with the Sk shown in pink, the Ek shown in yellow, the Ik shown in red and the
Rk shown in black. B. The average populations S(t) = 1

n

∑n
k=1 S(t), E(t), I(t), R(t) are shown, with the same color coding.

duration. For our network model, we define the impact as:

R∞ = lim
t→∞R(t), where R(t) is the recovered average per community: R(t) =

1

n

n∑

k=1

Rk(t)

For this first model, we assume a constant connectivity matrix throughout the process, and we investigate the cases
of a single focal point (triggered by two infections), and of two focal points (with one infection each). Fixing the
network size, we ran numerical simulations for different connectivity patterns, with the primary aim of investigat-
ing the effect of the connectivity density on the outbreak coupled dynamics. For small network sizes (n ≤ 4), we
considered all possible matrix configurations for each fixed edge density 0 ≤ Δ ≤ n(n− 1), and we computed the
mean impact over all such configurations (see Figures 3). For larger n’s, we computed a sample-based mean, over a
subset of 50 configurations for each edge densityΔ (Figure 4a and b). This sample approach was preferred for larger
networks, since the number of configurations increases extremely fast with n, making a numerical inspection of all
configurations for each fixed density very expensive and impractical. In both cases, we plotted the outbreak impact
and duration as functions of the edge density Δ, showing both mean value and error bars (over the distribution of
adjacency configurations).

Our computations suggest that, for both one and two foci, the outbreak impact increases with the density of
connections. This is because the outbreak impact depends, as one might expect, on the average number of nodes
connected to the foci, which in turn depends on the graph’s edge density (as shown in Figure 4c). For both one
and two foci, the duration has a unimodal shape (with a peak in the intermediate connectivity range). This is not a
surprise either, and can be explained by the fact that for very low connectivity the contagion is quickly contained,
with minimal casualties, and for very high connectivity – it produces a fast diffusion, with a high number of
casualties. It is for intermediate connectivity patterns that the dynamics takes longer to develop.

Clearly, one desires to reduce duration, as well as impact (since longer infection times can be as well detrimental for
the community). The two measures don’t assume their minima in the same conditions. Given that most parame-
ters of the system (such as R0 value, number of individuals, connectivity graph) are hard-wired into the network,
one may consider imposing conditions on travel along the existing edges (quarantines), in an attempt to optimize a
function of both impact and duration, and assess possible regulations that would render the outcome least destruc-
tive. For example, some studies have documented the dramatic impact of long outbreaks on economy.9,1 However,
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Figure 3. Dependence of the impact R∞ and of the outbreak duration L on edge density Δ. For a network of n = 4

populations each originally with N0 = 1000 individuals, we illustrate R∞ and L as the edge density is varied for Δ = 0 edges
to Δ = 12 edges. For each density value, the average impact and duration were computed over all possible CΔ

n(n−1) adjacency
configurations with the respective density. We considered the case of one focal point consisting of two latent cases, both in the same node
(green curve), and the case of two focal points, each consisting of one latent case, starting simultaneously at two distinct nodes (blue
curve).

Figure 4. Dependence of the impact R∞ and of the outbreak duration L on edge density Δ. For a network of n = 10

populations each originally with N0 = 1000 individuals, we illustrate R∞ (in panel A) and L (in panel B) as the edge density is
varied. Panel C, shows the average number of nodes connected (via oriented graph paths)to the initially infection focus or foci as a
function of edge density. For each density value, the average impact, duration and size of the infected connected components were
computed over a sample of 50 adjacency matrices chosen at random, with the respective density. We considered the case of one focal
point consisting of two latent cases, both in the same node (green curve), and the case of two focal points, each consisting of one latent
case, starting simultaneously at two distinct nodes (blue curve).

although lifting quarantines and increasing travel may shorten duration (as suggested by our model), this is not a
feasible policy, since it would lead to an unacceptable increase in casualties. Some of these aspects will be further
discussed in the next section.

It is also worth noticing that the impact has a slower pick-up in the case of one original focus, while the duration
is comparable for one or multiple foci in the low connectivity range, then significantly longer for one focus in the
intermediate connectivity range. In other words: for intermediate internode communication, the impact is milder
if the original infection starts in one single focus, but this scenario loses its advantage in the context of duration.

More precisely: in this preliminary model, R∞ is relatively low in average only for values of the edge density up
to ∼ 20% (as illustrated for n = 4 in Figure 3 and for n = 10 in Figure 4). After crossing a window of very high
sensitivity (in our figures, density 15−20%), R∞ increases to its asymptotic value N0 = 1000 (the total number of
individuals per node). This predicts a devastating effect, describing an outbreak that would affect virtually everyone
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within the linked communities, even at relatively low communication levels.

Of course, however feared and somber the perspective of a global pandemic, this is not the prediction we expect
in reality, based on our existing experience with Ebola outbreaks; hence the model should be revised to reflect
more realistic trends. One major flaw of this preliminary model is the assumption of instantaneous and continuous
disease spread whenever communication means exist between two nodes. This is clearly not a realistic condition,
greatly overestimating the contagion spread, which further reflects in the unrealistically large values of R∞. Below,
we update the model to refine this condition.

Existence of an oriented edge from k to j should only signify that direct communication is possible between the two
nodes (e.g., there is a road connecting two villages), but not necessarily that this connection is used continuously,
or maintained at the same level at all times. We introduce a simple way of accounting for this variability, while
keeping the model compartmental (i.e., counting overall transfer rates, rather than keeping track of dynamics of
individuals). At each time step t, each existing connection from some k to some j is used with a fixed probability
rkj . For each node, the probability of inward or outward travel can be tuned according to the local or global
situation of the network. For example, the flow can be temporarily diminished or cut completely if the node needs
to be quarantined to prevent infection spread. For our first analysis, we take the rate travel r for simplicity to be
constant throughout the outbreak process, and identical for all outgoing edges. In the following section, we will
allow r to adapt, producing a variable distribution of values over all the network edges, changing according to the
implementation measures typically taken to minimize the impact of the outbreak.

Figure 5. Dependence of outbreak aftermath on edge densityΔ and travel likelihood r, for a network of n = 4 communities.
The impact R∞ (A) and outbreak duration (B) are computed, for each fixed edge density (number of 1s in the adjacency matrix) as
averages over all the possible configurations of the adjacency matrix, with that fixed density. The different color plots correspond to
different values of the probability to travel along an available edge: r = 1 (blue), r = 0.5 (green), r = 0.2 (magenta), r = 0.1 (cyan),
r = 0.05 (yellow), r = 0.01 (black), r = 0 (red).

Figure 5 illustrates in the case of probabilistic travel (described above), and for a single focal point of one individual,
the dependence of impact and duration on both the density of edges, and on the probability r to travel out of each
node along the prescribed edges. Notice that impact and duration, while having the same qualitative dependence
on density, exhibit subtle differences when changing the overall likelihood to travel r. For example, in the case
of n = 4 coupled nodes, the impact is R∞ = 1

4N0 = 250 for r = 0, since no travel implies that only the focal
community will be affected (there is no dependence on edge density, since the edges are never used to transport
the virus). Moving r to any small positive value acts as a bifurcation, since the effects of the density Δ appear
immediately, causing the impact to increase, more quickly and steeply for larger values of r. These being said,
however, the dependence on travel likelihood in the r > 0 range is not as dramatic in this model as one may
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Figure 6. Dependence of outbreak aftermath on edge density Δ and travel likelihood r, for a network of n = 10 commu-
nities. The impact R∞ (A) and of the outbreak duration (B) are computed, for each fixed edge density, as averages over a sample of
S = 50 adjacency configurations with that fixed density. The different color plots correspond to different values of the probability to
travel along an available edge: r = 0.05 (magenta), r = 0.1 (blue), r = 0.2 (green). r = 0.5 (red), r = 0.8 (yellow) and r = 1

(black).

expect; it suggests that indiscriminately diminishing travel in the network can’t single-handedly accomplish a major
decrease in impact, unless the travel is altogether prohibited.

An even more surprising effect appears when studying the dependence on r of the unimodal curve representing the
outbreak duration (Figures 5b and 6b). While the critical point does not vary much – remaining, for each curve,
broadly in the same intermediate density range for each n (a more precise localization could be obtained at the
expense of lengthier computations), the behavior of the critical value differs both qualitatively and quantitatively
between different r values, first increasing with r, and then decreasing. This suggests that indiscriminately lowering
r may in fact be detrimental, by increasing the duration of the outbreak, without substantially lowering the impact
(especially in the region of intermediate densities). Only a dramatic and implausible shift of r to a value close to
zero throughout the network would result in improving both impact and duration. These effects can be observed
in both Figures 5 and 6, for n = 4 and n = 10, respectively.

Altogether it seems clear that, in order to control the outbreak in our model, one cannot just treat the system as
a whole, but instead has to target more specific network sites, based on (1) the network architecture and (2) the
outbreak’s current state throughout the network, starting from the source of contagion.

Modular adaptable network and effects of quarantine

In this section, we will simulate an outbreak in the more realistic context of two interacting subnetworks (or
modules), and introduce more structured quarantine measures, with the aim of reducing both impact and duration.
As a plausible, but simplified scenario, we consider the modules to be organized as hubs, in the sense that each
has a central node connected bidirectionally with all other nodes in the respective subnetwork, also allowing a
specific number of additional random oriented edges between the other nodes of the respective module (as in the
example pictured in Figure 7). This aims to represent the interaction of two large structures (e.g., countries), each
organized as a network of smaller communities (e.g., towns, or villages). Such a multi-modular graph contains
local, intra-modular connections between nodes (e.g., roads between villages), and long-distance, inter-modular
connections. In our case we considered, for simplicity, a single inter-modular, bidirectional edge, running between
the two central hub nodes (which could be seen as the only significant communication means between the two
countries, e.g. – airports).
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Figure 7. Model network architecture with two interconnected modules. Both modules (subgraphs), each with n = 20 nodes
and Δ = 100 oriented edges, are organized as hubs, each with one central node connected bidirectionally with all other nodes in
the corresponding hub. The two hubs are connected by one single, bidirectional edge between their two central nodes. In this figure,
bidirectional edges are represented in blue, and unidirectional edges are represented by dotted red curves, curved counter clock-wise.
This type of architecture was used for the simulations, e.g., in Figure 8.

We discuss infection transmission and impact in this type of network, and the efficiency of introducing timely
quarantines to control the outbreak. We distinguish between two types of quarantine, local (intra-modular) and
global (inter-modular), as follows. If Ebola infection is detected for a period longer than θ days in a population/node
(i.e., Ik(t) > 0 for the specific node Pk ), a local quarantine is introduced by cutting all in and out connections with
the node Pk. If infection persists at any node within either hub for longer than τ days after the local quarantine
(with τ > 0), then the two hubs are immediately disconnected (the connecting edge is cut off). We study how the
timing of these isolation measures affects long term dynamics, towards finding a scheme that would minimize the
inconvenience of lengthy quarantine, while still delivering efficient outbreak containment. While one naturally
expects a prompter quarantine response to lead to a better outcome, our study looks in more detail at the extent to
which the timing matters at both local and global levels.

We considered different architectures, edge densities and travel likelihoods (rint along the active intra-modular edges
and rext along the inter-modular edge), at the start of the outbreak (time of the original infection in the network),
and we measured in each case the dependence of the outbreak impact R∞ on the time delays θ and τ of the two
quarantines. In Figure 8 we illustrate, for modules of size n = 10, the dependence of R∞ on θ and τ (with each
curve showing the dependence on τ for a different value of θ, increasing from blue to green to red). The critical
range (of maximum sensitivity) for θ is less than one day; the critical range for τ is a little longer. The top panels
reproduce the outcome for a lower connectivity network (30 out of the maximum of 90 possible edges in each
module); the bottom panels consider a higher connectivity network (50 edges). The left panels present results for
lower travel likelihoods before the infection (intra-modular rint = 0.4 and rext = 0.2 along the inter-modular edge);
the right panels show higher pre-infection travel likelihoods (rint = rext = 0.5).

Generally, as one may expect, for any fixed local delay θ, the impact increases with the inter-modular delay τ (the
longer one waits to completely separate the two modules, the larger the infection-produced damage). Similarly, for
each fixed τ , the impact increases with the local delay θ (with the same wait time before separating the modules, a
longer local delay increases the global average damage). However, these qualitative effects present wide quantitative
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Figure 8. Dependence of impact R∞ on quarantine time lags θ and τ for a network composed of two hubs, each with n = 10

nodes, connectivity density Δ = 30 and (top panels) and Δ = 50 (bottom panels) A. and D. travel likelihood rint = 0.2 along
intra-modular edges and rext = 0.1 along the inter-modular edges; B. and E. travel likelihood rint = 0.4 along intra-modular edges
and rext = 0.2 along the inter-modular edges; C. and F. travel likelihoods rint = rext = 0.5. Each curve represents the dependence
of R∞ on the inter-modular lag τ , for a fixed intra-modular lag θ, as follows: θ = 0.2 days (in blue), θ = 0.4 days (in green) and
θ = 0.6 days (in red).

variations with the structure and connectivity of the network.

One may note that, within the realistic connectivity range, there are no wide differences determined by the edge
density per se (panels A and D, as well as B and E have only subtle quantitative differences, and panels C and F look
almost identical); the more substantial differences are induced by people’s likelihood to travel along the existing
edges before the quarantines are imposed.

For very low original travel rates along edges (left panels), local and global quarantines both drastically decrease
impact in an almost linear fashion, with a slightly higher efficiency when shortening the global, rather than the
local quarantine response.

For a network with medium travel along edges (center panels), the scenario is different: setting early quarantines
has a very strong effect (the curves increase steeply for low values of τ ), effect which tapers off asymptotically as τ
is relaxed. The impact also differs a lot with θ, especially for values of τ less than one day (when the impact gets
close to the common asymptotic value). In this case, it seems important to strive for a short local wait θ. However,
comparing the rates of change along each curve and across curves, it appears that shortening θ and τ has in this case
comparable effects on the impact.

For highly traveled networks (right panels), a slightly large τ may lead to a catastrophic impact even for very low
θ values. On the other hand, a large θ single-handedly leads to a dramatic impact, even with very short τ . In such
networks, only a combination of both small θ and small τ can substantially reduce the impact. An efficient control
of the impact requires very quick local intervention, followed tightly, possibly even before observing success or
failure of local measures, by global separation.
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DISCUSSION
In this paper, we investigated how the effects of an Ebola outbreak depend on the mobility of individuals in a net-
work of connected populations exposed to the virus. This falls in the realm of a widely studied theoretical problem:
that of dependence of coupled nonlinear dynamics on the architecture of the coupling. For our illustration, we
worked with system parameters measured in a historic Ebola outbreak, but the same compartmental construction,
the same concepts and methods can be used to study other viral transmissions, or any information diffusion process
in a network of coupled nodes.

Aside from common sense conclusions on the necessity of prompt quarantines at early signs of a viral outbreak,
our study brings interesting quantitative highlights, with potential applications when customizing and tuning quar-
antine placement and timing. There are a few particular observations that may be of general value when assessing
the importance of quarantine and other measures to control an outbreak. First, we saw that conditions which
minimize the outbreak impact may not be ideal for other aspects (e.g., duration), as important for the affected
population. Second, a prompt local quarantine is generally helpful, but cannot efficiently lower the impact in and
of itself, if not paired with a prompt global separation. A delay in global separation may make the efficiency of
local quarantine irrelevant. Third, fast global separation is optimal if paired with a prompt local quarantine, and in
some cases this can efficiently and substantially lower the impact.

This suggests that a helpful approach to infection control in a hypothetical outbreak would require authorities
to assess the type of network and travel flow that is at risk, and tune the quarantine timing to occur within the
respective optimal ranges. For example, in the case of a highly traveled modular network, the global separation
may have to be imposed faster than common sense suggests, even if this may involve additional resources in putting
in motion the slow global machinery.

Our study is only one step, among a few others,30,51,Siettos et al. towards understanding the importance of the ar-
chitecture and hardwiring in a network exposed to an epidemic outbreak. It has clear limitations, but also a wide
potential for extensions (to other disease dynamics, other population networks or even more general dynamic net-
works), and for more elaborate analyses of the underlying mathematical phenomena. Some of these aspects are
discussed below.

One limitation introduced conceptually in the model relates to the strict assumptions made on Ebola spread and
immunity. For example, we worked from the start under the hypothesis that the individuals who had contracted
Ebola once, cannot have the disease again. This was based on a corresponding assumption in our original refer-
ence paper,4 which in turn was supported by the lack of evidence of any individuals with more than one Ebola
infection within their life span. This idea is currently considered controversial in the disease dynamics literature,
especially with the known variety of Ebola virus strains which may make a prior infection with one strain irrele-
vant immunologically to a new infection with a different strain. Immunity built-up aspects, such as duration and
effectiveness to multiple viral strains, have been also explored mathematically.39

Another simplifying assumption we made was that infected people can no longer spread the virus after the infection
clears, whether this occurs through recovery or death of the individual. In reality, this may not be accurate. While
some studies show that the risk of transmission from bodily fluids of convalescent patients is low (when infection
control guidelines for the viral hemorrhagic fevers are followed8 ), other studies have shown that the Ebola virus
can be spread through the sperm of recovered individuals for up to six months after infection.14 It is also well
known at this point that dead bodies can remain contagious for up to 60 days,2 with the potential of infection
spread though contact with the dead body (e.g., during ritual funerals11 ). Further iterations of the model may
consider introducing these effects into the coupled equations.

Finally, one important aspect to explore in future studies is the extent to which details of the network configuration
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can flip the optimal quarantine circumstances. The current paper shows that the quarantine measures required for
maximal control may differ with measures such as edge density, or travel likelihood. Other studies have explored
the impact of the small-worldness, or assortativity of the network on the overall dynamics.30 There is, however,
the likely possibility that there is no canonically optimal response based only on global network measures, and that
an adequate quarantine systems has to be customized in response to the local details of the network architecture.
Returning to out original analogy between viral diffusion and brain dynamics – in the same fashion in which
clinical neuroscience is evolving towards “brain profiling,” and personalized clinical assessments, in the same way
the response to a global Ebola outbreak may have to consider a “population network profiling” in order to deliver
optimal results.

Our small values for optimal quarantine time lags suggest that full preparedness for a global outbreak may in-
volve having a pre-established plan of action, to avoid fatal computation and decision-related delays during the
spreading of the outbreak. This would require constantly updated knowledge of local and global travel patterns,
a dynamic “global connectivity map” that could be implemented directly, when necessary, into simulations, and
produce immediate predictions and provide efficient choices for quarantines. The cost of maintaining online global
information may be a well placed investment in view of a potential pandemic.
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PRESS SUMMARY
We define the impact and the duration of a viral outbreak in a network model of an infected population. We study
the dependence of these measures on local and global network connectivity, and on the travel likelihood within
the network. We perform simulations of the outbreak course, first in a network with fixed travel rates, then in an
adaptable network with two connected hubs. In particular, we study the effects that quarantine can have on the
impact and duration, for different possibilities of network hardwiring. We find that quarantine options need to be
specific in order to alleviate outbreak effects.


