
Nonlinear network dynamics under perturbations of the underlying graph
Anca Rǎdulescu and Sergio Verduzco-Flores 
 
Citation: Chaos 25, 013116 (2015); doi: 10.1063/1.4906213 
View online: http://dx.doi.org/10.1063/1.4906213 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/25/1?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Chimeras in random non-complete networks of phase oscillators 
Chaos 22, 013132 (2012); 10.1063/1.3694118 
 
Reconstructing phase dynamics of oscillator networks 
Chaos 21, 025104 (2011); 10.1063/1.3597647 
 
The dynamics of network coupled phase oscillators: An ensemble approach 
Chaos 21, 025103 (2011); 10.1063/1.3596711 
 
From topology to dynamics in biochemical networks 
Chaos 11, 809 (2001); 10.1063/1.1414882 
 
Bifurcation in the entrained state of a nonlinear oscillator under sinusoidal perturbation with the 2nd harmonics 
AIP Conf. Proc. 519, 763 (2000); 10.1063/1.1291663 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.73.68 On: Thu, 14 Jan 2016 13:22:55

http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1222956297/x01/AIP-PT/Chaos_ArticleDL_0116_2/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Anca+Rdulescu&option1=author
http://scitation.aip.org/search?value1=Sergio+Verduzco-Flores&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.4906213
http://scitation.aip.org/content/aip/journal/chaos/25/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/1/10.1063/1.3694118?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/21/2/10.1063/1.3597647?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/21/2/10.1063/1.3596711?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/11/4/10.1063/1.1414882?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1291663?ver=pdfcov


Nonlinear network dynamics under perturbations of the underlying graph

Anca R�adulescu1,a) and Sergio Verduzco-Flores2

1Department of Mathematics, State University of New York at New Paltz, New York 12561, USA
2Department of Psychology, University of Colorado at Boulder, Colorado 80309, USA

(Received 11 September 2014; accepted 29 December 2014; published online 23 January 2015)

Many natural systems are organized as networks, in which the nodes (be they cells, individuals or

populations) interact in a time-dependent fashion. The dynamic behavior of these networks depends

on how these nodes are connected, which can be understood in terms of an adjacency matrix and

connection strengths. The object of our study is to relate connectivity to temporal behavior in net-

works of coupled nonlinear oscillators. We investigate the relationship between classes of system

architectures and classes of their possible dynamics, when the nodes are coupled according to a

connectivity scheme that obeys certain constrains, but also incorporates random aspects. We illus-

trate how the phase space dynamics and bifurcations of the system change when perturbing the

underlying adjacency graph. We differentiate between the effects on dynamics of the following

operations that directly modulate network connectivity: (1) increasing/decreasing edge weights, (2)

increasing/decreasing edge density, (3) altering edge configuration by adding, deleting, or moving

edges. We discuss the significance of our results in the context of real life networks. Some interpre-

tations lead us to draw conclusions that may apply to brain networks, synaptic restructuring, and

neural dynamics. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906213]

The study of a dynamical system with interconnected

nodes tends to gain little insight from the graph-

theoretical properties of the underlying graph. Brain net-

works show properties, such as small-world connectivity

and repeated motifs, but the computational impact of

those properties remains unclear. An avenue pursued in

this paper in order to investigate the relation between a

network’s structure and its dynamics is to find relations

between the network’s underlying graph and the behav-

ior of this system. We perform a computational study of

dynamics under different forms of connectivity between

two densely connected modules. Using phase diagrams

and a probabilistic extension of bifurcation diagrams in

the parameter space, we find several properties of the

network dynamics. Among them, we find that the spec-

trum of the adjacency matrix is a poor predictor of dy-

namics when using nonlinear nodes, increasing the

number of connections between the two nodes is not

equivalent to strengthening a few connections, and that

there is no single factor among those we tested, which

governs the stability of the system.

I. INTRODUCTION

A large body of literature over the past decade has been

dedicated to the study of networks and their applications to

understanding the behavior of social, neural, and biological

systems. One of the particular points of interest has been the

question of how the hardwired structure of the network (its

underlying graph) affects its function, for example, in the

context of information storage or transmission between

nodes along time.2 There are two key coupling aspects that

govern dynamic function in such networks: the underlying

graph (characterized by its adjacency matrix) and the con-

nection strengths. Understanding the effects of configuration

(which is another term we will use for the adjacency matrix)

on coupled dynamics is of great importance for a wide vari-

ety of applications.

There are not many previous studies dealing with the

direct effect of configuration on a dynamical system. Naquib

et al.1 found that by varying the location of synthetic sites

for two different chemical species (one excitatory and one

inhibitory) that diffuse across a one-dimensional ring, they

could find many dynamic behaviors, including fixed points,

out-of-phase oscillations, quasiperiodicity and chaos. An

interesting aspect of this study is that the structure of the sys-

tem (i.e., the location and identity of the synthetic sites) acts

as a bifurcation parameter. We also explore the idea of hav-

ing structure as a bifurcation parameter; a structure found in

the adjacency matrix of the network.

The differential equations that model dynamical systems

consisting of interconnected nonlinear nodes do not usually

admit closed form analytical solutions. In this situation, the

qualitative behavior of the system may still be grasped

through bifurcation analysis, which for complex systems is

usually carried out using numerical continuation methods.

These methods are appropriate to study a single system,

where the graph describing the connections among its nodes

is fixed. For the aim of this paper, however, we want to

understand how the system’s dynamics change as the adja-

cency matrix that describes its underlying graph experiences

variations. This involves evaluating a large number of sys-

tems, each with a different adjacency matrix. Because of

this, bifurcation analysis with numerical continuation meth-

ods becomes computationally expensive (the number of pos-

sible adjacency matrices increases exponentially with thea)Email: radulesa@newpaltz.edu Phone: (845) 257-3532
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number of nodes), and it would be unclear how to interpret a

large number of bifurcation diagrams, each one for a differ-

ent underlying graph.

We propose a simple approach to visualize the qualita-

tive behavior of nonlinear dynamical systems with an

underlying graph structure. The approach starts by discre-

tizing the values in the bifurcation diagram to obtain a fi-

nite number of points in parameter space. For each point in

parameter space, we take a sample of the adjacency matri-

ces, and for each one, find whether the system expresses

the dynamical behaviors of interest (e.g., bistability or

oscillations). For each dynamical behavior of interest, we

can create a diagram, where each point in parameter space

is associated with the fraction of adjacency matrices caus-

ing the behavior to appear in the system. This diagram

expresses, for each point in parameter space, what is the

probability that a given dynamical behavior will appear in

the absence of information about the system’s configura-

tion. If the sampling of adjacency matrices is restricted to

those satisfying a particular constraint (e.g., a fixed number

of ones in the adjacency matrix), then the diagram will

express an approximation to the corresponding conditional

probabilities. We use the term of (dynamic) behavior
frequency plots to refer to diagrams produced this way,

which can be applied to any specific behavior.

To focus in a particular direction, we place and interpret

our results in the context of brain architecture and dynamics.

Understanding the way in which various parts of the brain

(from the micro-scale of neurons to the macro-scale of

functional regions) are wired together is one of the great sci-

entific challenges of the 21st century, currently being

addressed by large-scale research collaborations, such as the

Human Connectome Project.19 Many recent studies (e.g.,

Refs. 16, 18, 10) have used a combination of dynamical sys-

tems and graph theoretical approaches to investigate general

organizational principles of brain networks. With nodes and

edges defined according to imaging modality appropriate

scales, empirical studies have found certain generic topologi-

cal properties of the human brain architecture, such as modu-

larity, small-worldness, the presence of rich clubs and hubs,

and other connectivity patterns.5,10,13,17

Purely empirically-based analyses cannot, however,

explain in and off themselves the mechanisms by which con-

nectivity patterns may actually act to change the system’s

dynamics, and thus the observed behavior. Substantial

research efforts are being directed towards constructing

underlying network models that are tractable theoretically or

numerically, and which could therefore be used in conjunc-

tion with data towards interpreting the empirical results, and

for making further predictions. To this aim, the theoretical

dependence of dynamics on connectivity (e.g., in the context

of stability and synchronization in networks of coupled neu-

ral populations) has been investigated both analytically and

numerically, in a variety of contexts, from biophysical mod-

els9 to simplified systems.15 These analyses revealed a rich

range of potential dynamic regimes and transitions,4 shown

to depend as much on the coupling parameters of the net-

work as on the arrangement of the excitatory and inhibitory

connections.9 Understanding and teasing apart the different

effects of these dependences are the central goal of this

work.

We will start our study by considering a type of archi-

tecture already used in previous work:12,14 An oriented graph

composed of two interconnected cliques (fully connected

subgraphs), module X and module Y, so that all nodes

fxkgk¼1;N within X are mutually connected by “excitatory”

edges with equal positive weights gxx, and all nodes

fykgk¼1;N within Y are mutually connected by excitatory

edges with positive weights gyy (Figure 1). The connectivity

patterns from X-to-Y and Y-to-X can be described by two bi-

nary N�N blocks A ¼ ðakpÞ and B ¼ ðbkpÞ, representing

which of the nodes in X are cross-connected to nodes in Y
(with equal excitatory, positive weights gxy) and conversely,

which of the nodes in Y are connected to nodes in X (with in-

hibitory, negative weights �gyx). This graph structure was

chosen in previous work as a very simple framework for

studying the excitatory/inhibitory feedback interaction in a

control system composed of two brain regions (in our case

the amygdala and the prefrontal cortex (PFC)), with the

nodes representing hemodynamic oscillators. The set-up can

be used, however, at other spacial and temporal scales, or for

any bimodular network defining a similar feedback loop.

One can easily adapt it to incorporate more than two mod-

ules, or can prune out the dense intra-modular connections to

obtain more realistic conditions, while keeping it simple

enough to address numerically or analytically for sufficiently

large numbers of nodes.

In a separate study14 we focused primarily on the prop-

erties of the graph underlying a neural network, and dis-

cussed how factors, such as changes in density or other edge

restructuring, may affect the spectrum of the adjacency ma-

trix. In this paper, our attention is directed towards further

relating adjacency properties to the system’s temporal

behavior, and understanding the subsequent changes they

trigger in the coupled dynamics. More precisely, we are

interested in varying the number of active inter-modular

edges Mxy and Myx (i.e., Mxy is the number of 1 entries in A
and Myx is the number of 1 entries in B, both ranging from

FIG. 1. Schematic representation of the network for N¼ 4 nodes per mod-

ule. Module X is shown on the left; module Y is shown on the right; they are

both fully-connected, local sub-graphs of the oriented graph corresponding

to the whole network. The thick blue arrow shows that there are Mxy connec-

tions from X to Y, and the thick green arrow shows that there are Myx con-

nections from Y to X (the edges are not shown in their specific positions,

making this a general representation of any configuration with the given

edge densities). The coupling weights gxx, gxy, gyx, gyy are marked on the

corresponding edges.
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zero to the theoretical maximum N2), but also in changing

the edge configuration for a fixed pair (Mxy, Myx) (which we

will call the density type of the graph, for the remainder of

this paper).

We investigate the consequences that each of these two

aspects has on the overall dynamics of a system of coupled

nodes, where we identify each node with a continuous-time

nonlinear oscillator. From a vast collection of such models,

we drew our inspiration from the simple and traditional

Wilson-Cowan equations, a system conceived and used his-

torically to model interaction of excitatory and inhibitory

neural populations.20 This two-dimensional system was

shown to exhibit interesting dynamic behavior in the two-

dimensional phase-space, with Hopf and fold bifurcations

between stable equilibria and stable limit cycles (including

bistability windows). In our study, we work within the

parameter ranges proposed in the original Wilson-Cowan

paper20 as well as in subsequent work in higher dimen-

sions,3,6 thus placing the system in the vicinity of the inter-

esting phase-plane phenomena. We study how the phase-

plane dynamics and the parameter-plane transitions change

when perturbing the underlying coupling graph.

Some of the results we obtained for this system were in-

tuitive, but others were rather unexpected. For example, we

established that the eigenvalues of the adjacency matrix do

not determine the dynamic behavior, which is not surprising.

Conversely however, the dynamic behavior seems to deter-

mine the eigenvalues. The intermodular connection weights

can put the system in sensitive regimes where changes in the

adjacency matrix are more likely to affect the dynamic

behavior. (At least in the low dimensional case, these

regimes appear for the gxy, gyx values near bifurcation curves

for individual configurations.) In fact, sparse connectivity

(smaller Mxy, Myx values) promotes a higher variety of

dynamic behaviors, accessible by changes in either weights

of adjacency configuration. Quite surprisingly, we found that

the network does not experience chaotic dynamics.

The simplicity of the system makes it ideal for analytical

and numerical investigations. However, its tight intramodu-

lar coupling (leading to a high degree of synchronizations

in the nodes’ activity) and its lack of aperiodic behavior

make it unrealistic as a model of real works networks,

which are typically more complex and may spend consider-

able time in chaotic regimes. To address this, we considered

in Sec. III an extended model of coupled Wilson-Cowan

pairs. While this system also illustrates the tight relation-

ships between connectivity and dynamics, its behavior is

much richer; one can easily produce desynchronization

and/or tune the system to aperiodic behavior by changes in

its parameters.

II. COUPLED NONLINEAR OSCILLATORS

We consider the following 2N-dimensional system of

nonlinear oscillators (whose architecture is illustrated in

Figure 1 when N¼ 4)

_xk ¼ �xk þ ð1� xkÞ � Sbx;hx
�
XN

p¼1

gyxakpyp þ
XN

p¼1

gxxxp þ P

 !

_yk ¼ �yk þ ð1� ykÞ � Sby;hy

XN

p¼1

gxybkpxp þ
XN

p¼1

gyyyp þQ

 !

(1)

with 1� k�N. Each node is driven by external sources (P
for the nodes xk in the module X, and Q for the nodes yk in

the module Y). In addition, each node receives input from all

other nodes that are connected to it through incoming edges,

with weights g, indexed as described in Sec. I and in Figure

1. The coefficients akp, bkp �{0,1} are the binary entries of

the adjacency blocks A and B. The effective input to each

node is the sum of all such external and internal sources,

modulated by the sigmoidal

Sb;h Z½ � ¼ 1

1þ exp �b Z � h½ �ð Þ �
1

1þ exp bhð Þ
(2)

with parameters b¼ bx and h¼ hx when the target node is in

module X, and b¼ by and h¼ hy when the target node is in

module Y. Throughout our analysis, we fixed bx¼ 1.3, by¼ 2,

hx¼ 4, hy¼ 3.7, gxx¼ 16=N, gyy¼ 3=N, P¼ 1.5, Q¼ 0. We

allowed the range [0, 30] for the X-to-Y and Y-to-X connec-

tivity strengths gxy and gyx. The form of the equations and

the parameters are typical for Wilson-Cowan dynamics.

A comprehensive study of parameter dependence for

such a system would be almost intractable (as it would be for

any system attempting to model real world, complex phe-

nomena affected by a wide collection of factors). Let us

notice, for example, that perturbing the individual node dy-

namics (e.g., the logistic function) has its own—distinct—

effect on the temporal evolution of the coupled system. The

best one can do is to analyze the sensitivity of the system

with respect to one or two parameters of interest at the time,

and eventually use this information to quantify and directly

compare the effects of each factor on the system’s behavior.

To continue, we will first consider a small network size

(N¼ 2) and inspect the dynamic behavior of the system for

every possible theoretical configuration (adjacency matrix)

corresponding to a fixed pair of edge densities. In Sec. II A,

we discuss the cases ðMxy;MyxÞ ¼ ð3; 3Þ and ðMxy;MyxÞ
¼ ð2; 3Þ, but a similar analysis can be carried for any density

pair. We study how small changes in the graph (such as add-

ing/deleting an edge, or moving an edge by a sequence of

add/delete operations) influence the system’s dynamics, and

we try to understand in which scenario these dynamics are

most sensitive to weight changes. Furthermore, we are inter-

ested in finding whether structural changes (edge shifting)

may have comparable effects with varying the weights, or

under which circumstances this may be true.

Our specific interest remains, however, in studying what

happens for higher network sizes N. That is because natural sys-

tems are likely to be formed, even at a macroscopic level, of

hundreds or thousands of node-units. Since the number of con-

figurations increases extremely fast (combinatorially squared)

with the size N, it is no longer ideal, for high N values, to

describe each individual configuration in this large set; we
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propose a probabilistic approach to be more appropriate. In Sec.

II B, we define behavior frequency plots, quantifying the statisti-

cal likelihood of the system (over the distribution of all possible

configurations corresponding to a fixed density type) to exhibit a

certain dynamics at a fixed combination of edge weights. While

in this paper, we only establish a proof of principle, by investi-

gating small sizes (N¼ 4, leading to thousands of configurations

for each density type), the methods can be applied to higher net-

work sizes by using increased resources or by concentrating the

search on more specific aspects.

Through Secs. II A and II B, we will use the notation

DMxy;Myx for the collection of all adjacency matrices with den-

sity type (Mxy, Myx).

A. Low dimensional dynamics: Bifurcation diagrams

In the low dimensional case of N¼ 2 nodes per module,

the system (1) becomes

_x1 ¼ �x1 þ ð1� x1Þ
� Sbx;hx

½gxxðx1 þ x2Þ � gyxða11y1 þ a12y2Þ þ P�
_x2 ¼ �x2 þ ð1� x2Þ
� Sbx;hx

½gxxðx1 þ x2Þ � gyxða21y1 þ a22y2Þ þ P�
_y1 ¼ �y1 þ ð1� y1Þ
� Sby;hy

½gxyðb11x1 þ b12x2Þ � gyyðy1 þ y2Þ þ Q�
_y2 ¼ �y2 þ ð1� y2Þ
� Sby;hy

½gxyðb21x1 þ b22x2Þ � gyyðy1 þ y2Þ þ Q�:

(3)

Intuitively, we expect the dynamics to be influenced by the

flow/dissipation of the information in the system, i.e., by the av-

erage length of the minimal path that connects any two nodes.

While the density type (Mxy, Myx) strongly influences the dy-

namics of the system, it clearly does not completely determine

temporal behavior in and off itself, and the dynamics are only

partly encoded in the density type, or in the adjacency spec-

trum. One common sense expectation is that for a fixed density

type (Mxy, Myx), two adjacency configurations with the same

eigenspectrum can produce significantly different phase-space

dynamics. We verify this conjecture and try to better describe

the correspondence between adjacency and dynamics, but we

also propose that other options for measuring the properties of

the graph may capture better the system’s dynamic complexity.

For a phase-plane analysis of a nonlinear dynamical sys-

tem, one typically starts by establishing the position and sta-

bility of equilibria, searching for invariant sets (e.g., cycles,

invariant tori, etc.) and for potential aperiodic/chaotic behav-

ior. Since due to the nonlinearity of the system, describing

these objects precisely is quite challenging, we use numeri-

cal algorithms to approximate the attractor’s position

and shape, establish their stability and study their change

under perturbation of parameters. Throughout this study, we

keep all other system parameters fixed, and only vary the

between-module connection strengths gxy and gyx, and

the system’s underlying geometry (by allowing various con-

figurations for the binary matrices A ¼ a11 a12

a21 a22

� �
and

B ¼ b11 b12

b21 b22

� �
). This choice is motivated by our aim to

understand and compare the different effects on dynamics of

three distinct ways of altering inter-modular connectivity:

(1) by changing the edge density type (Mxy, Myx), (2) by

changing the node-node edge configuration (the positions of

the 1 entries in the binary matrices A and B), and (3) by

changing the inter-modular edge weights (gxy and gyx).

In order to understand, for each individual adjacency con-

figuration, the changes in dynamics produced by varying gxy

and gyx, we first use bifurcation diagrams in the (gxy, gyx) pa-

rameter plane. Then, we observe how these diagrams change

when perturbing the underlying adjacency graph. To generate

the bifurcation diagrams, we used the continuation algorithms

provided by the Matcont package,8 initialized in a region con-

taining values of gxy and gyx corresponding to Hopf and saddle

node bifurcations in the classic Wilson-Cowan system. We

investigated the Hopf and limit point (saddle point) curves in

our own coupled system, delimiting behaviors, such as con-

vergence to a unique stable equilibrium versus oscillations

towards a stable limit cycle (including bistability).

To illustrate our ideas, the two tables in the Appendix

show all possible (gxy, gyx) parameter planes that can be

obtained for N¼ 2 and density types ðMxy;MyxÞ ¼ ð3; 3Þ and

ðMxy;MyxÞ ¼ ð2; 3Þ, respectively (Tables I and II).

Interestingly, all 16 combinatorial configurations in D3;3 pro-

duce only four distinct dynamic parameter planes, which we

will call the dynamic classes for ðMxy;MyxÞ ¼ ð3; 3Þ, and

which we show in Table I. Notice that all four dynamic

classes can be obtained by fixing A to any configuration and

considering all four cases for B, but also by fixing B and con-

sidering all four configurations for A. Similarly, all 24 com-

binatorial configurations in D2;3 produce only six dynamic

classes, distinct than the ones in D3;3, shown in Table II, all

obtainable by fixing B and varying A.

The presence of bifurcations for all dynamic classes

implies that when fixing the network, changing one of the

weights gxy or gyx can push the system over a bifurcation

curve, placing it in a different regime. This change may con-

sist, for example, of switching between “rest” (convergence

to a stable equilibrium) and “oscillations” (convergence to a

limit cycle) when crossing a Hopf bifurcation, or of sharply

switching attractors (when crossing a limit point curve).

Alternatively, looking across all dynamic classes for

each (Mxy, Myx), one may easily note that the changes in dy-

namics triggered by changes in configuration are rather

localized to certain regions in the parameter plane. That is,

the behavior of the system might be, between classes, very

different or very similar at different points in the (gxy, gyx)

plane. This suggests that the system’s sensitivity to the net-

work geometry depends on the actual connection weights.

There appears to be a critical (gxy, gyx) locus, where the sys-

tem is most sensitive to geometry: deleting or shifting one

edge can push the system from a stable equilibrium (in one

panel) to oscillations (in a different panel). Away from this

region, there is a more topographic correspondence between

parameter planes (i.e., the dynamic classes have qualitatively

more consistent or even identical behavior between panels).

We say that two configurations are in the same adja-

cency class if they have the same eigenspectra. When inves-

tigating the relationship between the adjacency configuration
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and the dynamic behavior of the system, a natural question

to ask is whether dynamic classes may be predicted simply

by looking at the adjacency spectrum. We conjecture that the

correspondence dynamics ! adjacency classes is well

defined, but clearly not bijective. That is, a specific dynamic

class cannot be obtained from two different configurations,

but a single adjacency class may lead to different dynamics.

While in general, for high dimensions, proving this rela-

tionship may be quite difficult, for low dimensions, it is easy to

illustrate. For example, Table I shows each configuration in

D3;3 together with its adjacency and dynamic class. In this

case, there are three distinct adjacency eigenspectra (designated

by letters A through C), each class containing, respectively, 8,

4, and 4 of the total of ð2NÞ2 ¼ 16 configurations. In counter-

part, there are four distinct dynamics classes (designated by

indices i through iv). With this convention, the table shows that

no dynamics can be obtained from multiple adjacency classes,

but that some adjacency classes can lead to multiple dynamics.

Similarly, Table II shows how the six dynamic classes are

mapped to the four adjacency classes in the case ofD2;3.

This suggests that while the adjacency class, together

with the density type, clearly has a contribution to dynamics,

it cannot be directly used to predict these dynamics. In our

current work, we are investigating whether other descriptions

of the adjacency matrix are better choices to help predict the

dynamics or the complexity of a network’s evolution. Node

degree distribution, connectivity coefficient, number of par-

ticular motifs may be finer network measures than edge den-

sity, or adjacency spectrum, and therefore more efficient in

classifying dynamic complexity.

It is becoming clear that even for small N, the system

has many dynamic possibilities (depending on configura-

tion), thus making undesirable an individual descriptive

approach to each configuration-specific parameter space. A

statistical approach seems more appropriate, bearing in mind

that some dynamic classes may be more substantial than

others, and thus have a stronger contribution to driving these

statistics. While these are ideas that we elaborate more in

Sections II B and III, here we set the grounds for this path by

describing the numerical methods used and by illustrating

how they work on a simple N¼ 2 example.

For each (gxy, gyx) parameter point, we took a sample of

adjacency matrices with a given density. For each adjacency

matrix in the sample, we ran simulations and analyzed each

one in order to find the range of dynamic behaviors it could

produce when starting from different initial conditions. Our

search algorithms could detect six types of behaviors: (1) a sin-

gle fixed point, (2) multiple fixed points, (3) periodic oscilla-

tions, (4) non periodic oscillations, (5) both a single fixed point

and periodic oscillations, and (6) both multiple fixed points and

periodic oscillations. We only analyzed the second half of the

simulations in order to remove the transient part of the activity.

For each pair of connection weights and for each adjacency

matrix, we explored the space of initial conditions using a basic

Particle Swarm Optimization (PSO) algorithm. The utility func-

tion used by the PSO algorithm depends on which behaviors

had already been found. If only a single fixed point had been

found, then the initial condition with the largest utility was the

one with largest amplitude in its oscillations. This amplitude

was determined as the difference between the mean value of

each node’s response and its largest value in the last quarter of

the simulation. The largest amplitude among all nodes was

selected. If no fixed points had been found, then the utility func-

tion was set to one minus the utility of the previous case.

Detecting fixed points was done using the same amplitude

that constituted the utility function for the PSO algorithm.

When this amplitude was below a threshold, a fixed point was

detected. To detect multiple fixed points, for each initial condi-

tion where a fixed point was found, the average value of the

response for the first node was stored. If the difference between

the largest stored average value and the smallest one was above

a threshold, multiple fixed points were detected.

Detecting periodic oscillations was done using a basic

algorithm that convolved the time-discretized response of a

node with a time inverted version of itself. Intuitively, this

response could be conceived as a vector, and the convolution as

an inner product between a part of this vector and a time-shifted

version of itself. The reason why this algorithm works is that

when the sections of the vectors participating in the inner prod-

uct are normalized, the inner product will attain its maximum

value when the response vector and its time shifted version are

the same. This happens when the response signal is periodic.

A non periodic oscillation was detected when the

response was not a fixed point, but our algorithm could not

detect periodic behavior. Whenever aperiodic behavior was

detected, the simulation was extended for a longer period of

time and then analyzed again in order to prevent false detec-

tions due to transient properties of the response.

We first illustrate the efficiency of this search algorithm

by applying it to find all behaviors in the parameter plane for

the configuration A ¼ 1 0

1 0

� �
and B ¼ 0 1

1 1

� �
in D2;3,

which was found by Matcont to be of class (ii). Figure 2

compares side by side the diagrams obtained in this particu-

lar case: via the Matcont software on the left and via our

search algorithm on the right.

We then used the search algorithm by itself to illustrate

the likelihood for each behavior at each parameter point (gxy,

gyx), over all configurations in D3;3. We will call the parame-

ter loci for different behaviors—behavior frequency plots for

the system. Each panel in Figure 3 illustrates the likelihood

for an arbitrary configuration in D3;3 to exhibit one of the fol-

lowing attracting sets: a globally stable equilibrium (Figure

3(a)), multiple stable equilibria (Figure 3(b)), a globally sta-

ble limit cycle (Figure 3(c)), or a coexisting stable equilib-

rium and stable cycle (Figure 3(d)). Our search algorithm

found only artifactual aperiodic behavior, which, upon

inspection, was clearly due to a slower initial transient phase

of the solution, mistakenly labeled by our code as aperiodic

behavior.

In higher dimensions, one may expect the system’s

attractors to transcend simple limit cycles (for example, a pa-

per by Borisyuk et al.3 found a similar four-dimensional,

coupled system to additionally exhibit symmetric, antisym-

metric, and nonsymmetric invariant tori), which are hard

(and computationally rather expensive) to track down. One

of our goals is to investigate the presence of aperiodic
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behavior in our system for higher dimensions, which we do

in Sec. II B for the case N¼ 4.

B. Behavior frequency plots

In this section, we focus on constructing and understanding

behavior frequency plots. Each point (gxy, gyx) in the parameter

plane may correspond or not, for each adjacency configuration

in DMxy;Myx , to a specific dynamic behavior. In other words, the

point will be on one side versus the other of some bifurcation

curve in (gxy, gyx), with a specific probability (over the whole

configuration distribution DMxy;Myx ). This represents in a sense a

probabilistic extension of the concept of bifurcation.

As shown before, one can define the frequency plot of a

system for any particular dynamic behavior. Fix the size N
and the density type (Mxy, Myx). For each pair of edge

weights (gxy, gyx), we can calculate (or estimate numerically)

the fraction Pðgxy; gyxÞ of adjacencies in DMxy;Myx which, for

weights (gxy, gyx), lead to a specific dynamic behavior. For

example, by estimating the fraction of configurations which

lead to coexistence of a stable equilibrium and a stable cycle,

one can establish the locus in the parameter plane where

there exist configurations with equilibrium/cycle bistability,

evaluate how likely it is to randomly pick a configuration

with such bistable behavior, and observe what is needed to

push the system from a regime of likely bistability into a

purely oscillatory or quiet regime.

For Mxy ¼ Myx ¼ N2, there is only one possible configu-

ration, and the behavior loci are delimited by regular bifurca-

tion curves. When jDMxy;Myx j 6¼ 1, the transition is smooth, so

that there is a region where 0 < P < 1, which corresponds

to a “smeared” bifurcation curve.

For example, in Figure 3 we show for N¼ 2, the four non-

trivial behavior frequency plots for D3;3. These look as one

would expect from “overlapping” the four dynamic classes in

D3;3 (shown in Table I). Due to the similarities and differences

between the Hopf and limit point bifurcation curves across

configurations, the resulting frequency plots are a “smeared”

version of the diagrams for individual classes. We conjecture

that the profile of a frequency plot, as well as the degree of

smearing (i.e., the width of the region with values transitioning

between P ¼ 0 and P ¼ 1) depends on the pair (Mxy, Myx).

Since there are such few different behaviors, one can still dis-

tinguish the contours of the individual bifurcation diagrams in

the frequency plots, which is no longer the case for higher N
(see Figures 4 and 5). For larger jDMxy;Myx j, there are more

FIG. 2. Bifurcation diagrams versus search algorithm. (a) Bifurcation diagram in the (gxy, gyx) plane for the dynamic class (ii) in D2;3, created with the

Matcont extension algorithms. Hopf curves are shown in blue, limit point curves in green, and codimension two points are shown as stars: green (cusp points),

red (generalized Hopf points), purple (Bogdanov-Takens points). (b) Dynamic regimes in the (gxy, gyx) plane for the same dynamic class, obtained using our

numerical search for different behaviors within the system: the locus corresponding to a unique stable equilibrium is in black, the locus for multiple stable equi-

libria is in red, the locus for a unique stable cycle is in orange, and the locus where the stable equilibrium and the stable cycle coexist is in white.

FIG. 3. Behavior frequency plots, showing the number (out of all 16 configurations in D3;3), which exhibit (a) one stable equilibrium; (b) multiple stable equili-

bria; (c) one stable cycle; and (d) a coexisting stable cycle and equilibrium.
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configurations and more dynamic behaviors/classes. Since the

number of configurations in DMxy;Myx increases with N
extremely fast, when studying the same phenomena for larger

values of N, it is more convenient to investigate the behavior

distribution based on a sample probability.

Figures 4 and 5 illustrate the behaviors we found

numerically in a variety of systems with N¼ 4. It is interest-

ing to notice that we did not find aperiodic oscillations or

multiple equilibria in conjunction with stable oscillations.

Each row shows, for one density type ðMxy;MyxÞ, the fre-

quency plots for the remaining four behaviors. Figure 4 illus-

trates how these loci change when the two densities Mxy and

Myx are identical, but increase from very low

ðMxy ¼ Myx ¼ 4Þ, to medium ðMxy ¼ Myx ¼ 8Þ, to high

ðMxy ¼ Myx ¼ 12Þ. Figure 5 illustrates two cases of uneven

densities, one with Mxy>Myx and the other with Myx>Mxy.

Broadly, one can notice that in some regions in the pa-

rameter plane, the weights are a strong determinant of the

potential dynamics, while in other regions, only a very large

jump in the (gxy, gyx) parameter plane would significantly

influence the likely dynamics. The same applies to the sensi-

tivity to weight changes: some regions are consistent

between corresponding panels, showing that switching from

one density type to another would have almost no effect,

while other regions are very sensitive to density and to con-

figuration changes.

It is also interesting to notice that higher densities create

sharper transitions, which is hardly surprising: if there are more

edges, a small global change in the weights is more likely to

have a substantial effect on dynamics. It follows that for lower

densities, higher weights are required to place the system in an

oscillatory (stable cycle) rather than quiet (stable equilibrium)

regime. Moreover, the smoother spread of the plots for lower

densities means that the dynamics is more susceptible to pertur-

bations in configuration, even when the low densities are fixed.

Remark 1. Statistically speaking, the approach is appropri-

ate when comparing behaviors within one single DMxy;Myx ,

where each pair (gxy, gyx) has the same number of corresponding

configurations. When comparing behaviors between distribu-

tions DMxy;Myx for different values of Mxy and Myx, we tried to be

more careful, and verified the validity of our sample-based

method by computing the standard deviations over the chosen

samples to ensure that the results are not biased by using the

same sample size for different size distributions.

FIG. 4. Behavior frequency plots for N¼ 4, for equal densities Mxy and Myx. We show the fraction of all configurations in (i) D4;4; (ii) D8;8; (iii) D12;12, which

exhibit (a) one stable equilibrium; (b) one stable cycle; (c) multiple stable equilibria; and (d) a coexisting stable cycle and equilibrium. No other behaviors

were found. The simulations are based on a randomly generated sample of S¼ 200 configurations in the respective DMxy;Myx (hence the color bar represents

numbers from 0 to 200).
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Remark 2. In the case of this simple system, the full-

connectedness of the moduli maintains the moduli

synchronized, so that looking at the time evolution of one

node, one can visualize with good approximation the tem-

poral behavior of the whole module. This presents the

advantage of behavior simple enough to be easily tractable

even in higher dimensions. For example, contrary to what

one might have expected, our numerical searches did not

find any parameter set for which the system exhibits aperi-

odic behavior. However, this is not a situation expected to

occur biologically, and we use it only as a starting point. In

Sec. III, we present an extension of this model which is a

better candidate for biophysical and connectivity modeling

in the brain, and which exhibits richer and more plausible

behavior. We use the same techniques to investigate this

extension.

III. COUPLED WILSON-COWAN PAIRS

We describe a more realistic scenario, where inhibition

is implemented through a separate collection of nodes. This

may be an appropriate representation of a brain network in

which inhibition is performed via a hidden layer of neurons,

different than the target cells that ultimately need to be inhib-

ited. For example, the prefrontal cortex (PFC) projects exci-

tatory fibers on the intercalated cells of the amygdala (ITC),

which in turn inhibit the cells in the basal amygdala, the

functional area considered to be responsible for emotion reg-

ulation. Hence, the overall effect of the PFC on arousal reac-

tions controlled by the amygdala produces “fear extinction”

(closing the negative feedback loop that regulates arousal).

To represent this situation, we consider the following

model (see also Figure 6):

se
dxk

dt
¼�xkþ 1� xkð Þ

�Sbe;he
gxxk�giyyk�

X
giexypþ I

h i
si

dyk

dt
¼�ykþ 1� ykð Þ

�Sbi;hi
�gyykþgexxkþ

X
guyAkpup

h i
se

duk

dt
¼�ukþ 1�ukð Þ

�Sbe;he
guuk�givvk�

X
gieuvpþ

X
gxuBkpxp

h i
si

dvk

dt
¼�vkþ 1� vkð Þ �Sbi;hi

�gvvkþgeuuk½ �; (4)

where Sb;hðRÞ ¼ ð1þ exp½�bðR� hÞ�Þ�1
, and we fixed the

following Wilson-Cowan parameters: be¼ 1.3, bi¼ 2, he¼ 4,

hi¼ 3.7, I¼ 1.5 and connectivity parameters: gx¼ gu¼ 16,

gy¼ gv¼ 3, gex¼ geu¼ 15, giy¼ giv¼ 12, giex¼ gieu¼ 5=N,

gxu¼ guy¼ 10=N.

While the modules retain a form of full (�) to (þ) con-

nectivity, the dynamics of this system is much more complex

than that of the original model of simple coupled oscillators.

Here, the network is spending most of its time in complex

oscillatory regimes, in which the nodes are no longer

synchronized within each module. We want to investigate

whether this system exhibits aperiodic behavior, and what

types of changes in the network configuration can throw the

system from periodic oscillations into chaotic behavior.

Figure 7 shows on the left how the oscillatory regime can

be affected by changes in density type. While for ðMxy;MyxÞ
¼ ð8; 8Þ, the nodes typically perform aperiodic oscillations,

increasing Mxy gradually introduces more structure (for Mxy

¼ 14) and renders them purely periodic (for Mxy¼ 16). On the

right, the figure illustrates how, for the same density pair, the

FIG. 5. Behavior frequency plots for N¼ 4, for non-equal densities Mxy and Myx. We show the fraction of all configurations in (i) D6;10 and (ii) D10;6 which ex-

hibit (a) one stable equilibrium; (b) one stable cycle; (c) multiple stable equilibria; and (d) a coexisting stable cycle and equilibrium. No other behaviors were

found. The simulations are based on a sample of S¼ 200 configurations.
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oscillations can be tuned (singular “spikes” versus periodic

“bursts,” versus sustained aperiodic oscillations) by altering only

the configuration.

As in the case for the simple coupled oscillator’s model,

we aim to understand better the types of behaviors accessible

to the system, and how changes in weights, densities, or

configuration may be used to swap between these behaviors.

In Figure 8, we show the frequency plots in D8;8 and D14;8.

One immediately notices, in both cases, the increased com-

plexity of this system’s dynamics compared with the simple

model: all six behaviors appear in each of the density types, with

large parameter loci allowing periodic and aperiodic oscillations.

FIG. 6. A schematic representation of the coupled Wilson-Cowan system for N¼ 4 pairs of nodes in each module, XY and, respectively, UV. Each (þ)/(�)

pair is coupled according to the original Wilson-Cowan model. In addition, each module has full (�) to (þ) connectivity (i.e., each inhibitory unit is connected

with all excitatory units within its module). A fraction Mxu of the (þ) units in module XY are connected with (þ) units in module UV, and a fraction Muy of

(þ) units in module UV are connected with (�) units in module XY.

FIG. 7. Transitions in dynamics when altering connectivity and configuration. All panels show solutions for the Wilson-Cowan coupled pairs, for N¼ 4 pairs

of nodes in each module: the evolution of the nodes xk and yk is shown on top in blue and red, respectively, and the nodes uk and vk are shown on the bottom

in green and purple. The simulations were performed for the parameters given in the text, each for an arbitrary single configuration of (a) density type

ðMxy;MyxÞ ¼ ð8; 8Þ; (b) density type ðMxy;MyxÞ ¼ ð14; 8Þ; (c) density type ðMxy;MyxÞ ¼ ð16; 8Þ; (d) density type ðMxy;MyxÞ ¼ ð8; 8Þ, for a different adjacency

configuration than that used in (a); and (e) density type ðMxy;MyxÞ ¼ ð8; 8Þ, for a different configuration than those in (a) and (d).
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As in the previous system, however, richer behavior seems to

correspond to lower densities (the higher the two densities the

more likely it is for the system to fall into simple periodic oscilla-

tions, as already suspected from Figure 7).

In Figure 9, we illustrate one way of tracking changes in

the system’s dynamics when fixing the weights and density type

and only changing the configuration by adding/deleting edges.

The figure shows the evolution of the system’s approximate en-

tropy (estimated from the system’s solutions according to an

algorithm proposed by Pincus11) along two network “paths”

from one initial state (of relatively low entropy) to a final state

(with higher entropy). More precisely, we considered an initial

state in which only one unit in module X is cross-connected to

all units in module Y (i.e., the block matrix A has ones on the

first row, and the block matrix B has ones on the first column),

and a final state in which the units are connected bijectively

(both A and B are the identity). We constructed two paths in the

adjacency graph from the initial to the final states by defining

each step to be a 0/1 flip (a 1 swap with a 0 at a neighboring

position in the adjacency matrix, corresponding to an edge dele-

tion and then addition in a proximal position). We want to

suggest that there are many ways in which a system can evolve

from lower to higher entropy through a sequence of slight edge

perturbations (without the network even changing density type).

We suspect that this is possible even if we additionally require

the paths to be of monotonely increasing entropy. The states

along these paths can be seen as states that the system will have

to take provided it evolves along the respective path.

IV. DISCUSSION

A. Strengthening versus restructuring

In our paper, we focused on understanding a few aspects of

how dynamic behavior in a network depends on its underlying

adjacency matrix. To do this, we used an underlying graph with

simple bimodular architecture with each of the interconnected

modules fully connected. We discovered that different temporal

effects are to be expected when perturbing different aspects of

the network connectivity. We compared the effects of globally

increasing the weights between the two interconnected modules

versus increasing the number of edges between the modules.

While both actions lead to “increasing connectivity” between

FIG. 8. Behavior frequency plots for the system of coupled Wilson-Cowan oscillators for N¼ 4, and density type D8;8 (top) and D14;8 (bottom). The illustra-

tions are based on samples of size S¼ 50. Each panel shows the number (out of the total of 50) of configurations leading to one of the following behaviors: (a)

globally stable equilibrium; (b) multiple equilibria; (c) globally stable cycle; (d) aperiodic oscillations; (e) coexistence of a stable equilibrium with a stable

cycle; and (f) coexistence of multiple stable equilibria and cycles.

FIG. 9. Evolution of the system’s ap-

proximate entropy from h0 ¼ 0:0581 to

h1 ¼ 0:0701 along two distinct paths in

the set of adjacency graph configurations.
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the two modules, they produced qualitatively different effects

on dynamics.

We noticed that while certain regimes are robust to per-

turbations (local changes in weights or in adjacency do not

produce qualitative effects on dynamics), other parameter

regions tend to be very sensitive to such changes.

Furthermore, when in sensitive regimes, small local pertur-

bations in the network wiring (e.g., locally modifying the

adjacency matrix by adding or deleting edges) may have dra-

matic effects on the system’s dynamics, more substantial

than those obtained by a global change in the system’s

weights (recall that our weight parameters gxy, gyx affect all

the connections from one module to another).

Perhaps, the most important question here is how the

three hardware components (edge density, position and

strength) act differently on the temporal behavior of the sys-

tem, and how they work together to tune the network’s

dynamic complexity. This question is extremely important in

the context of understanding a variety of real world networks.

For example, one could think of what type of adjustments

should be performed by the system in order to shift its dynam-

ics most efficiently from a quiet to an oscillatory regime or

vice-versa. If the state of the network is, to begin with, in a

region sensitive to weight changes in the (gxy, gyx) parameter

plane, the system may perform the “phase transition” via a

small change in the weights. Otherwise, if operating away

from such regions, only a large, global change in the overall

values of the weights can significantly increase the probability

of the system to switch regimes. On the other hand, a small

change in the graph structure could produce instead the

desired dynamic change, pushing the system over into a more

complex, or more stiff range of functioning. To help us illus-

trate this phenomenon, in Figure 10, we show the frequency

plots for fixed weights (gxy, gyx), with respect to the two den-

sities Mxy and Myx, viewed as system parameters.

Consider for instance the situation in Figure 4II(b),

where it is clear that, for Mxy ¼ Myx ¼ 8, only a rather large

change in weights would increase the potential for the quiet

system gxy ¼ gyx ¼ 15 to oscillate. Figure 10(III) (corre-

sponding to gxy ¼ gyx ¼ 15) shows, however, that the density

point ðMxy;MyxÞ ¼ ð8; 8Þ is in a sensitive region, where

changes in the densities can strongly affect its likelihood to

change behaviors, and changes in configuration can also be

used to switch between available behaviors. For another

example, consider the points gxy¼ 5, gyx¼ 10, for which the

system with Mxy¼ 10 and Myx¼ 6 (shown in Figure 5(II))

performs oscillations with extremely high likelihood (for

almost all configurations). Figure 10(I) (for gxy¼ 5, gyx¼ 10)

FIG. 10. Behavior frequency plots in the parameter plane of densities (Mxy, Myx) for (I) gxy¼ 5, gyx¼ 10; (II) gxy¼ 5, gyx¼ 60; and (III) gxy¼ 15, gyx¼ 15.

The correspondence between panels and behaviors is the same as in Figures 4 and 5.
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shows that the point Mxy¼ 10 and Myx¼ 6 is in a range

where the dynamics is much more sensitive to changes in

density and configuration.

Finally, recall that each density type generates a large

number of distinct configurations. The dynamics of the system

may experience a whole collection of dynamic modes (some

qualitatively distinct, some equivalent) over the whole distribu-

tion of possible configurations. While configuration-triggered

changes in dynamics are important (and are in fact more likely

in intermediate density type regimes), the dynamics seem, how-

ever, more robust to perturbations in configuration than to those

involving a change in density type. This robustness, previously

noticed in Ref. 12, may be partly explained by the robustness

of the adjacency spectrum when exploring all configurations of

fixed density type.14 However, in Sec. II B, we have shown that

adjacency spectrum classes are not in bijection with dynamics

classes. Part of our current work is aimed towards understand-

ing the theoretical bases of this robustness.

B. Applications to learning and the brain connectome

As discussed in a separate paper,14 these choices of the

mechanisms used to trigger changes in dynamics are extremely

important for networked systems like the brain, in order to

maintain their adequate function of performing complex simul-

taneous tasks. There are many different models describing the

synaptic restructuring that occurs in a network of neurons dur-

ing processes like learning or memory formation, most likely

involving a combination of weight changes of existing synapses

and creating/deleting connections. In terms of our model, this

means that not only the edge weights, but also the edge distri-

bution is likely to exhibit both short and long-term changes dur-

ing learning. Knowledge of the geometry of the network is

therefore very important when determining which connectivity

schemes are plausible to use for models of learning.

A lot of effort has been invested recently towards devel-

oping and using graph-theoretical network measures in con-

junction with statistical methods, in order to identify the

effects of abnormal connectivity patterns (measured as struc-

tural connectivity, for anatomical links; functional connec-

tivity, for undirected statistical dependencies; and effective

connectivity, for directed causal relationships among distrib-

uted responses10) on the efficiency of brain function. By

applying graph theoretical measures of segregation (e.g.,

clustering coefficient, motifs, modularity, rich clubs), inte-

gration (e.g., distance, path length, efficiency), and influence

(e.g., node degree, centrality), these studies have been inves-

tigating the sensitivity of systems to removing/adding nodes

or edges at different locations in the underlying network.

Working with empirical data, such measures have been

used to understand behavioral impairments in subjects with

compromised connectivity due to existing lesions7 or group

differences between healthy controls and patients with men-

tal illnesses associated with deficient feedback circuitry. In

our previous work with functional magnetic resonance imag-

ing (fMRI) data,12 we ourselves used a simple graph-

theoretical model as a formal framework to study how net-

work density can affect the complexity of signal outputs,

measured by the log-log slope of their power spectra (power

spectrum scale invariance, PSSI). Indeed, for sufficiently

large networks, the log-log spectra were close to linear

within certain frequency bands, and the PSSI slopes were

found to vary as a function of both input type (excitatory, in-

hibitory) and input density (mean number of long-range con-

nections), with comparatively insignificant dependence on

the node-specific geometric distribution.

Without attempting to understand the source of either

dependence on density or robustness to specific configura-

tion, we focused on the possible interpretations and applica-

tions. We suggested a testable framework for interpreting the

empirical data in conjunction with the model, to deliver a

connectivity-based hypothesis for the difference in func-

tional regimes corresponding to different levels of anxiety.

Individuals with average emotional reactivity had experi-

mental PSSI values in the pink noise range for amygdala and

prefrontal regions, corresponding to well-regulated control

systems, with well balanced excitatory and inhibitory projec-

tions. Individuals at the anxious end of the spectrum showed

experimentally white noise primarily for the amygdala and

were predicted by our model to have relatively weaker inhib-

itory inputs from the prefrontal cortex (producing weaker

feedback). Individuals at the stress resilient end of the spec-

trum showed white noise primarily for the prefrontal cortex

and were predicted by our model to have relatively stronger

excitatory inputs from the amygdala (producing stronger

feedback). This last simulation result may seem surprising,

but in fact produces a reasonable hypothesis: Enhanced pro-

jections from the amygdala to prefrontal cortex effectively

lower the threshold for inhibitory feedback, thereby sup-

pressing all but the strongest stimuli. Broadly speaking, we

saw as very promising fact that such a simple and general

setup may yet inform successfully our human imaging

results in a circuit as important as the one regulating human

emotion. That is because its simplicity allows us to study

and understand (analytically or numerically) the sources that

drive different aspects of the system’s behavior (thus produc-

ing the different regimes of function); its generality opens

such the model (with minor modifications) to possible appli-

cations other than emotion regulation.

The results in this paper (which used an identical net-

work structure in its analysis) explain some of the more im-

portant (although perhaps counterintuitive) features observed

computationally in R�adulescu et al.12 Among these are the

robustness of the coupled dynamics to certain changes in the

network architecture and its vulnerability to others, as well

as the differences between updating connection strengths

versus perturbing connection density or geometry.

In developing future iterations of this model with possible

applications to learning mechanisms, it will also be important

to explore how the learning process itself shapes the connec-

tivity scheme with possible emerging structures in which

modularity is purposefully broken into hub-like subnet-

works.15 Understanding the source and limits of a network’s

robustness and vulnerability to perturbations may be an instru-

ment that could help us investigate in the future many aspects

of brain circuitry: from determining which architectures favor

convergence under particular learning algorithms, and which

not, to classifying cognitive deficits and psychiatric illnesses.
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APPENDIX: ADJACENCY VERSUS DYNAMICS CLASSES FOR N 5 2

TABLE I. Adjacency and dynamics classes for N¼ 2, density type (Mxy,Myx)¼ (3,3). Adjacency classes are designated by letters ðA � CÞ and dynamics

classes by subscripts (i–iv). The four possible parameter planes are shown on the right, with Hopf curves in blue, limit point curves in green, and codimension

two bifurcations marked with stars: cusp (green), Bautin (red), and Bogdanov-Takens (purple).
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TABLE II. Adjacency and dynamics classes for N¼ 2, density type (Mxy,Myx)¼ (2,3).

013116-14 A. R�adulescu and S. Verduzco-Flores Chaos 25, 013116 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.73.68 On: Thu, 14 Jan 2016 13:22:55



1F. Naqib, T. Quail, L. Musa, H. Vulpe, J. Nadeau, J. Lei, and L. Glass,

“Tunable oscillations and chaotic dynamics in systems with localized syn-

thesis,” Phys. Rev. E 85(4), 046210 (2012).
2S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,

“Complex networks: Structure and dynamics,” Phys. Rep. 424(4),

175–308 (2006).
3G. N. Borisyuk, R. M. Borisyuk, A. I. Khibnik, and D. Roose, “Dynamics

and bifurcations of two coupled neural oscillators with different connec-

tion types,” Bull. Math. Biol. 57(6), 809–840 (1995).
4N. Brunel, “Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons,” J. Comput. Neurosci. 8(3), 183–208

(2000).
5E. Bullmore and O. Sporns, “Complex brain networks: Graph theoretical

analysis of structural and functional systems,” Nat. Rev. Neurosci. 10(3),

186–198 (2009).
6S. Campbell and D. Wang, “Synchronization and desynchronization in a

network of locally coupled Wilson-Cowan oscillators,” IEEE Trans.

Neural Networks 7(3), 541–554 (1996).
7M. Corbetta, “Functional connectivity and neurological recovery,” Dev.

Psychobiol. 54(3), 239–253 (2012).
8Y. A. Kuznetsov, A. Dhooge, and W. Govaerts, “Matcont: A matlab pack-

age for numerical bifurcation analysis of odes,” ACM Trans. Math.

Software 29, 141–164 (2003).
9R. T. Gray and P. A. Robinson, “Stability and structural constraints of ran-

dom brain networks with excitatory and inhibitory neural populations,”

J. Comput. Neurosci. 27(1), 81–101 (2009).

10H.-J. Park and K. Friston, “Structural and functional brain networks: From

connections to cognition,” Science 342(6158), 1238411 (2013).
11S. M. Pincus, “Approximate entropy as a measure of system complexity,”

Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991).
12A. Radulescu and L. R. Mujica-Parodi, “Network connectivity modulates

power spectrum scale invariance,” NeuroImage 90, 436–448 (2013).
13M. Rubinov and O. Sporns, “Complex network measures of brain con-

nectivity: Uses and interpretations,” NeuroImage 52(3), 1059–1069

(2010).
14A. R�adulescu, “Neural network function, density or geometry?,” preprint

arXiv:1304.5232.
15B. Siri, M. Quoy, B. Delord, B. Cessac, and H. Berry, “Effects of Hebbian

learning on the dynamics and structure of random networks with inhibitory

and excitatory neurons,” J. Phys. Paris 101(1), 136–148 (2007).
16O. Sporns, “The human connectome: A complex network,” Ann. N. Y.

Acad. Sci. 1224(1), 109–125 (2011).
17O. Sporns and R. K€otter, “Motifs in brain networks,” PLoS Biol. 2(11),

e369 (2004).
18O. Sporns and G. Tononi, “Classes of network connectivity and dynami-

cs,” Complexity 7(1), 28–38 (2001).
19A. W. Toga, K. A. Clark, P. M. Thompson, D. W. Shattuck, and J. D.

Van Horn, “Mapping the human connectome,” Neurosurgery 71(1), 1

(2012).
20H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions

in localized populations of model neurons,” Biophys. J. 12(1), 1–24

(1972).

013116-15 A. R�adulescu and S. Verduzco-Flores Chaos 25, 013116 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.138.73.68 On: Thu, 14 Jan 2016 13:22:55

http://dx.doi.org/10.1103/PhysRevE.85.046210
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1007/BF02458296
http://dx.doi.org/10.1023/A:1008925309027
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1109/72.501714
http://dx.doi.org/10.1109/72.501714
http://dx.doi.org/10.1002/dev.20507
http://dx.doi.org/10.1002/dev.20507
http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1007/s10827-008-0128-0
http://dx.doi.org/10.1126/science.1238411
http://dx.doi.org/10.1073/pnas.88.6.2297
http://dx.doi.org/10.1016/j.neuroimage.2013.12.001
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://arxiv.org/abs/1304.5232
http://dx.doi.org/10.1016/j.jphysparis.2007.10.003
http://dx.doi.org/10.1111/j.1749-6632.2010.05888.x
http://dx.doi.org/10.1111/j.1749-6632.2010.05888.x
http://dx.doi.org/10.1371/journal.pbio.0020369
http://dx.doi.org/10.1002/cplx.10015
http://dx.doi.org/10.1227/NEU.0b013e318258e9ff
http://dx.doi.org/10.1016/S0006-3495(72)86068-5

