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Abstract: Theory and experimental evidence suggest that complex living systems function close to the
boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic)
underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might
therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic
circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N ¼ 9 patients with par-
anoid schizophrenia and N ¼ 26 healthy controls), while they viewed affect-valent stimuli. To quantify
dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and
computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls
showed distinct PSSI in two clusters (k1: Z ¼ 4.3215, P ¼ 0.00002 and k2: Z ¼ 3.9441, P ¼ 0.00008), local-
ized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by b close to white
noise in patients (b � 0) and in the pink noise range in controls (b � �1). Interpreting the meaning of
PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z ¼ �1.9437, P ¼
0.05 for k1; Z ¼ �2.5099, P ¼ 0.01 for k2). That the dynamics identified Brodmann Area 10 is consistent
with previous schizophrenia research, which implicates this area in deficits of working memory, executive
functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic)
transmission. Our results additionally cohere with a large body of work finding pink noise to be the nor-
mal range of central function at the synaptic, cellular, and small network levels, and suggest that patients
show less supple responsivity of this region. Hum Brain Mapp 00:000–000, 2011. VC 2011 Wiley-Liss, Inc.
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INTRODUCTION

Optimization is a common problem faced by complex liv-
ing systems, over the full course of their development and at
all spatial and temporal levels. Biological systems are
required to maintain a dynamic range of functioning that
provides sensitivity to a variety of different inputs—and will
thus tend to organize at the critical point where dynamics
are supple enough to respond to the external environment,
yet stable enough to maintain homeostasis [Buzsáki, 2006;
Kauffman, 1993]. It has been hypothesized in this light that
improper optimization could lead to an overall dysregulated
system, performing in a too stiff or too chaotic behavior
range [Glass, 2001]. Over the past few decades, the prefer-
ence for this critical balance between chaos and order has
been witnessed—derived by theory and confirmed by experi-
ments—in various networks, such as the cardiac [Kresh and
Izrailtyan, 1998], endocrine [Prank et al., 1996], and central
nervous [Kitzbichler et al., 2009; Worrell et al., 2002] systems,
as well as at microscopic levels in mitochondria [Aon et al.,
2004] and in synaptic dynamics [Levina et al., 2007].

Since nonlinear methods have proved to be so successful
diagnostically for both cardiac [Guzzetti et al., 2005; Laitio
et al., 2004; Peng et al., 1993; Tulppo et al., 2005] and other
[Kernohan et al., 2003; Reimondo et al., 2003] physiological
contexts, it seems likely that dynamic network methods may
also be suited towards addressing the complex neural sys-
tem-wide processing. Technical progress of both neuroimag-
ing and mathematical methods over the past two decades
has made it increasingly possible to approach the dynamic
architecture of the brain as an evolving nonlinear system
[Gottschalk et al., 1995; Paulus et al., 1996]. Yet, despite the
widespread use of heart rate variability analyses to measure
autonomic dysregulation in psychiatric disorders [Cohen
et al., 1998, 1999; Servant et al., 2009], applications of these
computational techniques have not yet been directed, at least
to our knowledge, towards understanding the network-wide
neural disregulations allegedly present in such conditions.

The irregularity, or ‘‘deterministic noise’’ of various net-
work oscillations can be captured by Fourier analysis,
using the power spectral density of the signal. Power spec-
trum scale invariance (PSSI) is a classical measure used to
express the mean square fluctuations at any particular fre-
quency, and how they vary with frequency; ignoring the
temporal variation of the signal, it provides a quantitative
assessment of the power relationship between its frequen-
cies. Scale-invariance means that there is no preferred tem-
poral scale, and that the power spectrum density of the
signal follows the power law:

Sðf Þ / f b;

where b is the scaling exponent. Estimating the b value for
a time series provides a measure of whether the data are
purely random or have underlying trends. A number of
studies have already analyzed neural activation in the fre-
quency domain and investigated correlations of different

frequency bands across the brain [Cordes et al., 2001; Duff
et al., 2008; Mitra and Pesaran, 1999; Mitra et al., 1997].
Frequency analyses have successfully identified synchroni-
zation patterns in the brain [Kopell et al., 2000], as well as
diurnal rhythms [Achermann and Kunz, 1999], and have
found, using MEG, rhythm preferences in schizophrenia
[Vierling-Claassen et al., 2008].

In this study, we investigated here whether schizophrenia
patients and controls showed distinct patterns of neural reg-
ulation, measured with PSSI, in response to an emotional
task known to elicit a limbic response. We chose emotional
stimuli because a convergence of data, both neurobiological
and behavioral, supports the idea that dysregulation of emo-
tional arousal constitutes a common element within the het-
erogeneity of signs and symptoms present in schizophrenia
(for example: hyper-arousal associated with paranoid symp-
toms [Williams et al., 2004], hypo-arousal associated with
negative symptoms [Merrin and Floyd, 1996], and cognitive
deficits secondary to both hyper and hypo-arousal [Mujica-
Parodi et al., 2002]). From a control systems perspective, this
suggests an imbalance, or dysregulation, between the two
primary components of a prefrontal-limbic negative feed-
back loop: the excitatory component, which includes the
amygdala [Floresco and Tse, 2007; LeDoux, 2003], and the in-
hibitory component provided primarily by prefrontal regions
[Phelps et al., 2004; Rosenkranz et al., 2003]. Although a large
pre-existing literature suggests prefrontal deficits in schizo-
phrenia [Ragland et al., 2009; Yoon et al., 2008], we chose not
to make a priori assumptions with respect to structural local-
ization to avoid biasing the analysis. Instead, we performed
an exploratory voxel-wise analysis over the entire brain,
using the PSSI method to quantify control system regulation,
to determine whether dynamic features of the time-courses
would independently lead to prefrontal localization.

We have previously shown that schizophrenia patients
show reduced heart rate variability [Mujica-Parodi et al.,
2005], and that autonomic dysregulation is coupled with
prefrontal-limbic dysregulation [Tolkunov et al., 2010].
Thus, we hypothesize here that patients diagnosed with
DSM-IV paranoid schizophrenia would show diminished
neural responsivity, characterized by significant changes in
the power scale invariant behavior of node(s) specific to
the prefrontal-limbic circuit.

MATERIALS AND METHODS

Subjects

For this study, we tested N ¼ 37 adult human subjects.
Of these, N ¼ 11 were patients diagnosed with DSM-IV
paranoid schizophrenia recruited from the Stony Brook
University Hospital’s Psychiatric Adult Inpatient, Outpa-
tient, and Day Units. Two patients’ data were excluded
due to motion greater than 3 mm, resulting in a patient N
¼ 9 (six men, three women; age: l ¼ 36.1 yrs; r ¼
10.1 yrs.; min/max ¼ 21–51 yrs). As controls, we tested
N ¼ 26 healthy adult subjects (15 men, 11 women; age:
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l ¼ 25.1 yrs; r ¼ 7.68 yrs.; min/max ¼ 19–49 yrs)
recruited from the general community. For this study, we
did not match patients and controls for mean age and gen-
der, since our larger sample of 65 controls [Tolkunov
et al., 2010] failed to provide evidence for any relationship
between the variables of interest and age. Subjects were
excluded if they had a history of neurological or cardiac
illness, substance abuse (screened using the Structured
Clinical Interview for DSM-IV: SCID-IV [First et al., 2002;
Lobbestael et al., 2010; Ventura et al., 1998]), presence of
metal in the body, were pregnant, or taking medication
with known affects on arousal (e.g., benzodiazepines).
Subjects’ screening before participation included a medical
history and physical exam. Diagnoses for patients and
screening for healthy subjects were assessed using the
SCID-IV. Symptom severity for patients was assessed
using the Positive and Negative Syndrome Scale [Kay
et al., 1988]: positive symptoms l ¼ 21.7 (out of 49), r ¼
6.9; negative symptoms l ¼ 25.1 (out of 49), r ¼ 6.3; gen-
eral symptoms l ¼ 44.7, r ¼ 15.6; total scores (out of 210)
l ¼ 91.5, r ¼ 26.7). Because our patients were acutely
symptomatic, we were unable for ethical reasons to
withold medication; however, to mitigate medication-
confounds we avoided recruiting patients using medica-
tions known to affect heart rate variability [Mujica-Parodi
et al., 2005] as well as group-wide homogenous treatment
strategies. Specific medications for all patients in this sam-
ple are previously reported [Radulescu and Mujica-Parodi,
2008]. This study was approved by the Stony Brook Uni-
versity Institutional Review Board. All subjects provided
informed consent; patients had an additional capacity
evaluation signed by their treating psychiatrists.

Study Design

To study the dynamics of the prefrontal-limbic network,
we performed fMRI imaging of patients and controls on a
task (passive viewing of affect-valent faces) known to reli-
ably activate this system [Mujica-Parodi et al., 2009]. All
subjects were hospitalized for at least 48 hours at the
Stony Brook University Hospital’s General Clinical
Research Center, to provide maximum control over the
testing environment. Comparison subjects and outpatients
were admitted to the hospital at 8 p.m., provided
informed consent, and received a physician-administered
history and physical to ensure eligibility in the study.
Inpatients were evaluated in their own units.

fMRI Task and Stimuli

While in the MRI scanner, subjects underwent two runs
of a blocked design fMRI task. The stimuli used for this
task consisted of grey-scale photos of male and female
faces depicting angry, fearful, happy, and neutral emotions
[Ekman and Friesen, 1976]. During scanning, subjects pas-
sively viewed the stimuli using an angled mirror mounted

on the head coil and a screen placed directly outside the
magnet bore. Stimuli were presented using a computer
running E-prime software (version 1.0; Psychology Soft-
ware Tools, Inc.; Pittsburgh, PA) and were projected onto
the screen using a projector placed outside the scanner
room. The fMRI task consisted of blocked presentations of
faces alternating with a 20 s fixation cross, during which a
white cross was presented on a black background (REST
condition). Each fMRI run lasted for 5 min and 40 s and
included two blocks each of angry, neutral, happy, and
fearful faces. Each face block consisted of nine different
faces of the same emotion type, displayed for 2.2 s each
for total block duration of 20 s.

Image Acquisition

Subjects were scanned on a 1.5T Philips Intera MRI
scanner at the Stony Brook Hospital using a eight-channel
SENSE head coil. These were acquired using two groups
(one for each fMRI run) of 136 T2*-weighted echoplanar
single-shot images covering the frontal and limbic areas of
the brain, with TR ¼ 2,500 ms, SENSE factor ¼ 2, TE ¼
45ms, flip angle ¼ 90�, matrix ¼ 64 � 64 � 64, 3.9 � 3.9 �
4 mm3 voxels, and 30 contiguous oblique coronal slices. In
addition to the functional scan, an anatomical scan to
match the slice orientation of the functional scan was
obtained. The acquisition parameters for this sequence
were: TR ¼ 15 ms, TE ¼ 450 ms, matrix ¼ 256 � 256, FOV
¼ 250 and 30 contiguous oblique coronal slices with 4 mm
slice thickness and no gap between the slices. Anatomical
data were used to generate a customized EPI template to
normalize our EPI scans to the standard frame of refer-
ence. The subject’s head was secured with tape to mini-
mize head movements during the scans.

Image Analysis

We performed fMRI data pre-processing using Statistical
Parametric Mapping software (SPM99; available at: http//
www.fil.ion.ucl.ac.uk/spm), running under Matlab 6.5
(Mathworks, Natick, MA). The raw functional BOLD images
were first realigned to the first volume to remove move-
ment-related artifacts, which were fully corrected using
SPM99’s algorithm (sinc interpolation). Realigned images
were then spatially normalized into 3 � 3 � 3 mm3 using an
affine transformation with a set of 7 � 8 � 7. Basis functions
and a customized template that was created using the data
for the first 12 subjects; the incomplete brain coverage and
oblique nature of our slices required us to use a custom tem-
plate for normalization. For each subject, the scalp was
removed from a low-resolution EPI image, using the Brain
Extraction Tool (BET) [Smith, 2002] available in MRIcro soft-
ware, at a fractional intensity threshold of 0.5. These skull
stripped images were then registered and normalized to
each other and the average image was smoothed with a
Gaussian kernel of 8 mm full-width half maximum and
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registered to the EPI template provided by SPM99 to gener-
ate the final template. The realigned and normalized EPI
images were then smoothed with a Gaussian kernel of
8 mm full-width half maximum.

Frequency Domain Analysis

For each subject we used the full 136 data-point raw
time series1, which included all conditions. We calculated

the power spectral density as the squares of the Fourier
transformation amplitudes of the linearly detrended time
series. From the power spectral density we computed the
scaling parameter b, by plotting the power spectrum on a
log-log scale and estimating the slope by applying a linear
fit to the data in the 0.06 to 0.2Hz range (Fig. 1). The upper
limit on the frequency range was constrained by the sam-
pling rate, while the lower limit was chosen to avoid con-
founds due to either task design or physiological variables
such as heart rate or respiration [Bar et al., 2007].

We then statistically compared the b-values between the
patient and control groups, using the non-parametric Wil-
coxon Rank-Sum test, which compensated for the differ-
ence in sample sizes and which made no assumption of
normally distributed values. Thresholds were set at P <
0.005 with Vmin ¼ 3 � 3 � 3 ¼ 27 contiguous voxels, the
latter of which exceeded the smoothing kernel; we addi-
tionally used a Small Volume Correction algorithm to cor-
rect for multiple comparisons [Worsley, 2003]. Once

Figure 1.

Voxel-wise scale invariance of the power spectral density (PSSI).

We provide here a representative time series (a) for a healthy con-

trol and (b) for a schizophrenia patient. The log-log plots of the

power spectra were fit by a straight line over the frequency range

of (0.06–0.2 Hz) resulting in scaling exponents of (c) b ¼ �1.39

(S.D. ¼ 0.49) for the healthy control and (d) b ¼ �0.05 (S.D. ¼

0.50) for the schizophrenic subject. Both examples are consistent

with the average standard deviation of individual fit for b (average

S.D. ¼ 0.53) found over all voxels and subjects, and thus may be

considered a good illustration of the linear fitting as a whole.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

1For the dynamical analyses we chose to use raw time-series, more
commonly used in physical contexts, rather than their first deriva-
tive, sometimes used in physiological contexts, to avoid confusion
with respect to comparison with the wider literature (the description
of ‘‘white-pink-brown’’ noise refers specifically to analyses of raw
time-series). Between-voxel relationships for b do not differ between
the raw signal and its derivative; while the b value is affected (shift-
ing by a constant: bderivative ¼ braw þ 2), its spatial and therefore ana-
tomical localization are not.
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statistical analyses identified cluster coordinates of dynam-
ical differences between patients and controls, we inter-
preted those differences using Poincaré maps, lag s ¼ 1,
for the time series (also using Wilcoxon Rank-Sum Tests).
Poincaré maps were computed from an average time se-
ries over the entire cluster, since time series for each voxel
within the cluster were correlated: k1 (correlating over 49
voxels) mean r ¼ 0.41 (S.D. ¼ 0.09) for patients and r ¼
0.42 (S.D. ¼ 0.09) for controls; k2 (correlating over 27 vox-
els) mean r ¼ 0.64 (S.D. ¼ 0.08) for patients and r ¼ 0.69
(S.D. ¼ 0.08) for controls. The use of Poincaré maps has
been successful in quantifying heart rate variability using
indexed R-R time-series [Bergfeldt and Haga, 2003; Kamen
et al., 1996; Piskorski and Guzik, 2007] and of other clinical
measures [Doble and Narayan, 2007]. The Poincaré map
represents variability within the time series between acti-
vation at each time Xn as a function of its predecessor
Xn�1; in the context of nonlinear dynamics, it is a two
dimensional reconstruction of the time series phase space.
It typically appears as a cloud of points distributed prefer-
entially in the first diagonal direction. This reflects the fact
that two consecutive time series values which are similar
produce a Poincaré point close to the diagonal (more to
the right if the common value is higher, and more to the
left if the value is lower, spanning the ‘‘length’’ of the
scatter plot), while two consecutive time series values sep-
arated by a large jump produce a point detached from the
diagonal by a distance that reflects the size of the jump
(contributing to the ‘‘width’’ of the cloud). Hence the dis-
persion of points along the diagonal (loading of the first
principal component) is thought to indicate the long-term
variability trends, while the dispersion in the perpendicu-
lar direction (loading of second principal component)
reflects the level of short term variability [Acharya, 2007].
The ratio between the two represents the balance between
long- and short-term variability [Acharya, 2007; Contreras
et al., 2007]. Therefore, for any voxel cluster(s) showing
significantly different b between groups, variability was
calculated as aspect ratio of the principal component stand-
ard deviations. Finally, to assess sensitivity of dynamical
analyses as compared to standard analyses of activation
amplitudes using the General Linear Model, we per-
formed a standard fMRI analysis for FEAR-NEUTRAL,
ANGRY-NEUTRAL, HAPPY-NEUTRAL, and NEUTRAL-
REST contrasts, as well as TASK-REST to identify differ-
ences in general engagement that could inform the
results.

Concerned that the experiment length (a 10 min) of our
block design might not have been long enough to verify
that the fMRI BOLD power spectrum indeed obeys a
power law, we fitted several common candidate distribu-
tions to 42 min of fMRI data from the left amygdala while
a control subject engaged in a ‘‘guided rest’’ condition
(watching a dramatic film). We fitted the power spectrum
(from 0.01 to 0.2Hz) using a non-linear least-square
fit to the following candidate distributions: exponential
Ae�kf, stretched exponential Af b�1 e�kf b, Log-normal

A
f exp � ðln f�lÞ2

2r2

h i
, Power law Af b, and truncated power law

Af b�1 e�kf b. While the v2 of the fits were fairly close to

each other (since most fits only require two to three pa-

rameters the Akaike goodness of fit criterion [Akaike,

1974] reduces to minimizing v2), only a power law fit

resulted in a fit with uniformly distributed residuals while

at the same time exhibiting the lowest v2 of all candidate

distributions. We are therefore confident that a power law

is the most appropriate distribution for our data.
As illustrated in Figure 1, linear fits to log-log plots of

the power spectral density resulted in b’s of an average fit
standard deviation equal to 0.53 over all voxels and sub-
jects, indicating that the fitting procedure was reliable. Ini-
tially, being aware that a log-log scale compromises the
assumption of a Gaussian distribution of errors [Clauset
et al., 2009], we attempted to fit a power law to our data
using a nonlinear least square fit on the raw data using
the Levenberg-Marquardt algorithm [Marquardt, 1963].
Unfortunately, this algorithm was often unable to con-
verge in an automated fashion resulting in incomplete
data sets. We therefore chose the robust least-square linear
fit to log-log (see also Discussion).

RESULTS

Using the computational techniques and thresholds
described in the Methods section, statistical comparisons
revealed two clearly-defined clusters (k1, k2) located in
Brodmann Area 10 (k1 composed of 49 voxels in the orbi-
tofrontal cortex, k2 composed of 27 voxels in the medial
prefrontal cortex; Fig. 2a) for which b was significantly dif-
ferent between the two groups. As shown in Figure 2b, b
was statistically larger in patients than in controls.

The results were robust under two types of cluster aver-
aging: of b values and of time series. For k1, differences in
cluster mean b distributions between the two groups were
Z ¼ 4.3215, P ¼ 0.00002. For patients, average values of b
over all voxels within k1 had a group mean of �0.18 (S.E.
¼ 0.12), while for controls, average values of b over all
voxels within k1 had a group mean of �1.02 (S.E. ¼ 0.04).
For k2, differences in cluster mean b distributions between
the two groups were Z ¼ 3.9441, P ¼ 0.00008. For patients,
average values of b over all cluster voxels had a group
mean of �0.11 (S.E. ¼ 0.10), while for controls, average
values of b over all voxels within k2 had a group mean of
�0.99 (S.E. ¼ 0.08). The results were also statistically sig-
nificant when considering the average time series over all
voxels in each cluster (k1: Z ¼ 4.0196, P ¼ 0.00006; k2: Z ¼
3.0760, P ¼ 0.002, respectively). For k1 the average time se-
ries produced b values with mean b ¼ �0.34 (S.E. ¼ 0.11)
for patients and b ¼ �0.96 (S.E. ¼ 0.05) for controls. For k2
the average time series produced b values with a mean b
¼ �0.05 (S.E. ¼ 0.08) for patients and b ¼ �0.54 (S.E. ¼
0.09) for controls.
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The Poincaré map (see Fig. 3) showed that the temporal
variability, as measured by the aspect ratio (AR) of its time-
delay distributions, was more restricted in patients than in
controls (k1ARpatients ¼ 2.36 (S.E. ¼ 0.32), k1ARcontrols ¼ 3.06
(S.E. ¼ 0.18); Z ¼ �1.9437, P ¼ 0.05; and k2ARpatients ¼ 1.75
(S.E. ¼ 0.15), k2ARcontrols ¼ 2.60 (S.E. ¼ 0.20); Z ¼ �2.5099,
P ¼ 0.01).

Despite the distinct dynamics observed between the
schizophrenia patients and controls, standard fMRI analy-
ses using the General Linear Model (mean activation, max-
imal amplitude, or standard deviation) were insensitive to
group differences for any contrast.

DISCUSSION

Analogously to the role of heart rate variability as a
diagnostic biomarker and predictor of heart disease, our
results (showing distinctions in neural dynamics between
patients and controls) provide preliminary evidence that
control systems regulation in general, and power spectrum
scale invariance in particular, may be a valuable approach
worth exploring further in the effort to exploit neuroimag-

ing for psychiatric diagnosis. The absence of statistically
significant results associated with standard fMRI analyses
suggests the possibility that dynamics may provide greater
sensitivity in discerning differences in schizophrenia than
activation amplitudes.

As mentioned in the Methods section, experimentally
determined power law exponents b were estimated using
a least square linear fit to the log-log power spectrum.
This method of estimation is not unproblematic and may
lead to a biased approximation of the scaling parameter
that is extensively discussed in Clauset et al. [Clauset
et al., 2009]. Even though we did not observe large varia-
tions in b when switching between non-linear least square
fits to a power law and linear least square fits to log-log, a
discussion of the absolute values of b has to proceed with
caution. Using biased exponents may be especially prob-
lematic when comparing to theoretical work; however, our
methods were chosen for comparison to other experimen-
tal research, since most groups do use linear least square
fits to log-log to estimate exponents.

Our frequency analyses not only showed distinct dy-
namics between patients and controls, but localized the
abnormalities to BA10. BA10 is a prefrontal cortical region

Figure 2.

(a) The three-dimensional position of the clusters defined by b dif-

ferences between nine schizophrenia patients and 26 controls.

Cluster k1: Talairach coordinates of its most significant voxel: x ¼
27, y ¼ 46, z ¼ �12; Cluster k2: Talairach coordinates of its most

significant voxel: x ¼ �3, y ¼ 53, z ¼ 14. (b) Distribution of

voxel-computed b over entire cluster, for patients and controls.

Cluster k1: For patients, cluster mean b ¼ �0.18 (S.E. ¼ 0.2). For

healthy controls, cluster mean b ¼ �1.02 (S.E. ¼ 0.12). Between-

group rank statistics within k1: mean Z ¼ 3.1007, mean P ¼ 0.003.

Cluster k2: For patients, cluster mean b ¼ �0.11 (S.E. ¼ 0.18).

For healthy controls, cluster mean b ¼ �0.99, SE ¼ 0.13. Between

group rank statistics within k2: mean Z ¼ 3.1543, mean P ¼ 0.002.
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implicated as an inhibitory component of the control cir-
cuit regulating emotional arousal [Phelps et al., 2004; Rose-
nkranz et al., 2003]; however, more generally, BA10 is
thought to support higher-order cognitive processing and
integration of inputs [Dumontheil et al., 2008]. Develop-
mental and functional studies have supported the central
role of BA10 in problem solving, reasoning, prospective
memory, and episodic memory retrieval [Buckner and
Koutstaal, 1998], executive function [Gilbert et al., 2008]
and planning [Baker et al., 1996] (such as management of
subgoals, while maintaining information in working mem-
ory [Braver and Bongiolatti, 2002]). The suboptimal regula-
tion of dynamics we have found in BA10 is well supported
in the context of the signs and symptoms of schizophrenia,
whose cognitive deficits affect all of these higher functions
[American Psychiatric Association, 2000]. Moreover, exist-
ing structural [Black et al., 2004; Vogeley et al., 2003], func-
tional [MacDonald et al., 2005] and pharmacological
[Pandey et al., 1997] research have directly shown compo-
nents of BA10 to be impaired in schizophrenia. These
impairments have been further correlated with dysfunc-
tions in receptor dynamics in BA10 [Beasley et al., 2002;
Klimek et al., 1999], especially with respect to defective
glutamatergic neurotransmission [Ghose et al., 2009]. Glu-
tamatergic receptor deficits (of density and structure) are
generally suspected to play an important role in the neuro-

architectural abnormalities found in schizophrenia (aber-
rant neuronal migration, reduced synaptic connections
[McGlashan and Hoffman, 2000]) and in its neurodegenera-
tion process through glutamate neurotoxicity [Olney, 1994].

Our frequency domain results clearly indicate that sub-
jects in the healthy control group had signals in the pink
noise range (b ^ �1; i.e., S( f ) a 1/f ), which has been
shown to represent an ideal (i.e., close to critical) range of
functioning. Power-law scaling behavior of spontaneous
oscillations has been interpreted within the theory of self-
organized criticality [Buzsáki, 2006]. Pink noise seems to
be the optimal transition between order and randomness
(also known as critical, or bifurcation state) [Bedard et al.,
2006; Van Orden et al., 2005], a state of supple regulation
in which even minor system perturbations permit a system
to efficiently respond to stimuli but then return to baseline
[Radulescu, 2008]. Indeed, power laws corresponding to
the broad pink noise range have been observed at multiple
levels in the normal function of the brain ‘‘fractal,’’ from
the context of behavior [van der Werf et al., 2006] to acti-
vation of brain regions using EEG [Linkenkaer-Hansen
et al., 2001; Ward, 2002], MEG [Linkenkaer-Hansen et al.,
2001; Novikov et al., 1997], or MRI [Tolkunov et al., 2010],
to neural population activity [Beggs and Plenz, 2003;
Milstein et al., 2009]), to the dynamics of the nerve cell
membrane [Lundstrom and McQueen, 1974]. In contrast,
the patient group had b values close to zero, i.e., close to
the white noise range.

Additional analysis of these dynamics is provided by
the geometry of the Poincaré map, which has been shown
in the heart rate variability literature [Acharya, 2007;
Brennan et al., 2001; Guzik et al., 2007] to provide diagnos-
tically valuable information in the differentiation between
healthy and dysfunctional regulation in physiological con-
trol circuits such as the autonomic nervous system. The
scatter plot, a graphical representation of the full set of
possible differences between successive time points in the
timeseries, was distributed over a more restricted area for
patients than for controls, as measured by its aspect ratio.
Thus, patients’ neural time series showed lower variability
as compared to those of controls. As suggested by research
showing coupling between limbic and autonomic regula-
tion [Tolkunov et al., 2010], the patients’ lowered PSSI
provides an important conceptual connection to well-
established findings of lowered heart rate variability in
schizophrenia [Bar et al., 2007; Henry et al., 2010; Mujica-
Parodi et al., 2005].

While heart rate variability has grown increasingly com-
mon as a psychiatric biomarker, one of its critical limita-
tions in that capacity is its nonspecificity; indeed lowered
heart rate variability has been observed for not only schiz-
ophrenia, but also anxiety [Gorman and Sloan, 2000],
depression [Gorman and Sloan, 2000] and panic disorder
[McCraty et al., 2001], while clinical presentations are
markedly distinct. Comparison between this and a previ-
ous study of fMRI PSSI and trait anxiety [Tolkunov et al.,
2010] suggests that a potential advantage of measuring

Figure 3.

Poincaré maps of each cluster average time series, which show

the value of each timepoint Xn versus its predecessor Xn�1,

illustrate lowered variability (i.e., more restricted area of scatter,

in nine schizophrenia patients as compared with 26 controls,

with 136 data points per subject. (a) First cluster: Z ¼ �1.9437,

P ¼ 0.05. (b) Second cluster: Z ¼ �2.5099, P ¼ 0.01.
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dysregulation more directly in the brain—as opposed to
its presumed effects downstream in the autonomic nerv-
ous system—is the added degrees of freedom provided by
spatial resolution, and therefore the greater likelihood of
identifying disorder-discriminating characteristics. As with
schizophrenia patients, anxious individuals in our prior
study showed a more stiff dynamic than their calmer col-
leagues. However, b differences for trait anxiety were dis-
tributed within the entire limbic circuit (amygdala,
orbitofrontal cortex, hippocampus, superior temporal
gyrus, posterior insula, and anterior cingulate). In contrast,
for schizophrenia patients, dysregulation was clearly local-
ized to the prefrontal BA10. Thus, although limbic and au-
tonomic ‘‘dysregulation’’ were present in both anxiety and
schizophrenia, the two sets of PSSI results clearly differed
in their localization within the circuit; the observed dy-
namical differences in schizophrenia do not appear to be
simply an exaggeration of the ones responsible for unusu-
ally high trait anxiety within the healthy population, but
are qualitatively distinct. One important area for future
study is to investigate the degree to which observed PSSI
abnormalities in schizophrenia are specific to particular
symptoms or symptom-clusters in this highly heterogene-
ous disease.

The most common approach toward analyzing fMRI
data relies upon the general linear model (GLM), in which
responses are calculated as the degree to which outputs
(time series for each voxel) are explained by inputs (the
design matrix), plus an error term. The strength of the
GLM is its ability to disassociate neural processes specific
to distinct stimuli by linear regression, as well as the maxi-
mization of signal detection by fitting data to an expected
‘‘canonical’’ hemodynamic waveform. While GLM-based
fMRI analyses have traditionally focused on response
amplitudes, more recent techniques have been developed
to explore the significance of more dynamic features of the
timeseries. Most of these techniques seek to explore ‘‘con-
nectivity’’ within the brain, asking the degree to which
responses in disparate areas are coupled in linear (e.g.,
cross-correlations, psychophysiological interaction analysis,
Granger causality) and nonlinear (e.g., dynamic causal
modeling) ways.

In contrast, the dynamic methods (PSSI and Poincaré
plots) presented here describe the suppleness of an intact
control circuit by quantifying its responsivity, or variabili-
ty. This is an approach that is fundamentally different
from neural GLM and connectivity analyses in both its
aims and methods, but which has been used extensively
in quantifying autonomic regulation. Variability analyses
assume nonlinear feedback between components of the cir-
cuit, and are particularly well-suited to non-invasive diag-
nostics because of their ability to extract the dynamics of
the system as a whole from the fluctuations of a single
node (for example, heart rate). Traditionally, heart rate
variability analyses have benefited from long time series,
often collected over 24 and sometimes even 48 hours, as
well as ambulatory environments in which inputs are

task-free. The shortness of our time series, its relatively
low temporal resolution (2.5 s), as well as the presence of
a frequency-dependent task, all are standard for fMRI
(including both the GLM as well as connectivity analyses),
but constitute less than optimal conditions for applying
variability methods.

Of the dynamical methods, we choose PSSI and Poincaré
plots because they are relatively assumption-free, unlike
other variability methods that require prior optimization
of block size and noise filters (approximate entropy), lag
and embedding dimension (time-delay embedding), or bin
size (Shannon entropy). This is a critical issue when apply-
ing a method to short, low-resolution, and digitized data
such as fMRI, in which there are insufficient number of
data points to make meaningful choices regarding block
size, lag, and bin-size. Like PSSI, detrended fluctuation
analysis is a variability measure that does not rely upon
parameter optimization. It arose as a fractal analytical
technique in the context of heart rate variability time series
[Ho et al., 1997; Peng et al., 1995], but was recently
extended successfully to identifying and quantifying brain
activity from fMRI [Hu et al., 2008]. Detrended fluctuation
analysis is part of the same class of measures as conven-
tional spectral measures, in that the fractal exponent
obtained by detrended fluctuation analysis techniques can
be obtained alternatively from the power spectrum of the
signal [Willson et al., 2002]. Its important advantage over
conventional power spectral methods is the ability to deal
with nonstationary signals; it was not necessary to use
here because our data set was sufficiently short that non-
stationarity was fully corrected by linear detrending, as
can be seen in Figure 1. Much longer fMRI time series are
likely to reveal nonstationarity problems similar to those
seen in long-term heart rate variability analyses, and thus,
detrended fluctuation analysis may be a superior method
to apply under these circumstances.

We used fMRI because of its unique ability to obtain
data over the entire brain, and therefore access the entire
prefrontal-limbic circuit, understanding that fMRI time
series would constrain the band of available frequencies
for power spectral techniques, as well as lag-lengths.
Even with these limitations, however, it is important to
note that dynamical differences were still clearly discern-
able between the populations. Moreover, results were ro-
bust to extending the frequency range (0.003-0.2 Hz; see
Fig. 4). To test the effect of the design on the power spec-
trum, we regressed the task design convolved with the
hemodynamic response function out of the time series
and compared the resulting power spectrum with the
original (see Fig. 5). We examined voxels in the reported
clusters as well as active ones (as defined by the task).
As can be seen from Figure 5, the task design did not
affect PSSI. However, a previous study found that tasks
can affect the high-frequency signal power in the rest
periods [Duff et al., 2008]. Future work will determine
whether sensitivity may be increased through the use of
longer, task-free designs [Cordes et al., 2001]. Given our

r Radulescu et al. r

r 8 r



finding that dysregulation in schizophrenia was localized
to cortical regions, it may also be possible to increase the
frequency band by the use of other neuroimaging modal-

ities with shallower anatomical depth yet greater tempo-
ral resolution, such as electroencephalography and
near-infrared spectroscopy.

Figure 5.

Power spectrum of time-series using a block design (20s stim-

ulus on, 20s stimulus off; task frequency ¼ 0.025 Hz) with and

without task regression. (a) Power spectra of the original

time series and of the residual remaining after the design con-

volved with the HRF function has been regressed out, are

very similar. (b) The same comparison for an active voxel in

which the design plays a major role by definition. The part of

the spectrum to the right of the dashed line (0.06 Hz) is

almost identical for both original and regressed time series

(active and inactive voxels), suggesting that block designs can

be used for the PSSI analysis as long as frequency bands

exclude task frequencies. In order to highlight the task regres-

sion we plotted the same comparison for active voxels in log

and linear scale.

Figure 4.

Comparison of spatial localization of dynamical results depending

upon frequency bands that include and exclude design and physi-

ological variables. From the power spectral density we com-

puted the scaling parameter b, by plotting the power spectrum

on a log-log scale and estimating the slope by applying a linear

fit to the data in the 0.06 to 0.2 Hz range. The upper limit on

the frequency range was obtained by the sampling rate, while

the lower limit was chosen to avoid confounds due to either

task design or physiological variables such as heart rate or respi-

ration. However, localization of dynamical difference to Brod-

mann Area 10 was robust to extending the frequency range

(0.003–0.2 Hz), suggesting that task design did not significantly

affect the differences we observed between schizophrenia

patients and healthy controls.
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Our findings suggest that variability analyses may pro-
vide valuable information about neural system-wide dy-
namics not otherwise obtained through conventional
neuroimaging techniques, aiding our ability to identify loci
of dysregulated networks associated with complex psychi-
atric disorders such as schizophrenia.
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