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Measures of complexity are sensitive in detecting disease, which has made them attractive candidates for diag-
nostic biomarkers; one complexity measure that has shown promise in fMRI is power spectrum scale invariance
(PSSI). Even if scale-free features of neuroimaging turn out to be diagnostically useful, however, their underlying
neurobiological basis is poorly understood. Using modeling and simulations of a schematic prefrontal-limbic
meso-circuit, with excitatory and inhibitory networks of nodes, we present here a framework for how network
density within a control system can affect the complexity of signal outputs. Our model demonstrates that
scale-free behavior, similar to that observed in fMRI PSSI data, can be obtained for sufficiently large networks
in a context as simple as a linear stochastic system of differential equations, although the scale-free range im-
proves when introducing more realistic, nonlinear behavior in the system. PSSI values (reflective of complexity)
vary as a function of both input type (excitatory, inhibitory) and input density (mean number of long-range con-
nections, or strength), independent of their node-specific geometric distribution. Signals show pink noise (1/f)
behavior when excitatory and inhibitory influences are balanced. As excitatory inputs are increased and de-
creased, signals shift towards white and brown noise, respectively. As inhibitory inputs are increased and de-
creased, signals shift towards brown and white noise, respectively. The results hold qualitatively at the
hemodynamic scale, which we modeled by introducing a neurovascular component. Comparing hemodynamic
simulation results to fMRI PSSI results from 96 individuals across a wide spectrum of anxiety-levels, we show
how our model can generate concrete and testable hypotheses for understanding how connectivity affects regu-
lation of meso-circuits in the brain.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Measures of complexity are sensitive in detecting disease, which has
made them attractive candidates for diagnostic biomarkers. One
straightforward way of characterizing complexity is the use of power
spectrum scale invariance (PSSI), which measures the relative frequen-
cy content of signalswhose spectra showpower lawbehavior: S(f) ∝ fβ.
In this context, the scaling exponent β is 0 (white-noise) at maximum
entropy, with β = −1, −2 representing the increasing regularity of
pink and brown noise respectively. To date, several studies have applied
complexity analyses to fMRI, and have shown that for healthy neurobi-
ological states, the entropy of neural time-series is characterized by
roughly β = −1 (S(f) ∝ 1/f), while neural time series in schizophrenia
(Rǎdulescu et al., 2012), anxiety (Tolkunov et al., 2010), and autism (Lai
et al., 2010), showa significant shift towardsβ = 0. In contrast, EEG sig-
nals from patients with epilepsy also deviate from the pink noise range,
but in this case towards greater regularity (Bhattacharya et al., 2000;
Bruzzo et al., 2008; Molteni et al., 2008; Protzner et al., 2010). The fact
Stony Brook University, Stony

ujica-Parodi).

ghts reserved.
that complexity should be able to identify disease states is not unique
to the brain: the diagnostic use of fractals and complexity as applied
to ECG has a long-standing history in physiology, most particularly in
its application of heart-rate variability (HRV) to detect risk for myocar-
dial infarction and heart disease (Cerutti et al., 2009; Ho et al., 1997;
Kaplan et al., 1991; Li et al., 2007; Mäkikallio et al., 1998; Mujica-
Parodi et al., 2005; Peng et al., 1994; Pincus and Goldberger, 1994;
Stanley et al., 1992; Valencia et al., 2009; Voss et al., 1995).

Even if spectral power law features of neuroimaging turn out to be
diagnostically useful, however, their underlying neurobiological basis
is poorly understood. In the case of HRV, complexity in the healthy
heart-rate is assumed to be a consequence of autonomic control. A
healthy autonomic nervous system has excitatory (primarily sympa-
thetic) and inhibitory (primarily parasympathetic) components that
work in tandem, ensuring a system that is supple enough to easily re-
spond to even small stimuli, yet constrained enough to efficiently return
to baseline. Thus, the fact that healthy heart rates fall in the pink noise
range (Peng et al., 1993, 1995), balanced between chaos and order,
seems intuitive not only from a physical and dynamical systems
perspective, in which pink noise is associated with the metastable
point at which phase transitions occur (Gisiger, 2001), but also as a
physiologically-plausible consequence of negative feedback.
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Fig. 1. Schematic representation of bimodular network for N = 5 nodes per module. The
excitatory neural population X is shown on the left; the inhibitory population Y is shown
on the right. They are both fully-connected, local sub-graphs of the full network. The dot-
ted red arrows represent the long-range X–Y connections, and the dotted blue arrows rep-
resent the Y–X connections, all generated randomly for low feed-forward and feedback
connectivity densities Myx = Myx = 25%, to maintain clarity of the illustration.
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Unlike the autonomic nervous system, however, the brain's net-
works (at multiple scales) are still very much in the early stages of
being defined, and thus present a much greater challenge in terms of
identifying their relationship to the complexity of measured electro-
physiological or hemodynamic signals. Nevertheless, and in spite of nu-
merous parallel pathways within the system, there do appear to be
meso-circuits that have predominant excitatory and inhibitory compo-
nents, and that function at scales measurable in the awake animal and
human. One such meso-circuit is the prefrontal-limbic system, for
which the amygdala and prefrontal (orbitofrontal, ventromedial, dorso-
lateral) regions provide up and down-regulation of the emotional
arousal response, respectively (Baxter et al., 2000; Davis et al., 2001;
Izquierdo and Murray, 2005; LeDoux, 2000; Mujica-Parodi et al., 2009;
Phelps et al., 2004; Rosenkranz et al., 2003; Sotres-Bayon et al., 2006).

Recent studies have used randomnetwork approaches to investigate
the organizational principles of brain networks (Bullmore and Sporns,
2009), with nodes and edges defined according tomodality appropriate
scales (Sporns, 2010). Since the temporal evolution of a network is ex-
pected to depend on a combination of its hardwired circuitry and its dy-
namic coupling, much work has been directed towards understanding
the effect of the neural architecture on neural function (Boccaletti
et al., 2006). The stability and synchronization patterns of brain net-
works with coupled randomly distributed excitatory and inhibitory
neural populations have been investigated, both analytically and nu-
merically, in a variety of contexts: from biophysical models (Gray and
Robinson, 2008), to simplified systems (Siri et al., 2007). These analyses
reveal a rich range of potential dynamic regimes and transitions
(Brunel, 2000), shown to depend as much on the coupling parameters
of the network as on the arrangement of the excitatory and inhibitory
connections (Gray and Robinson, 2009). In fact, from a graph theoretical
perspective, studies support certain generic topological properties of
the human brain architecture, such as modularity, small-worldness,
the existence of hubs and other connectivity density patterns (He and
Evans, 2010).

Here, we take a similar random network based approach to investi-
gate general constraints on how dynamic activity can emerge and be
modulated by connectivity between excitatory and inhibitory nodes in
a meso-circuit with feedback (e.g., the prefrontal-limbic system),
viewed as a network of hemodynamic nodes relevant to fMRI studies.
Using modeling and simulations, we present a framework for how net-
work density within our control system can affect the complexity of sig-
nal outputs. We build upon our previous black-box models (Rǎdulescu,
2008, 2009), to include two interconnected brain networks, one excit-
atory and the other inhibitory. Themodel was designedwithin the con-
straints of three broad parameters. First, it needed to be simple enough
to analyzemathematically aswell as to simulate using reasonably-sized
(∼102-node) networks. Second, it needed to be multi-layered, such
that, at the hemodynamic scale, networks of nodes could be nested
within the interaction of the two primary brain regions. Third, the
model should schematically represent the prefrontal-limbic system in
order to inform our neuroimaging results of that same system, but con-
straints should be sufficiently general to maintain relevance for other
neural control circuits. With this last goal in mind, we chose to incorpo-
rate a neurovascular component and to characterize complexity using
PSSI, to permit comparison with prior fMRI results (Lai et al., 2010;
Rǎdulescu et al., 2012; Tolkunov et al., 2010).

The general aim was to provide a theoretical bridge between devia-
tions in signal complexity measured at the hemodynamic scale, and the
connectivity that might underlie it. Because many different models can
produce the same behavior, it is not possible to use behavior to “test”
whether a model is correct. Nevertheless, models can provide a way to
determine whether certain types of parameters and their interactions
are capable of leading to certain kinds of outcomes, generating well-
defined hypotheses that can then be tested empirically. In this case,
we wanted to identify a (neurobiologically-plausible, testable) mecha-
nism that might explain how network properties in a control system
affect the distribution of frequencies (complexity) of signal outputs.
While the control structure is not unique to the prefrontal-limbic sys-
tem, our reference to that meso-circuit wasmotivated by two consider-
ations. First, animal and human experiments had already identified
excitatory and inhibitory components,making it a reasonable candidate
for control systemsmodeling. Second, we hoped that it might be able to
inform our results from two fMRI studies of healthy individuals, one on
stress vulnerability and the other on stress resilience, which together
showed a consistent pattern between PSSI of the prefrontal-limbic sys-
tem and susceptibility to anxiety.

Methods

Modeling methods

In our model, we construct two interacting networks of nodes, such
that each node is self-damping, interacts locally with all others within
its module (thus obtaining some degree of modular internal synchroni-
zation) and also has long-range connections with a variable fraction of
the nodes in the opposite module (Fig. 1).

We represent these two interacting networks,module X andmodule
Y, by two sets of variables: xk, k = 1,…,N and yk, k = 1,…,N respective-
ly, obeying the constraints described by the following systemof 2 N first
order linear differential equations:

dxk
dt

¼ −γxxk þ
XN
p¼1

gyxAkp yp−xk
� �

þ
XN
p¼1

gxx xp−xk
� �

þ Ik tð Þ

dyk
dt

¼ −γyyk þ
XN
p¼1

gxyBkp xp−yk
� �

þ
XN
p¼1

gyy yp−yk
� �

;

ð1Þ

where the parameters represent the following: γx and γy are damping
coefficients, gxx and gyy are local connection strengths, assumed to be
the same within each module; gxy and gyx are long-range connection
strengths (from nodes in X to nodes in Y, and conversely). The damping
coefficients guarantee the decay to zero of solutions in absence of exter-
nal forcing terms. These parameters can be drawn more generally from
prescribed distributions of values (see the Modeling nonlinearity
section); in this section, however, we use for each type of parameter a
fixed (mean) value, in order to keep our formal calculation of the
spectra more tractable. Mxy and Myx represent densities of edges be-
tween X and Y. More precisely, one can defineα to be the number of ori-
ented edges from nodes in X to nodes in Y, and δ to be the number of
oriented edges from nodes in Y to nodes in X, so that 0 ≤ α, δ ≤ N2.
We consider the corresponding edge densities to be normalized as
Mxy = α/N2 and Myx = δ/N2, so that 0 ≤ Mxy ≤ Myx ≤ 1. Note that
the densities Mxy and Myx are fractions (or percentages) of N2, which
represent the maximum number of edges that could run from each
module to the opposite one.

The equations were inspired by a system of coupled springs, in
which the driving force imposed on each spring by another with
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which it is coupled is proportional to the difference between their cur-
rent amplitudes. That is, in our system the state of a given node is influ-
enced positively or negatively by the nodes that are connected to it by
edges, depending on the level of activity in each, and on the nature of
the connection (excitatory or inhibitory). Notice that, formally, the sub-
tractive terms can be easily absorbed within the damping of each equa-
tion when writing the system's Jacobian.

The matrices A = (Akp) and B = (Bkp) are binary matrices
representing which of the cells in X are cross-connected with cells in Y
and conversely. Theywere generated randomly for each numerical sim-
ulation, for fixed densities Mxy andMyx.

In addition to the neural contributions described in the system
(7), the nodes in module X were each subject to external forcing
terms Ik tð Þ ¼ Î tð Þ þ ik tð Þ , k = 1,…N, in the form of white noise
(representing exogenous inputs via sensory pathways). The inputs
had two white noise components: one channel Î tð Þ of amplitude
0.01 common to all nodes, representing the actual signal, and a
node-specific white noise jitter ik(t) of amplitude 0.005, representing
variability among the nodes' reception of a common signal.

This random input introduced a stochastic component in an other-
wise simple deterministic system with trivial long-term behavior. We
solved the system numerically, using the Euler–Maruyama method
for integrating SDEs (Kloeden et al., 1994), with a fixed step size
h = 2.5 s (units are taken to be seconds, as per our experimental
data). Because the system has strong self-damping, the discrete solu-
tions (time series) obtained by numerical integration have a short tran-
sient decay, after which they settle to mainly noise-driven oscillations.
We allowed the solutions to settle for τ = 25 s (i.e., 10 data-points),
then “recorded” time series of length τ = 750 s (i.e., 300 data points),
which we used for our further analysis. While remaining in a range of
parameters that ensures convergence of the algorithm, we aimed to
generate and analyze our model time series within a setup as close as
possible to that used when processing the empirical time series (see
below). We chose the step size in accordance with the time resolution
used in our experimental recordings, and the series length to be compa-
rable to that of our typical fMRI time series (∼300data points). Likewise,
we did not artificially reduce noise by considering longer simulations or
averaging multiple runs. Rather, we found that presenting the statistics
(within each module and over multiple runs) was more informative, il-
lustrating not just the mean slope values, but also the connectivity ef-
fects on their variability. We used numerical simulations when
drawing the comparison with the empirical results, but included a sec-
tionwhich explains a fewmathematical aspects of themodel andmoti-
vateswhy the numerical simulationswere preferred in this case, aswell
as in the nonlinear extension of the model.
Fig. 2. Comparisonwith data. Amygdala (red) and ventromedial prefrontal (blue) power spectr
jects, while watching a movie in the scanner, and B. per our model. The axes are logarithmic, bu
which are comparable. The numerical simulationswere performed for a networkwithN = 20n
range connectivity densities were fixed to Mxy = 40% and Myx = 50%; damping coefficient
gxy = 0.2187 N, gyx = −0.08/N.
Empirical methods

Our two fMRI studies (S1 and S2) scanned 96 individuals, ranging
emotionally from extremely reactive to extremely nonreactive, and ob-
tained PSSI values for the bilateral ventromedial prefrontal cortex and
amygdala. The average-to-reactive range (n = 65) was identified
using clinical questionnaires (study S1) (Tolkunov et al., 2010), while
the average-to-nonreactive range (n = 30) was identified using corti-
sol response in anticipation of a first-time skydive (study S2). A case
study (n = 1) of exceptional nonreactivity, a bomb squad technician
with several military tours of duty defusing explosives during U.S.
Navy SEAL missions, used identical methods to the skydive study. This
case study has been separated to provide an illustration of the extreme
end of the nonreactive spectrum (see Fig. 2 caption). For this manu-
script, data from both S1 and S2were reanalyzed to provide consistency
between studies, using the same method for computing the power
spectra and a normalized presentation of the PSSI results (fft directly
on the BOLD signal), as needed in order to compare them with our
model's predictions.

S1: trait anxiety study
This study was approved by the institutional review board at Stony

Brook University; all subjects provided written informed consent.
Sixty-five (37 female) healthy adults between the ages of 18 and 49
(μ = 26, σ = 8) participated in the study. Trait anxiety scores, as mea-
sured by the State-Trait Anxiety Inventory for Adults (MindGarden, Inc.,
Menlo Park CA), ranged from 21 to 67 (μ = 38, σ = 10). The fMRI task,
a block design using affect-valent (fearful, angry, happy, neutral) facial
stimuli, has previously been described (Tolkunov et al., 2010). A lengthy
phone screening, as well as the scheduled clinical interview for DSM-IV
(Ventura et al., 1998), was administered to rule out subjects with cur-
rent or prior psychiatric illness. All subjects received a history and a
physical; subjects were excluded if they had a history of drug abuse,
traumatic brain injury, cardiovascular illness (including high blood
pressure), regular nicotine use, or any MRI exclusion criteria, including
metal in the body, claustrophobia, or pregnancy/lactation. Subjects
were scanned on a 1.5 T Philips Intera MRI scanner at the Stony Brook
University Hospital using an 8-channel SENSE parallel head coil. Data
were acquired using 136 T2*-weighted echo planar single-shot images
covering the frontal and limbic areas of the brain (oblique coronal)
with the following parameters: TR = 2500 ms, SENSE factor = 2,
TE = 45 ms, Flip angle = 90°, Matrix dimensions = 256 × 256,
FOV = 64 × 64, Slices = 30, Slice-thickness = 4.0 mm, and
Gap = 0. The anatomical data were used to generate a customized EPI
template to normalize our EPI scans to the standard frame of reference.
a, A. as seen in the 1090-point long fMRI time series recorded from one of our human sub-
t the labels are in physical units. The legends show the regionmeans for the PSSI slopes β,
odes permodule, and time series of length L = 100 and step resolution h = 2.5. The long-
s γx = 0.25, γy = 0.25, and local connectivity strengths gxx = 0.004/N, gyy = 0.004/N,

image of Fig.�2
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The fMRI data analyses were performed using the Statistical Parametric
Mapping software (SPM8; http://www.fil.ion.ucl.ac.uk/spm), using
MATLAB 2010a (Mathworks, Natick MA).

S2: skydiving study
This study was approved by the institutional review board at Stony

Brook University; all subjects provided written informed consent.
Thirty (12 female) healthy adults between the ages of 18 and 48
(μ = 24, σ = 7) participated in the study. Potential participants were
screened and demographic/personality measures were acquired in
the same manner as S1. Trait anxiety scores ranged from 20 to 53
(μ = 33, σ = 7). The fMRI task, a block design using countdowns of
imminent aversive or benign noise, has previously been described
(Carlson et al., 2011). Subjects were scanned on a 3 T Siemens Trio
MRI scanner at the Stony Brook University SCAN Center using a 12-
channel SENSE parallel head coil. Data were acquired using 232 T2*-
weighted echo planar single-shot images covering the whole brain
(oblique coronal) with the following parameters: TR = 2500 ms,
SENSE factor = 2, TE = 22 ms, Flip angle = 83°, Matrix
dimensions = 96 × 96, FOV = 224 × 224 mm, Slices = 36, Slice
thickness = 3.5 mm, and Gap = 0. The anatomical data were used to
generate a customized EPI template to normalize our EPI scans to the
standard frame of reference. The fMRI data analyses were performed
using the Statistical Parametric Mapping software (SPM8; http://
www.fil.ion.ucl.ac.uk/spm), using MATLAB 2010a (Mathworks, Natick
MA).

For Power Spectrum Scale Invariance (PSSI) analyses, we used full
raw fMRI BOLD time series, which included all conditions. Using
methods previously optimized for fMRI (Rubin et al., 2013), we calcu-
lated for each voxel the power spectral density as the squares of the
Fourier transformation amplitudes of the linearly detrended time series.
To verify that our power spectra indeed obey a power law,wefitted sev-
eral common shapes to the sample spectra of our longest time series
(consisting of 42 min of fMRI data from the left amygdalawhile the sub-
ject engaged on a “guided rest” condition). We fitted the power spec-
trum (from 0.01 − 0.2 Hz) using a nonlinear least square fit to the

following candidate functional profiles: stretched exponential Af β−1

e−λ f β , log-normal A
f exp − ln f−μð Þ2

2σ2

h i
and truncated power law Afβe−λf

(including power law Afβ for λ → ∞ and exponential Aeλf for β = 0).
While the χ2 of the fits were fairly close to each other, only a power
law fit produced uniformly distributed residuals while at the same
time exhibiting the lowest χ2 of all candidate distributions—suggesting
a power law as the most appropriate distribution for our data.

From the power spectral density, we computed the scaling parame-
ter by plotting the power spectrum on a log–log scale and estimating
the slope by applying a linear fit to the data in the 0.06 − 0.2 Hz
range. The upper limit on the frequency range was constrained by the
sampling rate, while the lower limit was chosen to avoid confounds
due to either task design or physiological variables such as heart rate
or respiration (Bär et al., 2007). Being aware that a log–log scale com-
promises the assumption of Gaussian distribution of errors, we
attempted to fit a power law to our data using the Levenberg–
Marquardt algorithm. Unfortunately, this algorithm was often unable
to converge in an automated fashion, resulting in incomplete data
sets. We therefore chose the robust least-square linear fit to the log–
log spectra.

Results

Numerical simulations

Power spectra show a linear trend in log–log coordinates, over the
frequency-band of interest

We considered the log–log power spectra of the simulated time
series for each individual node. We used the frequency band
corresponding empirically to 0.025 − 0.2 Hz, an interval which includ-
ed the frequencies used for computing the PSSI in the experimental time
series (Rǎdulescu et al., 2012; Tolkunov et al., 2010), and which has
been previously shown in fMRI to reflect connectivity (Cordes et al.,
2001). Over this interval, the spectra were approximately linear: for
N = 20, the average standard error was � ¼ 0:08 (where the average
was taken over a 20 × 20 grid of connectivity parameters, ranging
from 0% to 100%, and also over R = 10 different runs of the numerical
simulation). This is comparable to the goodness offit obtained in our ex-
perimental times series (Rǎdulescu et al., 2012; Tolkunov et al., 2010).
The linearity emerged from tuning the connectivity strengths g to
values within a particular locus; furthermore, the values in this critical
locus showed scaling behavior with network size N.

β is robust within each module and over numerical runs
The model incorporates randomness in two contexts. First, the ran-

dom input signal was the source of white noise in the system and had
a crucial role in driving its behavior in the frequency domain. Second,
the inter-modular connections were generated randomly for each run
of the numerical simulation, according to the preassigned density pa-
rametersMxy andMyx. While onewould expect some level of synchrony
of the nodes' activity within each module, one might also expect the
values of β to vary widely between runs, driven by the different geom-
etries for the connections within the network nodes. In actuality, how-
ever, this did not occur. Even when varying Mxy and Myx between 0%
and 100% of the maximal theoretical value of N2, the values of the PSSI
slopes β in either module were quite consistent between runs. As
shown in Fig. 3, after 100 runs we found that the distributions for
each module were normal (almost no outliers), with very small stan-
dard deviations σmodule within each module (reflecting the level of syn-
chrony of the nodes within). The standard deviations σrun of the
module-mean βs within each run, although almost one order of magni-
tude larger than σmodule, were still surprisingly small in comparison
with the overall variability of β when allowing different density pairs
(Mxy,Myx).

β varies as a function of both input type (excitatory, inhibitory) and
input density

Our simulations showed that when the network was balanced at
Mxy = Myx = 50%, the PSSI for each of the two modules was close to
pink noise (β ∼ −1). As the number of excitatory inputsMxy increased,
PSSI of Y shifted towards white (β = 0) noise. As the number of
excitatory inputs Mxy decreased, PSSI of Y shifted towards brown
(β = −2) noise. The opposite was true for inhibitory inputs. As the
number of inhibitory inputs Myx increased, PSSI of X shifted towards
brown (β = −2) noise. As the number of inhibitory inputs Myx de-
creased, PSSI of X shifted towards white (β = 0) noise. Representative
examples are shown in Fig. 4.

In Fig. 5, we provide a global representation of PSSI's dependence
upon both input type and input density. The surface plots of average
PSSI values for both modules were planes, which means that the PSSI
values depended linearly on both parameters, changing at different con-
stant rates with respect to each. As expected, both modules in the net-
work were affected by density changes, with the module receiving the
altered inputs showing the strongest effects. Also as expected, X and Y
were more closely coupled for changes in Myx as compared to Mxy.
This is because our model was designed to receive its exogenous inputs
through X (unlike the actual prefrontal-limbic system, which receives
parallel exogenous inputs for both regions) and therefore Xwas depen-
dent upon a greater number of feedback iterations as compared to Y.

Modeling the hemodynamic response

If applied at a neural scale, the model can be used indirectly in con-
junction with blood oxygen level dependent (BOLD) signals produced
by fMRI. The latter arise from a coupling between spiking and synaptic

http://www.fil.ion.ucl.ac.uk/spm)
http://www.fil.ion.ucl.ac.uk/spm)
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Fig. 3.Histogram illustratingmodel robustnesswith respect to the randomgeneration of the connectivity graph. Themain histograms represent the PSSI slopesβ obtained for all the nodes
in eachmodule, over R = 100 numeric runs. The inserts show similar illustrations, but in detail for only R = 5of the 100 runs, in order to clarify the color scheme used: allN = 20 values
within eachmodule are shown in the same color for any particular run, so that different runs can be distinguished by different colors. The statistics are described below, with the following
notations: μ is the mean module-wise β over 100 runs; σrun is the standard deviation of the module-mean βs, calculated over 100 runs (illustrating the robustness of β between
runs); σmodule is the standard deviation of the run-mean βs, over the N = 20 nodes in the module (illustrating the overall level of “synchrony” within each module). A. Module X.
μ = −1.06; σrun = 0.14, σmodule = 0.02. B. Module Y. μ = −1.30; σrun = 0.20, σmodule = 0.01. All simulations were performed for a half-balanced network (long-range connectivity
densities Mxy = 50% and Myx = 50%) with N = 20 nodes per module, with damping coefficients γx = 0.25, γy = 0.25, and local connectivity strengths gxx = 0.004/N, gyy = 0.004/N,
gxy = 0.21875/N, gyx = −0.08/N.

440 A. Rǎdulescu, L.R. Mujica-Parodi / NeuroImage 90 (2014) 436–448
activity and the vascular response, with a subsequent change in blood
oxygenation. Vascular coupling has been viewed to act either linearly
(Li and Freeman, 2007; Logothetis et al., 2001) or nonlinearly (Sheth
et al., 2004) on signal amplitudes and frequencies (Freeman and
Pasley, 2008; Kellman et al., 2003; Ogawa et al., 2000). In recent years,
particular models (e.g., the balloon model (Friston et al., 2000), or the
neural mass model (Logothetis et al., 2001)) have been proposed as rea-
sonable approximations for neurovascular coupling between neural ac-
tivity and the BOLD response (Rosa et al., 2011). In this section, we use
Buxton's reducedmodel of the effect of vascular coupling (Buxton et al.,
2004), in order to bridge our results to the hemodynamic behavior ob-
served empirically.

In Buxton's model, with dynamic variables normalized to their base-
line values (see Table 1 for the values and significance of parameters),
the basic BOLD signal equation is:

ΔS
S0

¼ A 1− f α0−β0ð Þmβ0
� �

; ð2Þ

where f(t) and m(t) are the cerebral blood flow (CBF) and respectively
the cerebral metabolic rate of oxygen (CMRO2) responses (normalized
to baseline) driven by the underlying neural activity N(t) (which in
our case corresponds to the output signals of the neural model de-
scribed in the Modeling methods section). The parameters α0 and β0

(whose values were taken within the empirical ranges shown in
Table 1) are respectively the steady-state flow-volume relation and
the power law exponent in the relationship R∼ΔBβ0 between R (the re-
laxation rate produced by deoxyhemoglobin in the baseline state) and
ΔB (the magnitude of field distortions). The model assumes that both
CBF and CMRO2 are linear convolutions of an impulse response function
h(t) with the neural activity N(t), so that:

f tð Þ ¼ 1þ f 1−1ð Þh t−δt f
� �

� N tð Þ ð3Þ

m tð Þ ¼ 1þ m1−1ð Þh t−δtm
� �

� N tð Þ; ð4Þ

with empirical ranges for the delays δt f and δtm , as shown in Table 1. A
plausible shape for h(t) is a gamma-variate function, in this case taken
to be on the form:

h tð Þ ¼ 1
τhk!

t
τh

� �k

e−t=τh ; ð5Þ
where the parameters τh and k are also defined in Table 1. As expected,
our simulations found this transformation to act as a lowpass frequency
filter on our original time series.More precisely, since our neurovascular
transformation consists of a convolution with an impulse response
function, it left the shape of the spectra unaltered, and only slightly
tilted them (increased all |β| by the same constant). Fig. 6A illustrates
the slope change for a typical example of time series generated by our
model (notice the mean error is the same when performing the linear
fitting to the neural versus the hemodynamic log–log spectra, consis-
tently with the fact that the shape of the spectrum is preserved).
Fig. 6B illustrates the global variation of the new (hemodynamic) slopes
βwith respect to the densitiesMxy andMyx, showing that the original re-
sults (as seen in Fig. 5) remain qualitatively unchanged through the he-
modynamic modulation.

The addition of a neurovascular component is useful in that it per-
mits amore direct comparison between ourmodel and fMRI data. How-
ever, it must be considered preliminary due to the fact that convolution
acts linearly on the power spectra. Future work will address this aspect
in greater detail.

Modeling nonlinearity

The original model allowed us to illustrate some basic consequences
of the coupled dynamics, while its linear aspect kept the model simple
enough to analyze and understand theoretically. However, linearity is
implausible in biological systems, and should be only seen as a first
order approximation of more realistic behavior, which is most typically
nonlinear. In the brain in particular, nonlinear behavior of neurons
when processing inputs (Faure and Korn, 2001; Korn and Faure, 2003)
has been long supported by data from empirical recordings (Vazquez
and Noll, 1998; Xu et al., 2012). A wide variety of formal models have
been used to implement nonlinear input integration at the cellular
(Hodgkin and Huxley, 1952; Pasemann, 1993), mean-field (Wilson
and Cowan, 1972) or macroscopic levels (Friston et al., 2000). While a
very accurate biophysical model may consider a membrane-potential
approach, and take into account short-scale temporal details (such as
recent activation history of each cell), wemaintain here (as in the linear
model) amean-field approach, in the tradition ofwell-knownmodels of
excitatory (E) and inhibitory (I) interacting populations (Destexhe and
Sejnowski, 2009). The sigmoidal family has been widely proposed as a
natural shape to model input integration (Brozović et al., 2008;
Marreiros et al., 2008; Wilson and Cowan, 1972), since the actual
nonlinear shape of E and I responses has not been yet established.

image of Fig.�3


Fig. 4. Illustration of PSSI for both modules X and Y as a function of connectivity densities
Mxy andMyx in a network of N = 20 nodes per module. The axes are logarithmic, but the
labels are in physical units. Red is used for the excitatorymodule X, and blue for the inhib-
itory module Y. For each panel, the text box shows, with the same color coding, the
module-mean value of β, the standard deviation σ and the mean goodness of the linear
fit (∈ = average standard error). A. For Mxy = 50%, Myx = 50%; B. For Mxy = 90%,
Myx = 50%; C. For Mxy = 50%, Myx = 20%. All plots illustrate one simulation run, for pa-
rameter strengths: γx = 0.25, γy = 0.25, gxx = 0.004/N, gyy = 0.004/N, gxy = 0.21875/N,
and gyx = −0.08/N.
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Empirically, and probably varies with the type, location and function of
the neurons. Thisway, the neural integrator is set to bemost sensitive to
inputwhen it falls within a certainmagnitudewindow, and its response
will saturate as the sum of inputs becomes unusually strong:

Sb;θ Zð Þ ¼ 1
1þ exp −b Z−θ½ �ð Þ−

1
1þ exp bθð Þ : ð6Þ

The parameter θmodulates the position of the sensitivity window, b
modulates themaximumresponsiveness, and τdefines the time scale of
the response.
In this section,we allow the nodes in our network to act as nonlinear
oscillators, and we observe numerically how our results are changed by
thenonlinearity. The incoming synaptic input to each node, as described
in our original linearmodel (1), was integrated via a sigmoidal function.
The nonlinear system describing the evolution of xk and yk, for k = 1,…
N is then:

dxk
dt

¼ Sbe ;θe −γxxk þ
XN
p¼1

gyxAkp yp−xk
� �

þ
XN
p¼1

gxx xp−xk
� �! 

þ Ik tð Þ

dyk
dt

¼ Sbi ;θi −γyyk þ
XN
p¼1

gxyBkp xp−yk
� �

þ
XN
p¼1

gyy yp−yk
� �!

;

 ð7Þ

where Sbe ;θe and Sbi ;θi are E and I sigmoidal functions, defined as in
Eq. (6). The sigmoidal parameters (be,θe) and (bi,θi) respectively, were
chosen within the range used for the corresponding parameters in the
original Wilson–Cowan model (Wilson and Cowan, 1972), as well as
in subsequent related work (Borisyuk et al., 1995) (see Figs. 7 and 8
captions).

In order to increase themodel's realism, the strengthsgxx k; pð Þof the
connections between xk and xp were defined to be normally distributed
around the mean gxx (the original value of the identical connection
strength); similarly, we defined normal distributions for gxy k;pð Þ ,
gyx k;pð Þ and gyy k; pð Þ.

A first glance at the spectra of the nonlinear extension reveals a
much wider power law window. In Fig. 7B, we compare, for a typical
spectrum using the nonlinear model, the log–log linear fit on the
narrower 0.025 − 0.2 Hz frequency band to the linear fit on the wider
band 0.001 − 0.2 Hz (corresponding to the whole log–log spectrum,
except the first point). Fig. 7A, shows the comparable slope values for
both frequency bands, in the case of the linearmodel, illustrating clearly
howmuch better the nonlinearmodel behaveswith respect to PSSI. It is,
of course, not a surprise that the nonlinear extension provides a better
estimation of real neural behavior, where power law of the spectra
has been consistently observed to encompass the low frequency range
as well (Achard et al., 2006; Ciuciu et al., 2012; He, 2011; Zarahn et al.,
1997).

When re-performing the numerical computations of the spectra for
the nonlinear model, we found the spectra to be quantitatively steeper
(Fig. 7), although the slopes remained broadly within the range [−2,
0]. However, the changes in the slopes when varying Mxy and Myx

were preserved qualitatively, and were consistent even when using
the larger band-width 0.001 − 0.2 Hz (as illustrated in Fig. 8).

Empirical results

As shown in Fig. 9, individuals who were in the middle range of the
spectrum had β values in the pink noise range, for both the amygdala
(excitatory) and prefrontal (inhibitory) areas. Individuals who were
more fearful showed limbic β values closer to zero, but localized to
the amygdala (Tolkunov et al., 2010). Individuals who were more fear-
less also showed limbic β values closer to zero, but localized to the pre-
frontal cortex.

Analytical considerations for the linear model

Our system

Ẋ tð Þ ¼ CX tð Þ þ J tð Þ ð8Þ

is a stochastic relaxation process, where J(t) is the input noise vector
(Wiener process). The behavior of such (Ornstein–Uhlenbeck (OU)
(Bibbona et al., 2008; Ricciardi and Sacerdote, 1979)) stochastic pro-
cesses is fairly well understood, being driven by the nature of the
input noise overposed on the system's deterministic aspect (which is
linear). The dynamics of the one-dimensional OU is quite easy to

image of Fig.�4


Fig. 5. PSSI shifts as a function of input control and input density. A. Dependence of scale invariant slopes β on the excitatory and inhibitory connectivity densities, as per our model sim-
ulations, shown as surface functions ofMxy andMyx. B. Same illustration inwhich the two surfacesβX (left) andβY (right) are shown as pcolor plots. The simulationswereperformed for the
following parameter values:N = 20, γx = 0.25, γy = 0.25, gxx = 0.004/N, gyy = 0.004/N, gxy = 0.21875/N, gyx = −0.08/N. The plane best approximating the surface for βX (excitatory)
has negative slope− 0.0008 in the direction of increasingMxy, and negative slope−0.02 in the direction of increasingMyx; the plane best approximating the surface for βY (inhibitory) has
positive slope 0.06 in the direction of increasing Mxy, and negative slope−0.02 in the direction of increasingMyx.
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determine for given parameters, and in a multi-variate context it is dic-
tated by the spectrum of the Jacobian matrix. In our case, this matrix,
which captures the system's “connectivity,” depends simultaneously
not only on eight parameters (on the damping coefficients γx and γy,
on the short-range and inter-modular connectivity strengths gxx, gyy
and gxy, gyx, respectively, and on the inter-modular connection density
parameters Mxy and Myx) but also on a random aspect (the geometry
of the connections). It is the structure of this random matrix that com-
plicates in our case a direct and rigorous sensitivity analysis, and rele-
gated us to numerical approaches (Kloeden et al., 1994). Below we
make some conjectures about the behavior of the eigenvalues, and
about their impact on the dynamics. A more extensive analytical ap-
proach, while not within the scope of this paper, is the object of our cur-
rent work (see Discussion section).

An important, and rather surprising, feature of the simulations was
that the dynamic results were extremely robust between numerical
runs. This is due to the fact that, when fixing all system parameters
(damping, connectivity strengths and densities), the eigenvalues of
the Jacobian matrix do not vary substantially with the edge geometry.
This is not a parameter-dependent artificial property, but rather a
more intrinsic feature of the underlying graph. It is the robustness of
the network architecture (as encoded by its adjacency matrix) that re-
flects into the robustness of the temporal systemic dynamics (as cap-
tured by the power spectra of the node trajectories).
Table 1
Parameters for the neural-vascular model. The range of each parameter is given per
Buxton et al. (2004). The value for each parameter is the value used in our simulations.

Name Empirical
range

Value Units Description

α0 0.4 0.4 – Steady-state flow volume
β0 1–2 1.5 – Relationship between R∼ΔBβ0

f1 1–2 2 – Amplitude of CMRO2 response to neural
activation

n ¼ f 1−1
m1−1 2–3 2 – Steady-state flow-metabolism relation

m1 – 0.4 – Amplitude of CMRO2 response to neural
activation

δt f – 2 s Delay between stimulus and CBF
δtm – 3 s Delay between stimulus and CMRO2
δt ¼ δtm−δt f 0–2 1 s Delay between CBF and CMRO2

τh ∼1 0.4 s –

k 3 3 – –

A 0.075 – – Maximum BOLD signal change
Adjacency properties, network geometry and the Jacobian matrix
Rather than working with the densitiesMxy andMyx, it is more con-

venient in this section to simply refer to the numbers of oriented edges
from nodes in X to nodes in Y (which we called α), and from nodes in
Y to nodes in X (which we called δ). In other words, in terms of the
edge density parameters, α = MxyN

2 and δ = MyxN
2.

The adjacencymatrix of our graph is of the form: , where

M is the N × N matrix with all entries equal to 1, the block A has α en-
tries equal to one, and the block B has δ entries equal to one. For fixed
0 ≤ α, δ ≤ N2, if we call Dα;δ the distribution of 2N × 2N adjacency
matrices T with α ones in block A and δ ones in block B, then clearly
the cardinality

jDα;δj ¼ α
N2

� �
δ
N2

� �
: ð9Þ

While in general one would expect the eigenvalues of T to depend
strongly on the actual exact positions of the 1's within the blocks A
and B, we have noticed that each eigenvalue λj(T) varies, for T∈Dα;δ ,
within a very narrow distribution Lj

α,δ. We conjecture the following:

Conjecture. The expected values of λj are approximately: λ1h i≅N þ
ffiffiffiffi
αδ

p
N ,

λ2h i≅N−
ffiffiffiffi
αδ

p
N , and 〈λ3〉,…〈λ2N〉 ≅ 0 (withmultiplicity 2 N − 2). Moreover,

the variance of each Lj
α,δ decreases with N, even though the cardinality of

each Dαδ increases factorially with N.

While a formal proof is beyond the scope of this paper, and the gen-
eral case remains anopen question,we have investigated three different
directions that support this conjecture. First, the adjacency matrix T is a

block matrix with 2 × 2 weighted density matrix D ¼ 1 α
N2

δ
N2 1

" #
¼

1 Mxy
Myx 1

� �
. According to a result of Juhász (1990), T has two eigen-

values that are large in absolute value (of order N), with: λ1;2
	 
 ¼ N �ffiffiffiffi

αδ
p
N þ o N1=2þ�

� �
in probability, for any � N 0,while the other eigenvalues

are of order o(N1/2 + �) in probability, for any � N 0. Juhász' paper does
not provide, however, exact formulae for the expected eigenvalues,
and it does not show that their distributions narrow with increasing N.

Second, we calculated exactly the expected values and variances for
N ≤ 5, and numerically approximated them for larger Ns, using a sam-
ple of 100 possible Ts (sinceDα;δ becomes too large to inspect entirely).
We have obtained sample-based mean and variances for the real parts
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Fig. 6. Linear fitting and PSSI for the hemodynamic time series. A. The convolutionwith the hemodynamicfinite impulse response function acts on the solutions of ourmodel as a low pass
frequency filter. The shape of the frequency profile is preserved, with comparable goodness of fit when fitting a line to the log–log spectrum. The slope of this linear fit is more negative
(spectrum is slightly steeper) after the hemodynamic transformation, although the new values of β remainwithin thewhite noise to brown noise range. B. PSSI shifts as a function of den-
sities, for theBOLDmodel time series. The surfacesβX (left) andβY (right) are shown aspcolor plots. The two surfaceswere obtained inparallelwith the corresponding ones in Fig. 5. Notice
that the hemodynamic modulation has shifted the two surfaces by a negative constant, while maintaining the values in the overall [−2,0] range.
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of all eigenvalues of T. In Fig. 10A we represented these means as
surface-functions depending of the density parameters Mxy = ha/N2

and Myx = δ/N2; the corresponding approximations match the Juhász
surfaces very closely.

Third, we were able to rigorously check the conjectured formula for
the particular case in which one of the densities is 1 (i.e., either α = N2

or δ = N2), and show that in this case the variance is zero (i.e., the ei-
genvalues are completely independent on the geometry of the connec-
tions in the remaining random block).

Finally, it is important to note that this robustness of the eigenvalues
in the adjacency spectrum is not simply due to the full connectedness of
the modules X and Y (theM corners of the adjacency matrix T). The re-
sult persists when pruning 1 s randomly out of these corners, and
breaks down only when all connections have been removed. This is a
valuable property when determining which connectivity schemes are
safe to use for models of learning, or other cognitive algorithms in the-
oretical neuroscience. Popular biophysically plausible choices range
from considering fully-connected to fully-disconnected interacting net-
works, or layers (O'Reilly and Frank, 2006). In ourmodeling framework,
learning is not a priori prevented in any of these schemes.
Fig. 7. Comparison of PSSI between the linear model and the nonlinear extension, illustrated b
arithmic, but the labels are in physical units. The slopes of the best linear fit to the log–log spectr
spectrum, except the first point). The spectra and the corresponding slope statistics are shown
module Y in blue (for 0.025 − 0.2 Hz) and in cyan (for 0.025 − 0.2 Hz). The two panels repre
are almost identical between the two band widths, indicating a much wider range PSSI behav
of the spectra in B with those of the empirical spectra in Fig. 2A. Parameter values: N = 20
means gxx = 0.004/N, gyy = 0.004/N, gxy = 0.21875/N, gyx = −0.08/N and standard deviatio
τ = 0.01.
The Jacobian (connectivity) matrix of our OU system is given in
block form by:

ð10Þ

where the four N × N blocks are Cxx = −(γx + Ngxx)I − gyxDA +
gxxM, Cyx = ATgyx, Cxy = BTgxy, Cyy = − (γy + Ngyy)I − gxyDB +
gyyM (here we used the notation DA for the diagonal matrix with
entries the sum of elements of each column of A, and the same
for DB).

For the ensemble of parameters used, all eigenvalues of the Jacobian
have a negative real part, so that the system is asymptotically stable
(has a stationary solution). The analytical dependence of the eigen-
values upon these parameters is complicated in the general case; we
were able to calculate the characteristic polynomial in the particular
case of one maximal density, and proved (in this case) that its coeffi-
cients do not changewhen rescaling g as 1/N, thus explaining the scaling
behavior of the system with network size.
y an example of the respective spectra in X and Y, forMxy = Myx = 0.5. The axes are log-
a are calculated for two bandwidths: 0.025 − 0.2 Hz, and 0.001 − 0.2 Hz (i.e., thewhole
for module X in red (for 0.025 − 0.2 Hz) and in magenta (for 0.001 − 0.2 Hz), and for
sent the linear model (A) and the nonlinear model (B.). In the nonlinear case, the slopes
ior in the nonlinear model, when compared to its linear counterpart. Compare the shapes
, γx = 0.25, γy = 0.25, and gxx , gyy , gxy and gyx drawn out of normal distributions with
n 0.001/N. The sigmoidal parameters were fixed to: be = 1.6, θe = 4, bi = 1.3, θi = 3.7,
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Fig. 8. Comparison of the log–log slopes in the nonlinear model, for linear fitting performed to two different frequency bands of the power spectra. The dependence of the slopes βX (left)
and βY (right) on the densities Mxy and Myx is illustrated as pcolor plots, for the frequency interval 0.025 − 0.2 Hz (A.) and 0.001 − 0.2 Hz (B). The changes in the slopes in response
to variations in the pair (Mxy,Myx) are qualitatively consistent between the two panels. The numerical computations were performed for N = 20, with each slope averaged over
R = 10 numerical runs, for parameter values: γx = 0.25, γy = 0.25, and gxx , gyy , gxy and gyx drawn out of normal distributions with means gxx = 0.004/N, gyy = 0.004/N,
gxy = 0.21875/N, gyx = −0.08/N and standard deviation 0.001/N. The sigmoidal parameters were fixed to: be = 1.6, θe = 4, bi = 1.3, θi = 3.7, τ = 0.01.
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The power spectrum
OU processes are well known to have Lorentzian power spectra

(Mitra and Bokil, 2007), often referred to as red noise (Monahan,
1998). Their correlation function decays at long times, so that the
power spectrum, which is the Fourier transform of the correlation func-
tion, also decreases monotonically with the frequency. More precisely:
for frequencies f ≪ 1, the power spectrum is a constant (i.e., β = 0,
white noise); on the other hand, for large f, the spectrum becomes pro-
portional with 1/f2 (i.e., β = 2, brown noise).

For our OU system (8) in particular, the continuous power spectra
for solutions X = (x1,…xN, y1,…yN)T on a compact interval [0,T] can be
calculated by taking the continuous Fourier transform eXc , so that the
power for any real frequency w can be calculated from:

2π
T

iwI−C
� �eXc wð Þ ¼ eJ wð Þ−ΔX

T
; ð11Þ

where ΔX = X(T) − X(0). This produces, as explained above, two
pieces, each with almost constant slope (depending on the parameter
values), connected by a smooth elbow (see Fig. 11). Moreover, changes
in the density parametersMxy andMyx trigger qualitative changes in the
spectra (e.g., position of the elbow, slope of each piece). The analytical
dependence of the power spectrum properties on the density parame-
ters is not trivial to express for the general case. We present below, as
illustration, a simple application in which the computations can be car-
ried out explicitly for the special case of only two nodes x and y (N = 1),
and thus only one possible geometry. The system then becomes:

dx
dt

¼ −γxxþ gyx y−xð Þ þ j tð Þ ¼ − γx þ gyx
� �

xþ gyxyþ j tð Þ
dy
dt

¼ −γyyþ gxy x−yð Þ ¼ − γy þ gxy
� �

yþ gxyx:
ð12Þ

The calculation of the Fourier transform for x and y is straightfor-
ward. For example:

ey ¼ �gxy

iwþ γx þ gyx
� �h i

iwþ γy þ gxy
� �h i

−gxygyx
; ð13Þ
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Fig. 9. PSSI shifts as observed in the amygdala and ventromedial prefrontal cortex
(Brodmann Area 45), for 96 adults ranging from nonreactive to highly reactive. To graph-
ically demonstrate results over the entire spectrum, we used a k-means cluster analysis
(k = 3, discarding middle group) to classify subjects from two independent cohorts. For
the more reactive end of the spectrum, subjects were separated into highest (51.17,
n = 12) and lowest (27.63, n = 16) trait anxiety. For the less reactive end of the spec-
trum, subjects were separated into those who showed greatest (“high-responder”:
26.62 nmol/l, n = 5) and least (“low-responder”: 0.99 nmol/l, n = 14) cortisol increases
to a first-time tandem skydive. To pin the least reactive end of the spectrum, as part of the
same study we also obtained data from a single bomb squad technician. Individuals in the
middle range of the reactivity spectrum had PSSI values in the pink noise range, for both
the amygdala and BA45. Both extreme ends of the spectrum showed prefrontal-limbic
PSSI values closer to zero: localized to the amygdala for more reactive individuals, and
to BA45 for less reactive individuals.
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where � ¼ ej wð Þ. From the Fourier transform, the transfer function of y is,
in polar form:

ρ ¼ 1
2K

cos θð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θð Þ þ 4K

Q2 sin2 θð Þ
s" #

; ð14Þ

where Q = −(γx + γy) − (gxy + gyx) and K = (γx + gyx)(γy +
gxy) − gxygyx. For parameterswithin our functional range, this is a gen-
eralized limacon, whose geometric characteristics, dependent on the
densities, are thus usable as markers of the connectivity profile (see
Fig. 12 for an illustration of the limacons for two different system den-
sities). The power spectrum will be given by:

∥ey∥2 ¼ �
2g2xy

w4 þ Q2−2K
� �

w2 þ K
; ð15Þ
Fig. 10. Spectral matrix representations. Surface plot of A. the real part of the adjacency matrix
(along the x-axis) and andMyx (along the y-axis), and averaged over a sample of 20 adjancency c
as the connectivity densities are fixed. The illustration was performed for the following parame
gyx = −0.08/N.
or, in log–log form f → P(f), with P ¼ log ∥ey∥2� �
and f = log(w):

P fð Þ ¼ 2 log ϵgxy
� �

− log e4 f þ Q2−2K
� �

e2 f þ K
� �

: ð16Þ

This illustrates, in this special case, the general shape of the log–log
spectra discussed above: a two-segment almost piecewise linear func-
tion. For small values of w N 0, the constant term dominates in the de-
nominator of Eq. (15), so that the log–log spectral slope β ∼ 0; for
large values of w, w4 dominates in the denominator, so that the power
spectrum is approximately �2gxy

2 w−4, and the log–log slope β ∼ −4;
for a short interval of intermediary frequencies w, the middle term has
a comparable impact, and produces the elbow with variable log–log
slope β.

In order to facilitate comparison with signals measured empirically
(which are discrete), we analyzed discrete spectra (for length
L = 300, and time resolution h = 2.5 used in our numerical simula-
tions in conjunction with the Euler–Maruyama numerical solver). The
discrete Fourier transform eX kð Þ can be expressed, for 0 ≤ k ≤ L, as:

ak
h
I−C

h ieX kð Þ ¼ eJ kð Þ− ak þ 1ð ÞΔX
T

; ð17Þ

where T = hL, ak = e2πik/L − 1 and ΔX = X(T) − X(0).
Clearly, neither the continuous-time, nor the discrete PSDs, follow

power laws when considered over the whole frequency range. So why
are we authorized to perform a linear fitting to the analytical discrete
spectra, and compare their slopes with the empirical slopes? While in
general there are (particularly low and high frequency) distortions
due to the discretization process, for connectivity strengths g within
our critical range, the shape of the discrete spectra is comparable qual-
itatively with that of the continuous spectra: two approximately
linear pieces, connected by a round elbow. Our simulations have been
restricted to the frequency band 0.025 − 0.2 Hz, included within the
second linear piece, for all parameter values. In addition, this band en-
compasses the frequency range forwhich PSSIwas obtained empirically
(0.06 − 0.2 Hz, known from literature to be most reflective of connec-
tivity). Notice that the discrete spectra tail off at the high frequency end.
This is also a well-known feature of empirical imaging spectra (as seen
for example in Fig. 2A, and also in (Lai et al., 2010)), and in our case does
not significantly alter the overall slope of the second almost linear piece,
from the turn of the elbow to the end (see Fig. 11A, or Fig. 11B for an al-
ternative illustration of the shape of the spectra using derivatives).

Finally, let us comment on a robustness property: the changes trig-
gered in slope by changes in the density parametersMxy andMyx appear
to be qualitatively consistent between the continuous and the discrete
spectra. This is important, since it allows our theoretical-to-empirical
model translation to be independent on the length and resolution of
eigenvalues and B. the eigenvalues of the Jacobian of the system, both with respect toMxy

onfigurations. Eigenvalues are relatively robust under different adjacency schemes, as long
ter values: N = 5, γx = 0.25, γy = 0.25, gxx = 0.004/N, gyy = 0.004/N, gxy = 0.21875/N,
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Fig. 11. Analytical power-spectra. A. The spectra of a Y node for, respectively, Mxy = 0.9, Myx = 0.5 (blue curves); Mxy = 0.5, Myx = 0.5 (red curves); Mxy = 0.2, Myx = 0.5 (green
curves). The thick curves represent discrete spectra for time resolution h = 2.5 and length L = 300 data points (consistent with our numerical results), with the solid line marking the
frequency bandwidth for which the fitting was performed in the numerical simulations with noise. The thin curves represent continuous spectra. All plots were based on formal compu-
tations (see the Analytical considerations for the linear model section) rather than on numerically solving the system. Notice that changes in the densitiesMxy andMyx produce the same
qualitative changes in shape between the corresponding discrete and continuous spectra. B. Formal power spectrum of a Y node (top), its derivative (middle) and its second derivative
(bottom), for Mxy = 0.9,Myx = 0.5 (blue curves),Mxy = 0.5,Myx = 0.5 (red curves) and Mxy = 0.2, Myx = 0.5 (green curves), respectively. Notice that the second derivatives remain
very close to zerowithin our frequency band (their variation is 2 orders ofmagnitude smaller than the variation in thefirst derivative, and 4 orders ofmagnitude smaller than the variation
in the original log power spectrum), supporting our assumption of almost linearity of the spectra within this frequency range. All illustrations were performed, for consistency with the
numerical results, with the following parameter values: N = 20, γx = 0.25, γy = 0.25, gxx = 0.004/N, gyy = 0.004/N, gxy = 0.21875/N, and gyx = −0.08/N.
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the time series, as long as these are consistent between model and
experiment.

Discussion

Our model shows that, for sufficiently large networks, PSSI can be
obtained within certain frequency bands in a context as simple as a
linear stochastic system of differential equations, although more subtle
nonlinear dynamics can greatly widen the frequency band of PSSI,
and improve the system's performance. Our model further demon-
strates that β values vary as a function of both input type (excitatory, in-
hibitory) and input density (mean number of long-range connections),
independent of their node-specific geometric distribution.

Our simulation results suggest a testable framework for interpreting
empirical data. In our data set, individuals with average emotional reac-
tivity (who have PSSI values in the pink noise range for both amygdala
and prefrontal regions) should have well-regulated control systems, in
which excitatory and inhibitory influences are balanced. Individuals at
the more reactive (anxious) end of the spectrum, showing white noise
primarily for the amygdala, should have relatively weaker inhibitory
Fig. 12. Polar plot of the transfer functions corresponding to thenodes inY, for A.Mxy = 50%, β =
network, shown to reflect into changes in the log–log spectral slopes β, can be alternatively cap
area of the inner/outer loops) of these complex plane limacon. The simulated points are plotte
performed for the following parameter values: N = 5, γx = 0.25, γy = 0.25, gxx = 0.004/N, gy
inputs from the prefrontal cortex (producing weaker feedback). Indi-
viduals at the less reactive end of the spectrum, showing white noise
primarily for the prefrontal cortex, should have relatively stronger ex-
citatory inputs from the amygdala (producing stronger feedback). This
last simulation result may seem surprising, but in fact produces a rea-
sonable hypothesis: enhanced projections from the amygdala to the
prefrontal cortex effectively lower the threshold for inhibitory feedback,
thereby suppressing all but the strongest stimuli. Functional and struc-
tural connectivity techniques, such as dynamic causalmodeling (Friston
et al., 2003; Stephan et al., 2007) and diffusion tensor imaging (Iturria-
Medina et al., 2008), are ideally suited towards empirically testing these
hypotheses.

Specific modeling remarks

Our simulations suggest that a global parameter sensitivity analysis
of the systemmight reveal that linearity of spectra over the connectivity
frequency range (as found by our numerical simulations as well as em-
pirically) is restricted to a critical locus in the parameter space. This hy-
pothesis is supported by the fact that the fine tuning of the connectivity
50%; B.Mxy = 75%,Myx = 25%. Perturbations in the connectivity profile (Mxy;Myx) of the
tured, quantitatively and visually, as changes in the geometric properties (e.g., curvature,
d in red, and the best-fitted limacon is represented by the blue curve. The illustration was
y = 0.004/N, gxy = 0.21875/N, gyx = −0.08/N.

image of Fig.�11
image of Fig.�12
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strengths gwas necessary to obtain PSSI within this range. Moreover, as
supported both numerically and analytically, the critical PSSI behavior
scaledwellwith the network size—that is, asN increased, the connectiv-
ity parameters g needed to bemaintained in an inverse proportionwith
N in order to preserve the linearity of the power spectrum.

In the original model, while the system's deterministic component is
linear, other aspects of the process of obtaining the slopes β are highly
nonlinear (e.g., the linear fit is performed under a log–log scale). So in
the end, the linear dependence of the PSSI slopes on the two connectiv-
ity parameters (Fig. 5) is unexpected, and provides an additional direc-
tion for future investigation.
Future directions

One general aim of this paper is to inform how fMRI can be used in
conjunction with a theoretical model, in order to interpret the impact
of connectivity on brain dynamics. Once established that amodeling ap-
proach can be useful in this context, one can explore selected biophysi-
cal aspects in greater detail.

For example, a widely accepted ratio of I:E = Myx:Mxy in brain phys-
iological networks is 15 − 20%. A particularMyx:Mxy ratio can be, how-
ever, obtained in conjunction with various degrees of overall network
connectivity (or total density Mxy + Myx). The network's coupling pro-
file, and therefore its coupled dynamical behavior (in ourmodel, aswell
as in real biophysical networks), depends not only on the ratioMyx:Mxy,
but also on the total connectivity, which may vary quite widely in real
networks with their type, location and function. Our model's reference
point of both E and I at 50%max (implying I:E = 1:1), has a theoretical
significance: that the excitation and inhibition are optimally balanced.
This can be normalized (by retuning parameters) to the balance needed
for the particular network at hand. This fine tuningwill be incorporated
in future iterations, with parameters estimated from data and used to
reproduce a particular biophysical network.

With this in mind, we focused at this first stage on maintaining the
model's generality, simplicity, and potential for extension.We analyzed
a linear OU system, then a basic nonlinear extension of it;we considered
input noise with very simple statistical features (Wiener process). Our
framework can be used (by adjustingparameters and time scales) to de-
scribe dynamics at the spiking/synaptic level, at the firing rate/neural
coupling level, or at the region of interest/hemodynamic connectivity
level. For the empirical application in this paper, our model addresses
the hemodynamic scale, so that nodes are to be viewed as the smaller
functional partitions that form regions of interest, and their activation
is consistent with voxel-wise time series from fMRI.

Some of our current work is focused on addressing in more analyti-
cal depth some of themathematical aspects investigated numerically in
this manuscript. Within the framework of our model of coupled nonlin-
ear (Wilson–Cowan) oscillators,we are studying the changes in dynam-
ics under perturbations of the coupling architecture. On one hand, we
are investigating the spectral properties of the coupling (adjacency)
graph, and the robustness of the eigenvalues to changes in edge density
or configuration. We noticed that, within certain parameter ranges, the
adjacency eigenvalues remain in general sufficiently robust to perturba-
tions in edge geometry as long as the edge densities (as defined in this
paper) do not change, suggesting that simple learning algorithms in
such systems may also remain unaffected by constrained configuration
changes. In parallel, we are also studying the phase-space dynamics of
the system, and locating (using entropy, as well as Hopf and saddle-
node bifurcation diagrams) its transitions between different dynamic
regimes produced by perturbing the underlying graph. One of our
main goals is to understand how changing the strengths, versus the
density, versus the geometry of the connections can have completely
different effects upon the coupled dynamics, although they seemingly
accomplish the same task, of strengthening and/or weakening the
coupling.
In developing future iterations of themodel, it will also be important
to use properties of random adjacency matrices and generalize to
more than two inter-connectedmodules, in order to study classes of in-
hibitory vs. excitatory structures. The model also can relax the “fully-
connectedness” condition currently assumed within each network
module, to explore other geometric distributions of edges. We would
expect that there might be two key conditions for optimal function in
such networks:first, the requirement for awell-balanced adjacencyma-
trix. The corresponding bidirectional graph should appropriately com-
bine robust features (e.g., fully connected populations) and random
edges (e.g., due to synaptic probing) so as to allow some flexibility,
yet also render sufficient stability for convergence during a cognitive
process such as learning. Second, there should bewell-balanced connec-
tion strengths (i.e., the weights on each adjacency edge), hence an effi-
cient connectivity matrix driving optimal dynamics in the system. We
are currently studying spectra of more general adjacency matrices,
and exploring different schemes of robust versus random components
in the edge distribution, compatible with neural network properties
observed in experimental recordings. Recent theories suggests that re-
alistic complex behavior, comparable to neural behavior, cannot be ob-
tained from either a too globally rigid structure, or from only locally-
based connections (to a small number of neighboring nodes). A logical
next stepwould be to use results from randommatrix and graph theory,
hybrid structures that can explore how scale-free and critical behavior
might relate in the context of Erdös–Rényi modeling.
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