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Abstract

Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior.
Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed
in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural populations involves thousands of equations
and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical
aspects of networks are needed. The present paper uses a firing-rate model to study mechanisms that trigger and stop
transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system,
which can potentially be extended to include interactions between different areas of the nervous system with a small
number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to
illustrate and interpret our results. The model presented here can be used as a building block to study interactions between
networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating
burst firing in populations and how it may modulate distinct aspects of behavior.
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Introduction

Different populations of cells in the nervous system of many

organisms display sudden, organized, and collective changes in

spiking activity. Such changes in population firing involve possibly

many thousands of cells. A population burst occurs when the

population firing rate suddenly increases and then goes back to the

basal rate. Population bursts are produced during normal

behavior, but also in pathological situations [1] and are displayed

in a variety of central regions of the nervous system in vertebrates

(e.g., midbrain, thalamus, subiculum, hippocampus, olfactory

bulb, and spinal cord) and invertebrates (ventral cord and

antennal lobe in insects, stomagogastric ganglia in lobster and

other crustaceans). In addition, population bursts are believed to

underlie different aspects of normal and pathological function [2]

in the nervous system. For instance, periodic bursting in the

respiratory groups of the mammalian brainstem occurs at fixed

phase lags [3,4]. These oscillations in population firing are also

present in networks of motor neurons that control locomotion and

other rhythmic activities [5,6]. Oscillations in population activity

are also important in sensory processing. For instance, olfactory

projection neurons in the antennal lobe of many insects such as

moths [7], flies [8], locust [9], and honeybees [10] display short-

lasting responses to short-lasting olfactory stimuli. The different

populations involved in these olfactory responses also display

oscillatory firing for long-lasting stimuli [11,12]. Population bursts

are also believed to contribute to processes related to learning and

memory. For instance, pyramidal cell bursts in the hippocampus

are believed to underlie the initial representation and further

transference of memory traces from short term to long term

storage [13,14].

There has been a considerable search for methods to

appropriately study population activity, especially among neuro-

computation studies related to perceptual decision making [15–

18], central pattern generator [19–21] and synchronization [15].

The focus of this paper is to construct a computationally efficient

model to study macroscopic biophysical mechanisms underlying

transitions between different kinds of population firing. The model

presented here was created with the idea of studying large circuits

formed by different regions of the nervous system (e.g. the

hippocampus-nucleus accumbens-pallidum-VTA loop [22]). One

requirement for the construction of the model was that the same

general formulation should be used as a template to model

different populations of neurons, perhaps only differing in the

choice of parameter spaces.

A variety of the currently existing network models are based on

single cell activity. Some of these models include phenomenolog-

ical population density formulations based on integrate and fire

neurons [23–26], Poisson processes [27], and generalized linear

point processes [28]. Among other limitations, these models do

not include possibly important dependencies on physiologically

relevant phenomena such as different sources of input with
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different time scales for excitation or inhibition. In comparison,

biophysical single cell models require either two or three equations

[29] (but see [30] for an interesting hybrid approach) and typically

at least 4 parameters per ionic current. That is, biophysical single

cell models are often too complex to be directly used as building

blocks for a larger neural network. One problem is that the

number of equations in a network model with biophysical cells is at

least two times the number of neurons, but possibly much larger.

Another potential problem is that the dependence of the model

dynamics on the parameters can become intractable depending on

the level of heterogeneity of the cells in the model. Examples of

network simulations based of several biophysical point neurons or

complex multiple compartment neurons can be found, respectively

in [31,32], or [33]. The study of small networks of synaptically

coupled cells is thus computationally expensive when the size of a

network grows to a few thousand cells, even if homogeneity in the

parameters is assumed.

For these reasons, we decided to construct a macroscopic model

of population activity such that each of the parameters of the

model represents an experimentally measurable quantity. That is,

we required the model to be macroscopic but biophysical.

Importantly, the model is flexible enough to potentially represent

several distinct neural populations with the same general

formulation. The general formulation used here can be potentially

used as a building block for the study of large collections of

interacting populations, thereby capturing interactions between

different areas of the nervous system with a small number of

equations.

Our approach
We view the factors that bear upon cell populations and

produce collective increases or decreases in the population firing

rates as similar to those that produce spiking in a single cell. In

single cells, ions that cross the membrane produce currents that

change the membrane potential. Some ionic currents increase the

membrane potential, whereas others contribute with a negative

feedback that repolarizes the membrane. Analogously, there are

factors that contribute to increase/decrease the firing rate in a

population of cells. The above analogy can be observed in the

firing rate model of Wilson and Cowan [34]. In addition, the

phase space of the Wilson-Cowan model resembles the phase

space of dynamical systems that describe the spiking activity of

excitable cells [29,35]. In mathematical terms, such a similarity

suggests topological equivalence between dynamical systems that

represent single cells and populations. In view of the above

remarks, we hypothesized that it should be possible to construct

population models with similar trajectories and overall qualitative

behaviors as single cell models, based on the premise that activity

is determined by two processes: a fast one described by an amplify-

ing variable (positive feedback), and a slower one, represented by

recovery variable (negative feedback), as is the case for excitable

membranes. The analog of an action potential in a population

model would be a population burst. Sustained spiking in a single

cell model would correspond to a sustained oscillation in firing rate

in the population model. If a population displays sustained

oscillations with a minimum rate close to the basal population rate

then the oscillation can be regarded as periodic population

bursting (e.g. locomotion networks).

Our model of population activity (in an neural population which

we will call X ) is motivated by the above analogy. The parameters

of the model can be directly related to macroscopic biophysical

aspects of a tissue of choice. The model is capable of reproducing

tonic firing, and fast, nonlinear transitions from low, to high, back

to low firing that resemble the excitability (spikes) in single cells.

These tonic-phasic-tonic transitions are the population bursting

described above, and their periodicity can be changed by varying

different parameters. These mechanisms are captured by a two-

dimensional dynamical system (i.e., two differential equations). In

particular, drawing analogies from the phase plane analysis of

single cell models, our model explains the qualitative transitions in

terms of what can be regarded as population excitability.

For a simple visual illustration: Figure 1 shows the correspon-

dence between the membrane potential dynamics of one (typical)

neuron in X (represented by the one compartment, single cell

minimal Av-Ron bursting model [29], described in Appendix S1)

and the dynamics of the population X as a whole. The transitions

between different firing regimes in a single cell are shown in

Figure 1A, both as a function of time (left) and in phase space

(right). The corresponding time-dependent and phase space

representations of the population firing, as simulated by our system,

are shown in 1B.

In the rest of this article, and for the purposes of illustration, the

parameters of the model are tuned to mimic the activity commonly

observed in populations of midbrain dopaminergic neurons

(MDNs); the values and ranges used are summarized in Table 1.

The transitions between different population firing regimes will be

described in terms of the population activity of MDNs.

Physiology of midbrain dopaminergic populations
In general terms, in vivo rodent and primate MDNs from the

ventral tegmental area (VTA, A10) and susbtantia nigra compacta

(SNc, A9) display basal tonic firing rates of up to 20 Hz in vivo [36–

40]. Subsets of MDNs also burst at rates of up to 200 Hz in

response to novel or partially unpredicted stimuli [41,42].

Importantly, bursting behavior in the VTA is displayed both at

the single cell and population levels [38,43].

Midbrain dopaminergic cells receive typical synaptic inputs

from external sources, which can be net excitatory or inhibitory.

Excitatory synaptic input through cholinergic and glutamatergic

terminals is received from several sources including the subtha-

lamic nucleus, the peduculo-pointine tegmentum [22] and others

[44–46]. Inhibitory GABAergic synapses are activated by cells

from within the VTA and SNc and also from basal ganglia nuclei

[47] and other sources [48]. Although for more particular

distinctions and analyses it would be valuable to differentiate

these as separate sources of input, in our model, for the sake of

simplicity and generality, we group them together as a net extrinsic

input rate.

In addition to fast excitatory and inhibitory chemical synaptic

input, there is gap-junctional coupling between dopaminergic cells

[33,38,49]. Electrical coupling is a widely observed phenomenon

potentially significant in the synchronization of neuronal popula-

tions in some cases [33,50], and/or acting as a frequency filter in

other situations [49]. For instance, electrical coupling may be

responsible for generation and stabilization of burst firing in

hippocampal networks [51,52]. Electrical conductance between

neurons in not limited to early brain development, as previously

believed. Even though the high number of gap junctions in the

immature brain declines rapidly during development [53,54], it is

now known that electrical communication exists even between

mature nerve cells. In the midbrain in particular, electrical

connectivity decreases from 96% to about 20% [49] in a period of

weeks, but the latter degree of connectivity persists throughout

adult life. While lacking definitive experimental evidence on the

contribution of gap junctions to the regulation of burst firing in

MDN, it is generally agreed that it induces similar firing between

coupled cells, and thus constitutes a source of internal amplifica-

tion, or recruitment within MDN populations (see Appendix S1).

A Model of Burst-Firing
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Other sources of internal amplification may include the inactiva-

tion of A-type channels [55], NMDA receptor based excitation

[56] and neuromodulator input [57]) (by analogy with thalamo-

cortical population bursting, synchronized mainly via inhibitory

thalamic reticular nucleus input [58]). Irrespective of the

mechanism of this internal amplification, one of our model’s aims

is to establish whether it is a necessary factor underlying burst

activity in the midbrain.

Animal studies show that firing rate of dopaminergic cells is also

modulated via D2-dopaminergic receptor activation [38] [59].

This modulation results in down regulation of the firing in MDNs

and can be regarded as a source of autoregulation within an MDN

population. Extracellular dopamine is typically present in intervals

of up to 300 milliseconds after a burst [43,60], which means that

autoregulation of MDN firing should occur within that window of

time in the absence of other influences. Studies have pointed out a

strong tie between dopamine autoreceptor dynamics and expec-

tation of reward in rodents [59], and similarly, between midbrain

autoregulatory factors and novelty-related traits in humans [61].

Notably, however, midbrain (VTA and SNc) dopamine auto-

receptors may be characteristic to the rodent brain, since they

have not yet been found in the same regions in humans. This

suggests that other dopamine mechanisms may perform in humans

this down-modulatory function [62]).

Bursting in MDNs can be triggered through several pathways.

For instance, glutamatergic and cholinergic inputs from the

pedunculo-pointine tegmentum [63] and laterodorsal tegmentum

[47] are known to produce bursting in the VTA. In addition,

glutamatergic inputs to nucleus accumbens and other striatal

targets increase the tonic firing rate and burst firing in the VTA

[64].

These firing rate ranges and sources of synaptic input were

taken into consideration to constrain our model. Analysis of the

different firing regimes displayed by the model as function of

parameters was then conducted. Our simulations explain

mechanisms by which different transitions between tonic, bursting,

sustained bursting, and high tonic firing occur in our model, in

terms of quantities relevant to the MDN system.

Modeling methods
Construction of the model. As argued above, we consider a

neuronal population X whose activity as a whole can be captured

by a representative firing rate F . The rate F can be thought of as a

weighted sum of the firing rates from the cells in X , or

Figure 1. Comparison of single cell transitions between firing and quiescence, and its analog in the population firing-rate based
model (6)–(7). A. We used the single cell biophysical bursting model of AvRon et al. [29] to illustrate the time evolution of the membrane potential
V (t) (left) as well as the coupled phase-plane dynamics of the potential V and the slower recovery variable W (right). The equations in the reference
and the parameters used for the simulation are given in Appendix S1. B. The population model (6)–(7) illustrates the time evolution of the firing rate
F (t) (left) as well as the trajectories in the (b, F ) plane (right). It is notable that the single cell model employs three equations to trigger the bursts
(i.e., transitions between quiescence and oscillations of the membrane potential), while our model captures the phenomenon simply as a high-low
oscillation of the population firing rate, by a system of two equations. The parameters used in conjunction with our model to match the firing rate in
B with the firing rate in A are also given in Appendix S1.
doi:10.1371/journal.pone.0012695.g001
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alternatively, as the firing rate of a prototypical cell in X (see

Figure 1 and Appendix S1). It is assumed that F changes as a

function of two factors: (1) the average history of the cell’s firing

over a short time interval in the immediate past, and (2) the

synaptic input and other modulatory influences. More specifically,

as explained in the previous section, it is assumed that the input is

a function of factors including intrinsic excitation (amplification),

intrinsic inhibition (dampening), extrinsic excitation, and extrinsic

inhibition. In the case of the MDNs in the rodent VTA, the

intrinsic excitation can be thought of as resulting from a

combination of gap-junctional coupling and NMDA receptor

activation [33,38,49,55,56]. Intrinsic dampening results from spike

frequency adaptation and autoregulation by dopamine [38].

Extrinsic excitation would come from glutamatergic and

cholinergic synaptic inputs. Extrinsic inhibition can result mainly

from activation of GABAergic synapses from within [65] and

outside the VTA [48].

The inputs to X are integrated by means of a response function

S

S(y)~ 1zexp {kS½y{yS�ð Þ½ �{1
, ð1Þ

with kS representing the gain of the response function (sec). S has

an increasing sigmoidal shape, with values between 0 and 1. That

is, the population response saturates for large enough inputs and

tends to zero as the total input rates decrease.

The population response to an incoming input y(t) will trigger

changes in F within some delay tF as follows:

F (tztF )~ Fmax{~FF (t)
� �

:S½y(t)�, ð2Þ

with ~FF (t)*F (t) and Fmax representing, a time-weighted average

of the recent firing between t and tztF and, respectively, the

maximum firing rate of the cells in X . The first factor on the right

hand side of Eq. (2) accounts for the history of firing, and the

second for the response to new inputs. The maximal theoretical

output that can be generated in the population in response to

integrated input y is F~Fmax
:S(y), if the population has no

history of recent coordinated firing. Since delays between

reception of input and response are typically very short (of the

order of a few milliseconds), tF can be assumed to be small. As a

consequence, the discrete-time formulation in Eq. (2) can be

approximated by a continuous-time equation as:

tF

dF

dt
~{F (t)z½Fmax{F (t)�:S(y): ð3Þ

In agreement with the analogy between cellular excitability and

population excitability discussed above, we introduce a dynamic

variable slower than F representing negative feedback that tends

to decrease the firing response to input. We achieve this by letting

the population input be a weighted sum y~aF{bmaxbzP,

where aF is the intrinsic excitation, P is the net extrinsic excitation

term, and bmaxb is the intrinsic dampening, with b [ ½0, 1� acting

as a ‘‘sliding control’’ that tends to decrease the firing rate for a

given input. The dynamics of b can be written as:

tb
db

dt
~b?(F ){b ð4Þ

with tb representing the time constant of the negative feedback,

and with steady state function

b?(F)~
1

1zexp {kb(F{Fb)½ � : ð5Þ

The parameter kb in Eq. (5) determines the maximum rate of

change of b at steady state with respect to the firing rate F . The

firing rate at which the steady state of b is 1/2 is Fb. In single cell

models, b would be similar to the gating of potassium channels

that allows repolarization of the membrane during an action

potential.

The gate b is not the only parameter which may change over

time. However, in the present study the other parameters are kept

fixed, and the dynamics of the system

tF
dF

dt
~{F{S(aF{bmaxbzP)(F{Fmax) ð6Þ

tb
db

dt
~b?(F ){b: ð7Þ

are studied for a variety of fixed values using bifurcation analysis.

System parameters
Before beginning to analyze the dynamics of the system under

perturbation, we note that quantitative choices for parameter

values and ranges are also based on experimental evidence from

MDN recordings in freely moving rodents.

Integration of inputs. In principle, we allow firing in X to

range between zero and Fmax~400 Hz. However, Fmax is just a

theoretical absolute maximum, and X cells spends most of their

time at much lower firing rates (in fact, we show in the next section

that firing is constrained to remain below an asymptotic limit of

Fmax=2~200 Hz, consistent with the maximum rates found

experimentally [39]). According to known distributions of firing

rates found in experimental recordings, we considered the

‘‘critical’’ firing rate (at which the cells are ‘‘at half capacity,’’

and most sensitive to input) to be yS~80 Hz. The time-constant

for the DA neurons, representing the entire time interval over

which input can be integrated, was found to range up to 12 msec

[36]. We estimate the typical response-time of the population (time

Table 1. Parameters for the model (6)–(7).

Name Range/Value Units Description

Fmax 400 Hz Maximal firing rate of population X

a [0,1] none Intrinsic amplification strength

P 0–200 Hz Intrinsic amplification rate

bmax 160 Hz Intrinsic dampening rate

Fb 0–200 Hz Intrinsic dampening onset (or half
activation rate)

kb 0.025 sec Intrinsic dampening rate slope

yS 80 Hz Response function half maximum
rate

kS 0.2 sec Response function rate slope

tF 1/400 = 0.0025 sec Population Rate Time constant

tb 1/30 = 0.033 sec Intrinsic dampening time constant

doi:10.1371/journal.pone.0012695.t001
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spent by X on integrating incoming input before responding with

an action potential) to be significantly lower, and in our analysis

we considered values from tF from 1=800 sec ~1:25 msec, to

1=200 sec ~5 msec.
External input. The cumulative firing rate of external inputs

to MDN can be very large (the midbrain can get net excitatory

inputs of the order of 1–2 kHZ). This translates post-synaptically

to a much lower rate P, on the order of 100{200 Hz, which is the

effective rate integrated by the MDN to create an EPSP.

Intrinsic amplification. a [ ½0, 1� can be considered to act

as a ‘‘coupling index’’, that is the fraction of the maximal electrical

coupling (i.e., a~1 if all cells within X are mutually coupled). Dye

coupling studies in midbrain regions observed that a single DA

neuron may be coupled with one to five similar cells [33]. Grace

and Bunney showed that 2 to 5 neurons out of the 18 SNc cells

under study were electronically coupled [38], and Vandecasteele

et al. found coupling indices from 17% to 40% at various

development ranges [49]. Electrical studies found pair indices

from 20% to 96%, and various average coupling conductances

during the development [49]. To incorporate all theoretical

possibilities, in our analysis we considered all values of a [ ½0, 1�;
however, as will be seen, most plausible dynamics occur for

a [ ½0:1, 0:4�, which is consistent with the experimental findings.

Internal dampening. Since dopamine seems to be typically

present extracellularly up to 300 milliseconds after a burst [43,60],

we considered that the autoregulation of MDN firing by DA

autoreceptor occurs within that time-frame (tb*0:03 sec). At its

maximum capacity, we considered the effect of DA receptor

autoregulation to be equivalent to that of a direct inhibitory input

of bmax = 160 Hz. The highest receptor sensitivity kb to

extracellular dopamine, corresponding to ‘‘half-capacity,’’ is

obtained at the firing rate F~Fb. Since one of the aims of our

model is to study the effects of receptor sensitivity on burst firing,

we allowed Fb to be a free parameter, varying widely between

Fb~0 and Fb~200 Hz.

Fine tuning of these parameters does not substantially affect the

big picture, which remains qualitatively robust in a neighborhood

of the ranges considered. Finally, let us note that, although not all

the model parameters are independent (e.g., changing yS and P
clearly has the same effect), we prefer to keep these quantities

separate, in order to preserve their physiological meaning, and we

vary only the ones that are suspected to relate to regulation of

bursting activity. In the discussion, we further show that many of

the dynamic properties of the model, constrained to these

parameter values and ranges, agree qualitatively and quantita-

tively with population firing considerations drawn from electrode

recordings.

Basic analysis and bifurcations
Finding the transitions between different qualitative states of a

dynamical system generally starts with plotting its nullclines (the

curves in the system’s phase-plane where either
dF

dt
~0 or

db

dt
~0),

then calculating the equilibria (b�,F�) of the system (i.e., the points

where the two derivatives are simultaneously zero). In fact – as the

Av-Ron single compartment cell burster [29], and the original

Wilson-Cowan model [34] – our model falls in the class of

Fitzhugh-Nagumo systems, which pioneered geometrical analysis

of phase-portraits in the context of neurocomputational models

[35]. While the general properties of the FitzHugh-Nagumo

system have been studied and discussed at length [15], we will

hereby focus on the quantitative phase plane characteristics, and

on the parameter transitions more particular to our model.

In our model, a first easy remark concerns the region of the

plane which contains the relevant dynamics. Indeed, start by

noticing that, for any input y and for any choice of parameters, the

response S(y) [ (0,1). Since dF=dt~{Fz(Fmax{F )S(y), this

implies that dF=dtv0 for F§Fmax and that dF=dtw0 for Fƒ0.

Hence, if 0vFvFmax, then {FvdF=dtvFmax{2F , so that

dF=dtv0 when FwFmax=2. So all trajectories end asymptotically

in the open strip 0vFvFmax=2~200. In addition to this, one can

also note that we always have 0vb?(F )v1, which in turn implies

that db=dtv0 for b§1 and that db=dtw0 for bƒ0, constraining

the long term dynamics to the open strip 0vbv1. In conclusion:

the open region R~(0, 1)|(0, 200) traps the asymptotic phase

plane dynamics of system, in the sense that all trajectories

eventually end in R and that any attracting sets (hence any features

relevant to the long term dynamics like equilibria and cycles) are

also contained in R.

The high nonlinearity of the system makes exact computation of

the equilibria very difficult; however, it is not hard to show that the

the monotonicity of the nullclines implies existence of one up to

three intersection points (true in general for any FitzHugh-

Nagumo system of ODE). The stability of these points changes

with their position in the phase plane, so that different set of

parameters can deliver different combinations for the stability of

equilibria.

While the db=dt~0 nullcline has sigmoidal shape, so is globally

increasing, the piecewise monotonicity of the nullcline dF=dt~0
depends on the choice of parameters. It is its temporary slope

reversal which gives rise to the possibility of multiple equilibria,

hysteresis, cycles. (Equivalent conditions on the parameters for this

to occur are hard to calculate, but Wilson and Cowan, for

example, compute a sufficient condition in their original paper

[34].) Obtaining any exact analytical information on the position

and geometry of the cycles, when they exist, is even more

intractable (as one would generally expect for this degree of

nonlinearity). The fact that both nullclines are contained in the

regionR implies, of course, that any phase plane cycle would have

to also be contained inR, which is a useful initial estimate. Figure 2

shows simulation based illustrations of a few phase planes

achievable by of our system, with the respective nullclines,

equilibria and cycles (which are allowed to coexist in the same

phase plane), together with representative trajectories. More

thorough illustrations and descriptions of possible phase plane

dynamics can be found in Appendixes S2 and S3.

A bifurcation in the dynamics of a system is by definition a

(parameter) state of the system where these dynamics exhibit a

qualitative change. For example, for a 2-dimensional continuous

time system like (6)–(7), such a qualitative transition could be a

change in the stability of its invariant sets: equilibria or cycles. A

bifurcation diagram is a graph that shows these invariant sets, and

possibly their type and stability, as a function of a single parameter

(for co-dimension 1) or of two parameters varied simultaneously

(for co-dimension 2) [66–67]. The stability of equilibria can be

monitored computationally by following the nature (real or

complex) and the sign of the the real part of the local Jacobian’s

eigenvalues; bifurcations characterized by a local change in

stability of cycles are generally harder to establish.

In our study, we use bifurcation diagrams of co-dimensions 1

and 2 to assess the qualitative differences in firing rates and

transitions between such regimes – resulting from varying the

physiological parameters in the model. For illustrating and

understanding these bifurcations, we use numerical computations.

(The computations of the steady states and phase plane cycles as

well as the bifurcation diagrams were performed in Matcont

(version 2.4) [68], a bifurcation finding software based on

continuation algorithms.) These are discussed throughout the

remainder of the paper.

A Model of Burst-Firing
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The stability-changing local bifurcations of codimension one

that occur in our system are of three types: subcritical Hopf, limit

point (or saddle node bifurcation of equilibria) and fold (saddle

node bifurcation of cycles). The terminology in the field is not

always consistent between authors; throughout the paper, we

remained faithful to the system of terms used by the authors of the

Matcont software; for clarification, all terms used are defined in

the following paragraph. Each type of transitions corresponds to a

Figure 2. Different firing behaviors and phase plane configurations. The left and right columns show, respectively, the firing rate F vs. time
and the (b, F ) phase plane. A1-2. The system has an attracting fixed point at F? = 33.9137 Hz, b? = 0.3425. Parameters: Fb = 60 Hz, a~0:1, P~120
Hz, bmax = 160 Hz. B1-2. Sustained oscillations. Same parameters as in A, except a = 0.2. C1-2. Low tonic firing (green) and bursting (blue) in a
bistable regime. Parameters: a = 0.5, Fb = 28.131 Hz. Initial conditions: for the tonic firing F0 = 40 Hz, b0 = 0.4; for the bursting F0 = 40 Hz, b0 = 0.7.
Stable fixed point at F? = 11.1343 Hz and b? = 0.3950. D1-2. Bursting (blue) and high tonic firing (green) in a bistable regime. Parameters: a = 0.5,
Fb = 139.98734. Stable fixed point at F?*189 and b? = 0.7737. Initial conditions: for the tonic firing F0 = 40, b0 = 0.4; for the bursting F0 = 40, b0 = 0.7.
doi:10.1371/journal.pone.0012695.g002
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different ‘‘crash’’, or ‘‘degeneracy’’ of the respective equilibria or

cycles.

A subcritical Hopf bifurcation appears generally when an

equilibrium with complex conjugate eigenvalues changes sta-

bility (as one parameter of choice is varied), so that its Jacobian’s

eigenvalues transition from having positive real part (equilibri-

um is an unstable spiral) to negative real part (stable spiral),

through a pure imaginary stage. This transition also creates a

repelling cycle around the stable spiral, whose radius increases

locally with the distance to the bifurcation point (see Appendix

S2). A limit point (or saddle node) bifurcation appears when two

equilibria (one stable and one unstable) traveling in the phase-

plane collide and disappear, through an intermediate stage of a

common half-stable equilibrium (i.e, with one null eigenvalue

of the Jacobian). Similarly, in a fold bifurcation, two nested

cycles of opposite stabilities collide and disappear, through a

bifurcation stage of a common half-stable cycle. For illustrations

of successions of such transitions, see Figure 3, or Appendixes S2

and S3.

When varying simultaneously two parameters, we encounter

two types of codimension 2 bifurcations [66]. The presence of the

hysteresis in the phase-plane opens the possibility for cusp

bifurcations; these occur where two branches of limit point

bifurcation curve meet tangentially. For neighboring parameter

values, the system has three equilibria which collide and disappear

pairwise via limit point bifurcations. A Bogdanov-Takens

codimension 2 bifurcation appears generically at the intersection

of a limit-point curve, a Hopf curve and a homoclinic curve. For

nearby parameter values, the system has two equilibria (exactly

one of which is a saddle) which collide and disappear via the limit-

point bifurcation. The nonsaddle equilibrium undergoes a

subcritical Hopf bifurcation generating an unstable cycle. This

cycle degenerates into an orbit homoclinic to the saddle and

disappears via a saddle homoclinic bifurcation. Although interest-

ing in the context of the system’s dynamics, the parameter ranges

seem to force the physiological dynamics to remain away from the

Bogdanov-Takens bifurcations, which is why they will not be

discussed here in any further detail.

Results

Tonic versus phasic firing
The main focus of this paper is on mechanisms that trigger and

stop bursting, and how these mechanisms can be explained by

changes in the model parameters. In other words, such

mechanisms will be studied by characterizing the bifurcation

structure of the system. The geometry of the bursts, their timing

and their kinetics can be very different, depending on the

parameter values. Different ways in which parameters tune

different features of the bursts are discussed below.

Figure 2 illustrates four possible firing regimes achieved by the

system (6)–(7) with four different sets of parameters. The time

evolution of the firing rate F (t) (Figure 2 left column), is paired in

each case with the corresponding trajectory in the (b,F ) phase-

plane (Figure 2, right column). Depending on the parameter

values, phase-plane trajectories can exhibit two qualitatively

different types of long-term behavior, determined by the presence

or absence of two types of attractors. One such attractor is a tonic

firing rate that corresponds to a stable equilibrium in the model.

The other attractor is an oscillation, which corresponds to periodic

transitions between low and high population firing rates; this

regime may be regarded as periodic bursting of the cells in X .

Figure 2A shows an example in which the system has a global

stable equilibrium at F?*33.9 Hz. When initialized at any other

value, the firing may undergo an upturn, but always returns to the

steady tonic rate F?. For the parameter values in Figure 2A,

repeated bursting is not possible. For the parameters in Figure 2B,

any trajectory in the (b, F)-plane starts cycling. The firing rate

describes an oscillation between *200 and *0 Hz. These

oscillations can be thought of as a bursting regime with no tonic

firing. However, tonic firing and bursting are not mutually

exclusive in this model. Figures 2C and 2D illustrate the

coexistence of tonic firing and bursting. The right panel of

Figure 2C shows a stable equilibrium at (b?, F?) and a large

stable cycle. The basins of attraction of these two attractors are

separated by an unstable cycle (not shown). For instance, two

nearby initial states could be situated, respectively, inside and

Figure 3. Examples of two successions of local bifurcations. A. The steady state of the system migrates in the phase plane (b, F ), describing a
continuous curve as Fb increases from 0 Hz to 200 Hz. The stability of the equilibria is color coded as follows: blue for stable spiral, red for unstable
spiral. The two changes in stability are thus noticeable along the curve (red stars) and are caused by two subcritical Hopf bifurcations in the dynamics
(paired with fold bifurcations, which are represented by the purple vertical lines). Cycles emerge at these bifurcations. The evolution of the large
stable cycles as Fb increases is represented by the blue dotted curve (described by its highest and lowest F values). Since the bistability windows
between the fold and the Hopf bifurcations are very small, we inserted them as two magnified frames; in each of these frames, the fold bifurcation is
visible as a purple vertical line, and tops and bottoms of the repelling cycle as Fb increases are drawn as a red curve. In panel A, we fixed a = 0.5 and
P = 120 Hz. B. The steady state curve shows two fold bifurcations (purple vertical lines), two Hopf bifurcations (red stars), and two limit point – or
saddle node – bifurcations (light green stars). In this case a~0:75, P~100 Hz, and Fb increasing from 0 Hz to 200 Hz. Additional explanations of the
transitions in the dynamics and illustrations of the phase planes for these transitions are presented in Appendix S3. Common fixed parameters for A
and B: kb = 0.025 sec, kS = 0.2 sec, yS = 80 Hz, bmax = 160 Hz, tF = 2.5 msec, tb = 33 msec.
doi:10.1371/journal.pone.0012695.g003
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outside the region enclosed by the unstable limit cycle. The

trajectory of the point inside the unstable limit cycle would go

toward F?*11 Hz. The trajectory of the point outside the

unstable cycle goes toward the limit cycle. That is, the system can

asymptotically stabilize to either a low tonic firing, or toward

bursting. A similar situation is pictured in Figure 2D, except that

the stable equilibrium corresponds to high tonic rate of about

F?*189 Hz and the coexisting oscillations have longer peaks;

note that the bursts are longer and the inter-burst intervals are

shorter.

Bifurcation diagrams were constructed to investigate the

transitions from tonic to oscillatory firing and back. As an

example, two bifurcation diagrams for the half-maximal rate of

dampening, Fb, are compared in Figure 3. The two panels in

Figure 3 illustrate how the equilibria of the system change as Fb

increases between 0 to 200 Hz. In Figure 3A, the amplification

parameter was set to a = 0.5. The stable and unstable rates are

shown, respectively, in blue and red. In this example, a limit cycle

oscillation around the unstable fixed point emerges as Fb increases

toward 30 Hz and disappears as Fb approaches *140 Hz. The

firing rates in the oscillatory regime alternate between *200 Hz

(top dotted lines) and *0 Hz (lower dotted lines). The transition

from low tonic firing into the bursting regime takes place through

a thin bistability window. In this window, a stable equilibrium and

the stable cycle coexist, suggesting that cells in X can end up in

either state, based on their recent history of firing. This coexistence

has been observed experimentally in midbrain electrode record-

ings (for example by Grace et al. [69,70]). The minimum and

maximum rates of the repelling cycle that separates the stable

equilibrium and the limit cycle are shown in the bottom inset as a

red curve. The bistability onsets with the formation of a cycle

around the stable state (fold bifurcation), and disappears when the

unstable cycle becomes infinitesimally small and renders the

equilibrium unstable (subcritical Hopf bifurcation). In the same

figure, as Fb continues to increase, the bursting eventually

transitions sharply into high tonic firing. This transition occurs

at the end of another small bistability window (top inset) formed

between a subcritical Hopf and a fold bifurcations (see also

Appendix S2 for a more detailed illustration of the phase plane

transitions). Note that, strictly speaking, Hopf points mark the

entry into the purely cycling regime, with no stable steady-state.

Since the bistability windows are very small, and since the Hopf

points are easily identifiable on the graph of the steady state, for

the remainder of this paper we will consider the Hopf points to be

the mark for the onset of sustained (periodic) oscillations.

In Figure 3B, we show the analogous bifurcation diagram for a

higher intrinsic amplification a = 0.75. The transition from low-

tonic firing to bursting is qualitatively the same as in Figure 3A,

i.e., through a fold and a Hopf bifurcation, and a subsequent

bistability window between the two. The transition from bursting

to high tonic firing is, however, more mathematically complex,

and involves the appearance and disappearance of two additional

fixed points, through two limit-point bifurcations (see also

Appendix S3). Although of a slightly different nature than the

one in Figure 3A, this transition produces the same final result, as

oscillations cease for the larger rates of activation for intrinsic

dampening.

Triggering sustained firing rate oscillations (tonic-
bursting regime)

We study first how our population responds to extrinsic

excitation with and without the intrinsic amplification, respective-

ly, for a~0 and aw0 (Figure 4A–B). Each curve corresponds to a

different value of Fb. The steady state F? of the population firing

rate increases, as the frequency of extrinsic excitatory input, P,

increases from 0 to 200 Hz.

As shown in Figure 4A, a unique, stable, and increasing steady

state rate F? (as a function of level of excitation P) occurs when

there is no intrinsic dampening. In other words, the system has

only one stable state, and no attracting cycles. That is, periodic

bursting cannot be obtained if no amplification is present. The

steady state rate F? increases as the dampening onset decreases

(i.e., a larger Fb rate places F? on a higher curve). That is, the

model naturally predicts that the (asymptotic) population firing

rate will be higher if dampening starts at higher rates. The values

of P for which F clearly departs from 0 depend on the half-

activation of dampening, Fb. If onset of dampening occurs at lower

rates (red curve in the bottom of Figure 4), the input firing rate

required to increase the population firing rate is much larger than

if dampening occurs at higher rates.

To trigger oscillations, it is necessary for the system to have a

nonzero intrinsic amplification (Figure 4B). However, although

necessary, having aw0 is not sufficient to produce sustained

bursting. As shown in Figure 4B, the onset of firing rate oscillations

characteristic of periodic bursting also requires a large enough net

balance between the extrinsic inputs and the onset of intrinsic

dampening. In addition, bursting requires initial build-up to some

low level of tonic firing to pass the stability threshold into the

cycling regime. Such thresholds, located at the Hopf points, are

shown as red stars in Figure 4B.

Modulating phasic firing
In general, the duration of high firing rates of the oscillatory

regime can be modulated by intrinsic excitation and dampening

(Figures 5 and 6B), and extrinsic input (Figure 6A). First, consider

the changes in burst duration as a function of the intrinsic

amplification weight a (Figure 5). The larger a, the longer the

bursts, with interburst intervals relatively constant. The transition

from high/low firing rate oscillations into high tonic firing occurs

for a sufficiently large increase in a (see also Figures 4B and 8B).

Other effects in the properties of sustained oscillations can be

obtained by changing the external input P or the intrinsic

dampening activation rate Fb. Figure 6 shows how the activation

of P and Fb can be varied within relatively wide ranges (100{120
Hz for P and 80{140 Hz for Fb, respectively) so that the high

firing rate portion of the cycle is longer and the quiescence

intervals shorter, and without significantly changing the period of

the oscillation. This effect is important, as it suggests a mechanism

by which populations of bursting cells can regulate their duty

cycles (burst duration/cycle duration) without altering the bursting

frequency.

The frequency of the sustained oscillations in the model can be

also controlled by varying the time constants tF and tb. These

parameters can be used to regulate the length of the burst and

inter-burst intervals (Figure 7A), and the symmetry of the rising

and falling phases (Figure 7B). One way to think about the effect of

increasing tF is that the right hand side of equation (6) will

increase for smaller values of tF , yielding larger changes in F per

unit time during an oscillation. On the other hand, increasing the

time constant of the recovery variable, tb, decreases the time-

dependent change in b, which results in slower decrease during the

oscillation in F . As a consequence, the frequency of oscillations

decreases, without significantly altering the duty cycle (i.e. the

burst/inter-burst duration ratio).

Ending sustained oscillations
Similarly to the transition from equilibrium (tonic firing) into

sustained firing rate oscillations, the converse transition (from
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oscillations to tonic firing) corresponds to a qualitative change in

the dynamics of the system. To study these transitions, the

attracting states of the system were calculated by varying only one

parameter at a time. Two examples of these codimension 1

bifurcations are shown in Figure 8. Panel A illustrates the

bifurcation diagrams for the rate of extrinsic input P, for different

values of the half activation of intrinsic dampening, (Fb = 80, 100,

120, and 150 Hz, shown, respectively, in blue, purple, orange, and

green). For instance, the lowest of the curves (green) in Figure 8A

shows a monotonic increase in the steady state firing as a function

of P, for a relatively low onset of intrinsic dampening (Fb~80 Hz).

The transition (Hopf) points of the diagram are shown by the red

stars. For contrast, the first curve from left to right (blue) was

calculated assuming a higher onset of intrinsic dampening

(Fb~150 Hz). Note that the curve is not monotonic, and two

additional limit points (green stars) appear between the Hopf

points. Recall that limit point (or saddle node) bifurcations are the

states of the system where, under variation of one parameter, two

equilibria collide and disappear, or, conversely, two equilibria

emerge. For the blue curve in Figure 8A, corresponding to

Fb = 150 Hz, a saddle and a repeller appear for large enough P at

the first limit point bifurcation (top green star), as new equilibria to

a system already having an attracting equilibrium in the low tonic

firing range. Under further increase of P, this low tonic

equilibrium changes stability through a Hopf bifurcation (bottom

red star), then steadily approaches the newly created saddle point,

and eventually collides with it and vanishes at the second limit

point bifurcation (bottom green star). The surviving (unstable)

equilibrium will later undergo another Hopf bifurcation (top red

star) and become attracting, causing the seizure-like, high tonic

firing observable for very high values of P. The additional two

equilibria are unstable, so they do not constitute attracting states

for the firing in the system. However, they play a very important

role in the transitions necessary to lead from the low tonic to the

Figure 4. Steady state firing rate as a function of extrinsic input P. A. No intrinsic amplification (a = 0), and increasing the onset of
dampening Fb . From lower to higher curve: Fb~20 Hz (red curve), Fb = 50 Hz (blue curve), Fb = 100 Hz (green curve), and Fb = 150 Hz (orange curve).
There are no Hopf points on any of these curves, hence periodic bursting can’t be triggered for a = 0. B. In the presence of sufficient intrinsic
amplification, an extrinsic excitation appropriately balancing the dampening will trigger periodic bursting. Along these curves, Hopf points are
marked with red stars, and limit points are marked with light green stars. The steady states are unstable (spirals or saddles) between the Hopf points,
and stable otherwise (stability not shown). To maintain clarity of the diagram, and since their approximate placement is clear, the fold bifurcations
and the corresponding cycles are not shown. Parameters: Fb = 100 Hz, and increasing levels of intrinsic amplification. From lower to higher curve:
a~0 (green curve, identical with the green curve in A), a = 0.1 (purple curve), a = 0.25 (cyan curve), a~0:5 (orange curve) and a~0:75 (blue curve).
Fixed parameters common to A and B: kb = 0.025 sec, kS = 0.2 sec, yS = 80 Hz, P = 100 Hz, bmax = 160 Hz, tF = 2.5 msec, tb = 33 msec.
doi:10.1371/journal.pone.0012695.g004

Figure 5. Increasing the duration of the high-firing phase of the oscillation with minimal changes to the low-firing phase. The high
firing rate portion of the oscillation (burst) can be increased by increasing the weight of the intrinsic amplification a. The figure shows the
dependence on a of: the burst intervals (red curve), the inter-burst intervals (green curve) and their sum, i.e., the period of the oscillation (blue curve).
As the weight of intrinsic amplification increases, the length of the bursts is longer, but the relaxation intervals between bursts remain approximately
unchanged. Fixed parameter values: kS = 0.2, kb = 0.025, yS = 80 Hz, Fb = 60 Hz, P = 120 Hz, bmax = 160 Hz, tF = 2.5 msec, tb = 33 msec.
doi:10.1371/journal.pone.0012695.g005
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high tonic firing. This succession of transitions is mathematically

more complex than the fold and Hopf pair observed along the

lower (monotonic) curves in Figure 8A.

Panel B in Figure 8 shows the bifurcation diagram for the

amplification weight a, using different values of the dampening

half activation (Fb = 40, 80, and 120 Hz, respectively, in orange,

green, and purple). Observe that the steady state firing rate F? is

noticeably higher for higher values of Fb, and also, limit points are

present for a larger range of Fb.

The cessation of bursting doesn’t necessarily occur symmetri-

cally with the bursting onset, and may involve a different

succession of bifurcations (compared to the equilibrium-to-cycle

transition). In principle, there are multiple and qualitatively

different mechanisms of transition from bursting back into tonic

firing, each corresponding to different parameter regimes. As has

been observed in different experimental settings, the system can

transition from bursting into either low or high tonic firing.

From oscillations into high tonic firing
Our first phase-plane and bifurcation plots, staring with

Figure 2, suggested that cycling is possible for specific parameter

interval. Figure 3 showed that there is an interval of Fb for which

the system exhibits cycling, when all other parameters are held

fixed. Along each such curve, there are two Hopf points – the

approximate marks for the system entering and leaving the

bursting mode. As noted earlier, increasing either type of

excitation (i.e., increasing P in Figure 5A or increasing a in

Figure 5B), or decreasing the intrinsic dampening (i.e., increasing

Fb in Figure 3) leads the system down a path from low tonic firing

through an oscillation window, and into a regime of high tonic

firing. However, it is not unreasonable to assume that the

predicted seizure-like plateau after the end of oscillations (of

*200 Hz) would be impossible to sustain in real neural

populations, eventually leading to cellular death [71,72] (see

Discussion Section).

Transitions into low tonic firing
Sustained firing rate oscillations can be efficiently stopped by

shifting the onset of dampening towards lower firing rates. One

way in which neuron populations may experience this transition

could be a decrease in the activation of dampening, shortly after

entering the bursting mode. In MDNs, such a decrease could be

triggered by a sudden increase in the local concentration of

dopamine due to recruitment of cells into bursting mode. Shifting

the dampening onset to lower firing rates can result into a regime

where bursting is no longer possible (even though the extrinsic

inputs that originally produced this bursting may still be present).

The effects of this change can be visualized in Figures 8A–B as

Figure 6. Changing the duty cycle with minimal changes to the oscillation frequency. Increasing the intrinsic amplification rate P (A) or
the half activation rate of dampening Fb (B) increases the duration of the high/state of the firing rate oscillation, without changing much the
oscillation frequency. The result is an increase in the duty cycle of the population. Fixed parameter values: kS = 0.2 sec, kb = 0.025 sec, yS = 80 Hz,
bmax = 160 Hz, a = 0.5, tF = 2.5 msec, tb = 33 msec. For A, P~100 Hz; for B, Fb~60 Hz.
doi:10.1371/journal.pone.0012695.g006

Figure 7. Changing the oscillation frequency with minimal changes to the duty cycle. A. When increasing the time constant tb , both burst
and inter-burst intervals lengthen (dotted graphs), although the duty cycle remains relatively stable. Under changes of the time constant tF , the
duration of and between bursts remains fairly stable (solid graphs). However, increasing tF affects the symmetry of the burst geometry, i.e., the
duration of the rising phase and decaying phase of the firing rate (B). B. tF = 1.25 msec, tb = 33 msec (red curve) and tF = 5 msec, tb = 33 msec. Fixed
parameter values: kS = 0.2 sec, kb = 0.025 sec, yS = 80 Hz, Fb = 60 Hz, P = 120 Hz, bmax = 160 Hz, a = 0.5.
doi:10.1371/journal.pone.0012695.g007
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‘‘pushing the system down’’ to a lower curve (corresponding to

lower Fb). If this drop is significant enough, the system’s position

on the new curve will be to the left of the Hopf point which marks

the onset of bursting, in the range where the equilibrium is stable.

Hence the system is forced to return to low tonic firing. It is

possible that this forcing inhibitory term may be in effect for as

long as necessary to prevent further bursting. For example,

lowering the excitation P may allow the return of Fb to the pre-

oscillatory range, without any need for additional protection

against bursting. Conversely, raising P may require even higher

inhibition (lowering the curve even more), if the return of bursting

is not yet desirable in the system. This suggests a negative feedback

modulation through intrinsic dampening, by a continuous

readjustment of Fb according to the current state of the population

firing (as further discussed in the last section).

Bifurcation diagrams in a two-dimensional parameter plane

were used to study the global changes in the dynamics as two

parameters change simultaneously and independently. In the

figures in Appendix S4, we plotted the parameter planes (P, a),
(P, Fb) and (a, Fb). In all three plots, we notice that the Hopf

curve (i.e., the curve that contains all the Hopf points for the

particular ranges of parameters) delimits a closed region. This is

the region where ‘‘periodic bursting is possible’’ in the system.

Recall that a Hopf point is the approximate mark for entering the

cycling regime when one parameter is changed. Here, the Hopf

curve is an approximate boundary for the 2-parameter region that

permits periodic oscillations.

Some of these mechanisms can be more easily captured by

allowing multiple system parameters to vary at the same time.

Examples of the bifurcations displayed by the system as two

parameters are varied simultaneously are shown in Appendix S4.

Discussion

The previous paragraphs describe a model that approximates

the activity of a homogeneous population of neurons. The model

exhibits transitions between bursting and tonic firing that

resemble the typical behavior of several populations of cells in

the nervous system. We proceed with some comments on features

particular to the model, which we place within the context of

MDN activity. We finish the discussion with more general

remarks about potential applications of the model in studying the

collective behavior of different populations of cells in the nervous

system.

In systems without electrical coupling or other intrinsic

amplification, solitary bursts might appear simply as a perturba-

tion of the initial condition due to increase in external stimulus.

For example, in thalamocortical neurons, population bursting

during sleep or absence seizures is synchronized mainly via

common inhibitory inputs from the reticular nucleus. However,

since MDN are known to be partially electrically coupled (aw0),

the system has the potential for sustained bursting.

We believe that most of the dynamics observed in the MDN

occur close to, and on either side of the pair of fold and Hopf

bifurcations (in proximity of the low bistability window) This line

of thinking is based on our general work hypothesis that the brain,

in its attempt to solve the optimization problems faced by all

biological systems, has to maintain its function in a dynamic range

that provides sensitivity to a variety of different inputs [73]. Based

on both theory and experiment, an entire line of research is

working to support the hypothesis that the brain self-organizes as a

complex system, functioning far from equilibrium, near a critical

state [74,75]. In the particular case of the MDN function, the

proximity to the critical window maximized responsiveness in the

sense that a slight increase in excitation may render singular or

periodic bursts with rates up to F~200 Hz, which then have to be

(and can be) readily suppressed when necessary (e.g., when the

triggering stimulus loses its novelty content).

Some experimental studies observed typical MDN burst rates of

20{30 Hz [42,76]; in other studies, the heterogeneity of types,

localization and behavior of midbrain cells transpired as wider

distributions, ranging from (20{30 Hz) to very high (up to

150{200 Hz) [39]. Similarly, some spike counts quote 2{5 spikes

per burst [42], with relatively small interspike intervals of 6{12
msec [39]; however, more comprehensive descriptions have

included higher quotes, and have additionally noticed that

glutamate enhances bursting, increasing spike/burst counts to

8{10, while leaving inter-spike intervals relatively unchanged.

Overall, accounts of burst duration have ranged widely from

20{120 msec [39,42], and inter-burst intervals from 50{250
msec [42], values which are generally accommodated by the range

of rhythms encompassed by our model in the neighborhood of the

low bistability window.

Intrinsic amplification is necessary, but not sufficient in

producing periodic bursting. As for solitary bursts, the transition

into oscillations has to be produced by an additional factor, such as

increase in the excitatory synaptic input (e.g., the pedunculo-

pontine tegmentum – PPTg – gates bursting in MDNs [46]), or a

Figure 8. Bifurcation diagrams illustrating the stability of the steady-state firing rate as a function of one parameter. A. The curves
represent the locus of the steady-state firing rate as P was varied from P = 0 Hz to P = 200 Hz, for fixed a~0:5. Each curve corresponds to a different
value of Fb ; from bottom to top: Fb = 80 Hz (green curve), Fb = 100 Hz (orange), Fb = 120 Hz (purple), Fb = 150 Hz (blue). B. The curves show the
steady-state as a is varied from a = 0 to a = 1, for fixed P = 120 Hz; from bottom to top: Fb = 40 Hz (purple), Fb = 80 Hz (green), Fb = 120 Hz (orange).
Hopf points are marked with red stars, and limit points are marked with light green stars. The steady states are unstable between the Hopf points,
and stable otherwise (stability not shown). The fold bifurcations and the corresponding cycles are not shown. Fixed parameters common to A and B:
kS = 0.2 sec, kb = 0.025 sec, yS = 80, bmax = 160, tF = 2.5 msec, tb = 33 msec.
doi:10.1371/journal.pone.0012695.g008
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decrease in the dampening (e.g., a reduction in the GABAergic

input to VTA neurons has been correlated to bursting activity

within the VTA [65]).

The behavior of the system (6)–(7) can be used to test the

hypothesis that MDN firing states are independently regulated by

two distinct afferent pathways, whose interactions control tonic

and phasic activity in MDNs. On one hand, the mesolimbic

dopamine system is strongly influenced by the hippocampus

[22,64]. In brief, infusions of NMDA into the ventral subiculum

(vSub) increases the number of spontaneously active DA neurons

(population activity), while having no effect on firing rate or

average bursting activity. In contrast, NMDA activation of the

pedunculopontine tegmentum resulted in a significant increase in

DA neuron burst firing without significantly affecting population

activity. Simultaneous excitation of the vSub and PPTg induced

significant increases in population activity and burst firing in

MDNs [48] [47]. Quite clearly, each of these inputs is not only

necessary for regulating normal midbrain function (e.g., current

injection triggers MDN bursting only if an NMDA-receptor

agonist is added to the standard saline [77]), but also has a very

particular effect on population firing. Regarding amplification,

excitation and dampening as factors gating the bursting, our

model illustrates the importance of an appropriate modulatory

balance to the midbrain, for tuning the numbers of tonic versus

bursting MDNs. A more detailed study of the influence of extrinsic

inputs to populations of MDNs could be performed by extending

the model to include more than one area, by coupling different

populations like the one described by (6)–(7). Such coupling could

incorporate specific inhibitory/excitatory pathways that are well

known in these circuits, but whose functional influence on firing in

MDN are still not well understood. The specific interactions

between cells participating in feedback loops from/to the midbrain

are only speculative at this point. In sum, a potential general

attribute of the model presented here is the ability to verify or

suggest theoretical alternatives to existing hypotheses about the

network dynamics in such loops.

The transition into oscillations in the system (6)–(7) cannot occur

if the initial firing rate is low. As shown in Figure 4B, the firing

activity has to first build up to a level of tonic firing of 2{10Hz,

for bursting to occur, which agrees well with experimental

evidence [47]. Once the sustained oscillations are triggered in

the model, the duration of the high-frequency phases and those of

the intervals between them can be tuned by a variety of factors. In

the oscillatory regime, high (low) firing rate episodes get shorter/

longer when the system is brought close to any point of transition

into low (high) tonic firing. In contrast, high (low) firing rate

episodes and get longer when the system is closer to a transition

into high (low) tonic firing (e.g., seizure-like plateau).

The oscillations in the system (6)–(7) can be stopped by two

different mechanisms corresponding to a forced transition into

either low tonic or high tonic firing. As noted earlier, the transition

between low-tonic to oscillations resemble the busting experimen-

tally observed in MDN populations. The accumulation of dopamine

in the vicinity of bursting cells has been shown to affect MDN

bursting [38]. The model also predicts a result partially confirmed

by experiment: that directly lowering the excitatory input (e.g., PPT

input) or increasing inhibition (e.g, GABAergic tone from basal

ganglia nuclei) may also stop oscillations [46]. Some limitations and

possible generalizations of the model (6)–(7) are discussed next.

The functional details and parameter ranges used to illustrate

the behaviour of the model are specifically applicable to

populations of MDNs. Therefore, the model (6)–(7) is applicable

to at least midbrain-like physiology and connectivity. However,

given a region of interest in the nervous system, equations (6)–(7)

could be set up to model different families of cells by choosing

different parameter sets, thus enabling the study of larger systems.

As noted before, some of the observed qualitative features could be

applicable to networks that govern population bursting in other

brain regions (e.g., the thalamus [78], or the subiculum [79]).

The relationship between the population activity in X and its

inputs was modeled by means of sigmoidal functions. This approach

was chosen to capture the saturation effect that occurs in cells as

their excitatory and inhibitory inputs are integrated [80]. The

qualitative use of such functions in our context is justified by models

and experiments that go back to Cowan, Boltzmann, and Hill

[34,81,82]. Nevertheless, it is worth noticing that the parameters kS

and kb are only partially justified from a macroscopic perspective, at

least for the MDN populations we discuss here.

The transitions between equilibrium, oscillations and back have

been studied here from a static perspective, in the sense that the

changes in parameters were imposed externally rather than being

regulated through an intrinsic model feedback. By analogy with

the single cell models by Av-Ron et al. [29], future work will

address this issue by introducing particular bifurcation parameters

as time-dependent system variables that may trigger the start and

stop of oscillations.

General considerations
The focus of this paper has been placed on studying qualitative

changes in the system dynamics that result from perturbations of

its parameters, particularly from variations of one parameter at a

time, without trying to achieve an overall picture of how these

changes combine to determine the global behavior of the system.

While the more parameters are considered simultaneously, the

harder it is to visually illustrate the results, such a study would be

very interesting and relevant to understanding the underlying

mechanisms that produce these dynamics. One of the immediate

goals of future work is to build upon our existing model of bursting

in MDN as the center-piece of an entire network as proposed by

the Lodge-Grace experiments [47], with network feedback loops

captured by new equations. The theoretical framework used here

potentially enables the possibility to produce testable hypotheses

about mechanisms underlying the normal and pathological

activities of networks involving the hippocampal formation, basal

ganglia and midbrain monoaminergic nuclei.

The local and even global phenomena observed in the model (6)–

(7) have been pointed out in single cell models [29,30,83,84]. The

similarity between the dynamics of population firing described

here, and the membrane potential dynamics in single cells, is more

substantial than phase plane analogies for occasional parameter

values and is currently under rigorous examination. One possible

direction to follow in this regard could be to use such phase-portrait

analysis of dynamics to contextualize and understand the factors

involved in regulating monoaminergic modulation systems, and

study the ways in which these modulatory networks affect other

networks [56]. There have been some attempts to study the effects

of dopaminergic modulation and dysfunction using the rat as an

animal model, [47,70], and also in the clinical setting [85–87].

However, crucial information is yet missing for establishing a

sustainable link between the two perspectives. A working

translational model such as (6)–(7) may be the tool that would

optimally combine clinical and basic research results.
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