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Abstract
We investigated neural regulation of emotional arousal. We hypothesized that the interactions
between the components of the prefrontal-limbic system determine the global trajectories of the
individual’s brain activation, with the strengths and modulations of these interactions being
potentially key components underlying the differences between healthy individuals and those with
schizophrenia. Using affect-valent facial stimuli presented to N = 11 medicated schizophrenia
patients and N = 65 healthy controls, we activated neural regions associated with the emotional
arousal response during fMRI scanning. Performing first a random-effects analysis of the fMRI data
to identify activated regions, we obtained 352 data-point time series for six brain regions: bilateral
amygdala, hippocampus and two prefrontal regions (Brodmann Areas 9 and 45). Since standard
statistical methods are not designed to capture system features and evolution, we used principal
component analyses on two types of pre-processed data: contrasts and group averages. We captured
an important characteristic of the evolution of our six-dimensional brain network: all subject
trajectories are almost embedded in a two-dimensional plane. Moreover, the direction of the largest
principal component was a significant differentiator between the control and patient populations: the
left and right amygdala coefficients were substantially higher in the case of patients, and the
coefficients of Brodmann Area 9 were, to a lesser extent, higher in controls. These results are evidence
that modulations between the regions of interest are the important determinant factors for the system’s
dynamical behavior. We place our results within the context of other principal component analyses
used in neuroimaging, as well as of our existing theoretical model of prefrontal-limbic dysregulation.
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1 Introduction
Over the past decade, significant research efforts have isolated and emphasized the role of the
prefrontal cortex (PFC), the hippocampus and the amygdala in emotion regulation, fear
conditioning and extinction.

The predominant view is that the central amygdala (CE) forms the main excitatory component
of the arousal response (Sotres-Bayon et al., 2004); in both human and animal studies, damage
to the amygdala prevents the acquisition and expression of fear. When an emotionally salient
stimulus is detected, its signal is transmitted via thalamic pathways to the lateral amygdala
(LA), then to CE (either directly or via more complex intra-amygdalar connections). CE in
turn projects to a set of regions that control specific autonomic, endocrine and behavioral
responses. It has been suggested that, in addition, the basal amygdala provides contextual
contributions, integrating information from the LA, the hippocampus and the medial prefrontal
cortex (mPFC) (Sotres-Bayon et al., 2004).

The primary inhibitory pathways are the medial prefrontal cortex (Izquierdo et al., 2005; Phelps
et al., 2004; Rosenkranz et al., 2003; Sotres-Bayon et al., 2006) and the hippocampus
(Corcoran, 2005; Sotres-Bayon et al., 2004). Damage to the mPFC is known to generally induce
emotional and cognitive changes, which seem to be very finely-tuned and subregion-specific
— e.g., the dorsal part of the nucleus accumbens is involved in attention and cognitive control,
and the ventral part, in emotional regulation (Bush, 2000). The classical view is that neural
activity in the mPFC regulates not only the amygdala-mediated fear responses via direct
projections to the LA or the intercalated cells, but also the activity in the hippocampus, via
projections to CA1 (Curnu Ammonis, area 1 — see appendix) and its own activity (Mora and
Myres, 1977; Ferrer et al., 1993).

In addition to the roles of the amygdala and PFC in emotion regulation, which have been
confirmed by a wide variety of studies, the potential contribution of the hippocampus has been
increasingly explored. Structural MRI studies found decreased hippocampal volumes in
depressed (Caetano et al., 2004) and schizotypal patients (Dickey et al., 2007), and correlated
the volume loss with the length of the illness. This is consistent with the hypothesis that
hypercortisolemia induced by stress vulnerability could result in hippocampal neurotoxicity in
conditions such as bipolar disorder and schizophrenia (Rǎdulescu and Mujica-Parodi, 2008).
The damage is believed to be restricted to particular areas or features (Sousa et al., 2000;
McEwen, 2001), such as the synaptic plasticity within CA1 (Kemp and Manahan-Vaughan,
2007) or the hippocampus-PFC interactions (see Appendix). Newer imaging (Malaspina et al.,
2004; Tamminga et al., 2003) and animal studies (Lodge and Grace 2006, 2007) suggest a
complex hippocampal modulation of the dopamine systems, and are focused on isolating the
signature of this modulation in conditions of emotional dysregulation.

The dynamics of prefrontal-limbic regulation are therefore important in understanding healthy
emotion, but perhaps even more crucially important in establishing the etiology and
neurobiology-based diagnosis of mental illness. A mild to moderate dysregulation of emotional
arousal may be associated with substance abuse (deArcos et al., 2008), or may underlie
pathologies such as personality disorders (Newhill et al., 2004). A more severe dysregulation
of the inhibitory feedback loops is believed to lead to illnesses such as bipolar disorder or
schizophrenia (Aleman and Kahn, 2005). Schizophrenia has many neurobiological features
suggesting an underlying dysregulation of emotional arousal, including limbic (Williams et
al., 2004a), endocrine (Ritsner et al., 2004; Tandon et al., 1991), and autonomic (Dawson et
al., 1994; Mujica-Parodi et al., 2005) abnormalities. While neurotransmitter hypotheses (Joyce
and Milan, 2005; Yamamoto and Hornykiewich, 2004) of schizophrenia are well-established
and form the bases for development of newer antipsychotics (Bilder et al., 2002; Kapur and
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Mamo, 2003), it is possible that the neurotransmitter abnormalities are consequent to
hyperarousal (Finlay and Zigmond, 1997; Jackson and Moghaddam, 2004; Moghaddam and
Jackson, 2004).

Indeed, one known aspect of schizophrenia dysfunction is the difficulty that patients have in
recognizing facial emotions, particularly negative expressions, such as anger and fear (Russell
et al., 2007). It is probable that the deficits of schizophrenia patients in facial affect recognition
correspond to structural and neurophysiological abnormalities in the brain regions involved in
these processes (Holt et al., 2006). However, the nature of this deficit and its neural bases are
the subject of ongoing research, and conclusions do not always agree.

While some imaging studies of schizophrenia patients revealed volume reductions (Namiki et
al., 2007) and attenuated responses of the amygdala (Johnston et al., 2005, Aleman and Kahn,
2005) and mPFC (Takahashi et al., 2004), other studies found elevated hippocampal and
amygdalar activity in patients during the passive viewing of faces (Holt et al., 2006), or during
discriminating emotions (Gur et al., 2002; Kosaka et al., 2002). Indeed, the quantitative tests
usually employed in conjunction with structural and imaging data are statistical tests of mean
activation in different brain regions — and are intrinsically limited in power, since they can’t
capture time-evolutions and network features. Consequentially, their results may appear
sometimes contradictory, as the mean statistics change with time and with the specific
circumstances. Relatively little research has been conducted to reconcile these discrepancies
among different studies. Relating them to interactions between brain areas and to the concept
of time-evolutions could unify the results (Hempel et al., 2003; Fahim et al., 2005; Williams
et al., 2004b; Aleman and Kahn, 2005; Das et al., 2007). Since the human brain can be viewed
as a dynamical system evolving under constant external perturbations, we propose that a
dynamical, system-based analysis is more appropriate, comprehensive and consistent. We
emphasize in particular the concepts of “time” and ”brain network,” in contrast with previous
studies, which have largely focused on static measures of one variable at a time (BOLD
amplitude, connectivity).

Our approach is faithful to this perspective of network dynamics, and is a natural continuation
of our prior work. We have previously used cross-correlation coefficients and other related
measures to investigate prefrontal-limbic regulation in healthy controls (Mujica-Parodi et al.,
2009) and schizophrenia patients (Rǎdulescu and Mujica-Parodi, 2008). However, cross-
correlations describe only pairwise relationships (i.e., relate the evolution of only two network
components at a time), while the existing literature implicates more potentially relevant regions
with significant dynamics. Our own imaging work has found six such possibly inter-related
regions. It became therefore necessary to start approaching higher-dimensional data, in order
to simultaneously address the dynamics of the entire network — and not constrain ourselves
a priori to relationships between node-pairs.

Recent research has produced considerable evidence on network interactions between certain
brain regions. Some of the pathways that constitute the neurophysiological support of these
modulations have already been isolated by basic and clinical research (see Appendix). The
results we present in this paper support this existing evidence. We show that the ROI activations
in two populations (of healthy controls and schizophrenia patients) exhibit very specific
patterns, which we interpret as marks of the underlying intrinsic dynamics of the system.

Our first hypothesis is that, although the initial network is six-dimensional, the relevant
phenomena may happen in a lower-dimensional space. We expect that this may generally be
the case in ROI networks, and that reducing the dimension of such complex systems would
make their analysis more tractable. According to this hypothesis, the dimensionality of a
network defined in an a priori or exploratory manner can be encompassed in only a few relevant
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components, which would thus suffice to encode the disparate contributions of each node to
the overall behavior. In the present study, we investigate whether this is the case in the six-
dimensional ROI network (bilateral amygdala, bilateral hippocampus, and two prefrontal
regions) established by our previous work (Mujica-Parodi et al., 2009, Rǎdulescu and Mujica-
Parodi, 2008), for both healthy controls and patients.

Our second hypothesis is that the prefrontal-limbic system has a strongly deterministic
component which is identifiable mathematically, i.e., that the interactions within the system
and with the environment determine its evolution over time. New techniques such as Dynamic
Causal Modeling (Friston et al., 2003) make this assumption. A positive conclusion to this
hypothesis (i.e., evidence that a dynamical systems analysis of such a network is in this case
applicable) would establish a more solid basis for such brain connectivity methods. This would
implicitly encourage and validate top-down computation of dynamic invariants, such as
Lyapunov exponents, or attractor dimension, which are ideal mathematical characterizations
of systemic homeostatic regulation.

The third hypothesis of our paper is that there are discernable control versus patient group
differences, the identification and understanding of which are essential in establishing better
diagnostic and treatment options. While identifying and explaining some of the patterns seen
in our imaging data, we concurrently attempt to find similarities and differences between the
control and patient populations. In the light of our dynamical approach, we further speculate
that our six-dimensional system may have a lower dimensional attractor, which would be a
dynamical signature for the homeostatic regulation of healthy controls and schizophrenia
patients, respectively. Therefore, differences in regulation would be reflected by differences
in the geometry and shape of the attractor.

2 Methods
2.1 Subjects

We tested 11 patients (8 males, 3 females; age μ = 35, σ = 17.1) and 65 control subjects (28
males, 37 females; age μ = 26 yrs, σ = 8.4. We used a sample of convenience obtained from a
prior study on individual variability among N = 65 healthy controls (Mujica-Parodi et al.,
2009). This was complemented by acquisition of data using the identical paradigm on a smaller
number of patients (N = 11), who were much more challenging to recruit and test. In our
statistical analysis, we compensated for the size imbalance by using size-independent, non-
parametric comparison tests.

All 76 subjects were between the ages of 18-50, with normal hearing and correctable vision.
Subjects were excluded if they had a history of neurological or cardiac illness, substance abuse,
presence of metal in the body, were pregnant, or taking medication with known interference
to accurate assessment of arousal measures (including benzodiazepines). The screening of
subjects prior to participation included a medical history and physical exam, conducted by
study physicians. Diagnoses for patients and screening for healthy subjects were confirmed
using the Structured Clinical Interview for DSM-IV — SCID-I (Ventura et al., 1998). Patients
were recruited from the Stony Brook University Hospital Adult Inpatient, Outpatient, and Day
Units; control subjects were recruited from the general community. Ideally, we would use
unmedicated patients. However, due to the practical and ethical difficulties involved in taking
psychotic patients off of their medications, we used instead a medication-heterogeneous sample
to avoid medication-specific neural effects. Symptom severity for these patients was assessed
using the Positive and Negative Syndrome Scale (Kay et al., 1989) (N = 9; positive symptoms:
μ = 23.3, σ = 7.5; negative symptoms: μ = 26.4, σ = 6.3; general symptoms: μ = 46.8, σ = 16.9;
total scores: μ = 96.6, σ = 29.1). This study was approved by the Stony Brook University
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Institutional Review Board. All subjects provided informed consent. Patients had an additional
capacity evaluation signed by their treating psychiatrists.

2.2 Neural data acquisition and time series extraction
Subjects were scanned on a 1.5T Philips MRI. Time series were acquired using two blocks of
136 T2*-weighted echoplanar images covering the frontal and limbic areas of the brain, with
TR = 2500ms, SENSE factor = 2, TE = 45ms, Flip angle = 90, Matrix= 64×64, 3.9mm × 3.9mm
× 4mm voxels, and 30 contiguous oblique coronal slices (Mujica-Parodi et al., 2009).

All statistical analyses employed during image processing were performed using the general
linear model in the Statistical Parametric Mapping software (SPM99). The raw functional
BOLD images were first realigned to the first volume to remove movement-related artifacts
using a sinc interpolation. The motion correction algorithm in the SPM99 software package is
capable of correcting for motion within 3mm. Realigned images were then spatially normalized
into 3 × 3 × 3 mm3 using an affine transformation with a set of 7 × 8 × 7 basis functions and a
customized template that was created using the data for the first 12 subjects; the incomplete
brain coverage and oblique nature of our slices required us to use a custom template for
normalization. For each subject, the scalp was removed from a low-resolution EPI image, using
the Brain Extraction Tool (BET) available in MRIcro software, at a fractional intensity
threshold of 0.5. These skull stripped images were then registered and normalized to each other
and the average image was smoothed with a Gaussian kernel of 8mm full-width half maximum
and registered to the EPI template provided by SPM99 to generate the final template. The
realigned and normalized time series were then smoothed with a Gaussian kernel of 8 mm full-
width half maximum (Mujica-Parodi et al., 2009).

We used a boxcar design with four conditions (Anger, Fear, Happy and Neutral) convolved
with the canonical hemodynamic response function. We presented four stimulus runs during
each scan. Each run consisted of four blocks, each block depicting 10 neutral, angry, fearful
and happy faces taken from the Pictures of Facial Affect (Eckman and Friesen, 1978). Each
face was presented for 2s (20s total per block), alternating with a Rest condition, in which we
presented a white fixation cross on a dark background. During all conditions, subjects passively
viewed the stimuli. To insure that they were alert in the scanner, subjects were addressed by
microphone by the staff between runs. After the scan, all subjects completed an exit interview,
confirming their attention to the stimuli and alertness throughout the scan.

The amygdala and hippocampus were defined a priori as limbic regions of interest (ROI).
Separate ROI masks for the bilateral amygdala and hippocampus were traced on the standard
T1 template provided with the SPM package, using established anatomical landmarks to
delineate our ROIs (Hastings et al., 2004). Given the lack of certainty regarding the specific
functionally-relevant areas for the prefrontal cortex (Sotres-Bayon et al., 2006), we defined
these ROIs post hoc, by performing a random effects analysis over the entire control population.
This showed two clusters centered in the ventromedial (Brodmann Area 45) and the
dorsolateral (Brodmann Area 9) areas of the prefrontal cortex, as well as bilateral activation
in the amygdala and hippocampus. The maximally-activated voxel for each cluster was then
selected for the group and used to extract time series for each individual subject. Obtaining the
time series in this manner allowed us to exploit the advantages of both the single voxel and
cluster methods, which were optimized for signal and reliability, respectively. We first
extracted the time-course for the whole experiment for a cluster-defined single voxel in each
of the ROI. Signal values over the peristimulus intervals — 11 time-points, 3–33s from the
onset of each block — were obtained for each condition block (the canonical hemodynamic
response function, convolved with the 20s block design, was 30 seconds, and thus introduced
a lag for each condition).
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For each individual, we thus created a 352 data-point time series for each of the six ROIs,
spanning four identical repeat runs of Rest ▷ Anger ▷ Rest ▷ Neutral ▷ Rest ▷ Happy ▷
Rest ▷ Fear (each condition block corresponds to 11 data points, adding up to 88 data-points
per each eight-block run). Since we were interested in the time series dynamic variability, rather
than in the ROI activation amplitudes, used these expanded 352 data-point time evolutions,
which consider all emotional conditions, including rest. We then further processed these
inclusive series in ways justified by our preliminary analyses, as described in Section 2.3.

2.3 Statistical and mathematical methods
Our analysis was done in a six-dimensional space, in order to simultaneously study the
ensemble of all mutual interactions and modulations between regions.

Descriptive statistics—First, we performed a preliminary descriptive statistics, and
calculated for each individual the temporal mean activation of each ROI over the entire scan
(i.e., over 352 data-points). We had two reasons in mind: (1) to estimate the variability of the
mean activation among all subjects; (2) to determine whether we can simply use these mean
activations to distinguish between the control and patient groups. For each subject, we obtained
a six-dimensional point which represents his/her mean brain activation, irrespective of the
condition. We analyzed the group distributions of these mean activations, first using standard
descriptive statistics, and then by using a principal component analysis.

First, we performed a rank test on each of the six ROI mean activations, but didn’t find any
significant statistical differences between the control and patient groups. This was hardly
surprising, given the limitations of mean and maximal activation statistics. As explained in the
Introduction section, these standard statistics are not expected to capture the network behavior
or the evolution in time of the ROI activations (which, according to our hypothesis, underlie
the group differences). Of the existing methods that could capture simultaneously the evolution
of all nodes in our network, we chose to use PCA as a computationally straight-forward, yet
effective tool for data-reduction.

We performed a PCA on the six-dimensional distribution of means, separately for each one of
the two groups (controls and patients). We found that for controls, most variability in
performance appeared along PC1 ∼ (0.12, 0, 0, 0.99, 0, 0)1 (stdev=45.58) and along PC2 ∼
(0, 0.16, 0.98, 0, 0, 0) (stdev=14.23). Within the patients group, PC1 ∼ BA9 (stdev= 4.5),
while all other principal components were comparatively insignificant (see Figure 1).

The goal of our analysis was to transcend the variability in the subjects’ means (as expressed
by this preliminary statistics), and to pin down the actual intrinsic features of the system’s
dynamics. The high variability in activation levels among subjects, even within the same group,
was addressed in two different ways, each offering a different perspective on our data (Section
3.1). We studied (1) contrasts of activation minus rest and (2) prototypical group
trajectories. Using both approaches, we performed principal component analyses in the six-
dimensional phase-space of our data. Firstly, we searched for any constraints imposed on the
system’s behavior by the intrinsic dynamics, as they might be captured by the contrasts or the
prototypical group trajectories (Section 3.2). Secondly, we were interested whether the PCA
analysis of contrasts (calculated for individuals, rather than prototypes) offered any potential
in differentiating between the control and patient groups (Section 3.3).

1All PCA coefficients are expressed as vectors of coefficients for the basis (LA, RA, BA9, BA45, LH, RH), such that (a1, a2, a3, a4, a5,
a6) represents the six-dimensional vector a1*LA+a2*RA+a3*BA9+a4*BA45+a5*LH+a6*RH
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Creating contrasts as arousal minus rest—We created contrasts by subtracting from
each arousal block the preceding block of rest. This generated new time series of 176 data-
points (each of the four runs contained four contrasts of 11 data-points per contrast). After
performing this normalization, a new analysis revealed very small variations in the means of
all variable components (see Figure 2).

Prototypical trajectories—For a fixed region of interest, we defined two types of
prototypical time series: “temporal templates” and “group prototypes”. Firstly, taking a
longitudinal approach: by averaging over a large number of identical runs for the same subject,
the average time series can be considered to be representative for that individual (“template”),
in the sense that it captures some important features of that individual’s general brain dynamics.
Secondly, taking a cross-sectional approach: for a large enough group of subjects, the
population-average time series can be considered to be representative (“prototypical”) for the
whole group, in the sense that it is expected to capture some important common features of the
brain dynamics within that population. The noise due to subject variability is expected to be
in large part cancelled out by averaging.

In this context, we note that prototypes are affected by the sample size, as is the case with basic
statistics, so the technique does not compensate for small samples. In general, it may be difficult
to provide enough repeated identical runs to create temporal templates, or enough subjects in
each group to create reliable group prototypes. This is true for our imaging paradigm, which
employed four repetitions and a total of N = 76 subjects. For our further analyses we used a
combination of the two averaging techniques, which we called “temporal group prototypes”.
For example, Figure 3a shows the prototypical control performing under a typical Rest ▷ Anger
▷ Rest ▷ Neutral ▷ Rest ▷ Happy ▷ Rest ▷ Fear run (the average was taken over the four
identical runs, and spans 88 data-points). The corresponding prototype curves for patients were
not as smooth (Figure 3b), which could either mean that the patient data were more chaotic,
or could be a sign that the patient population (N = 11) was too small to create a reliable prototype
even after some initial temporal averaging. We ruled out the former (an intrinsic higher
irregularity in patients) by using the approximate entropy (Pincus, 1991, 1993; Pincus and
Singer, 1996) to compare the complexity of the time series in the two populations (Table 1).
The computation did not show enough significant differences to justify the group differences
in and of themselves.

The variability had to be therefore due at least in large part to the small size of the patient
sample. With this in mind, the temporal averaging was made more effective by disregarding
the emotional condition, and further averaging over the four Rest ▷ Arousal blocks in each
run. This way we obtained shorter temporal group prototypes (22 data-points), where the noise
due to variability was further eliminated, in patients as much as in controls, rendering the
prototypes comparably smooth (Figure 4).

While Arousal minus Rest contrasts have been frequently used in the study of fMRI time series,
population-averages are not as common. Imaging research has been focused on studying
statistical features of populations, especially in the context of identifying psychiatric conditions
based on these statistics. We argue that strong population common features can be
advantageously brought out by group prototyping in a clean and simple way, avoiding a
complicated search through the thicket of less obvious statistical group properties. Any results
obtained on prototypical series could be used to focus on more specific dynamics within each
group and between groups, and could be further subjected to more detailed statistical tests.
This is the approach we have taken in our study, in order to verify whether our prototypical
results remained valid as non-prototypical group features. A few recent studies have used group
averaged imaging data in similar ways in order to correlate them best with theoretical modeling
work (Claassen et al., 2008).
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3 Results
3.1 Principal component analysis

PCA for prototypes—We considered the six-dimensional 88 data-point temporal group
prototypes shown in Figure 3 (by averaging each ROI’s time series over the four repeat run,
then averaging over the control and patient populations, respectively). On these prototypes, we
performed a principal component analysis. For both groups, the first two principal components
were much larger than the other four, so that the trajectories can be viewed as almost two-
dimensional. In the case of controls, these two principal directions were: PC1 = (0.43, 0.37,
0.43, 0.33, 0.41, 0.44) (with loading 0.189, accounting for 95% of the total variance) and
PC2 = (0.36, 0.27, -0.65, 0.50, 0.19, 0.26) (with loading 0.006, 3% of the total variance). The
other loadings were ≤ 0.001, i.e., 2% of the total variance altogether. In the case of patients,
the two principal components were: PC1 = (0.51, 0.47, 0.30, 0.28, 0.40, 0.40) (with loading
0.277, accounting for 87% of the total variance) and PC2 = (-0.83, 0.29, 0.30, 0.25, 0.07, 0.23)
(with loading 0.017, 5% of the total variance). The other loadings were ≤ 0.01,corresponding
to a portion of 8% of the total variance. In Figure 5, we identified the PC1-PC2 sections for
the two groups, in order to show the control and patient two-dimensional trajectories in the
same phase-plane.

PCA for Arousal minus Rest contrasts—In order to verify that the reduced
dimensionality result is validated by our other proposed approach, we considered contrasts of
Arousal minus Rest, instead of prototypes. For each subject, we considered the first the 176
data-point contrast time series, and second the 44 data-point time series (averaged over the
four runs), each containing four contrasts of 11 data-points per contrast. We performed similar
PCA analyses on these contrast series, without additionally employing any group prototyping.
Figure 6a and Table 2b show the PCA loadings for the distribution of 176 contrast data points
for all controls (green) and all patients (red). With the same color coding, Figure 6b and Table
3 show the PCA loadings separately for each of the four contrasts, in all controls and all patients.
As before, the loadings decay rapidly, so that in all cases, only the first and the second can be
considered relevant to the subjects’ trajectories, accounting together for between 65% and 78%
of the total variance. More precisely: in controls, PC1 and PC2 represented respectively 51%
and 16% in the first contrast, 53% and 16% in the second, 51% and 14% in the third and 50%
and 15% in the fourth. In patients, PC1 and PC2 represented 60% and 16% in the first contrast,
66% and 12% in the second, 55% and 19% in the third and 55% and 21% in the fourth.

PCA for contrast prototypes—As expected, the result was enhanced when we combined
the two approaches and we looked at prototypical trajectories of Arousal-Rest, as shown in
Figure 7.

3.2 Group statistics
Aside from the dimensionality result common to control and patients, the plots and tables in
Section 3.1 also suggest a few group differences. First, the PCA loadings in patients seem to
be higher than the ones in controls. Second, the PC1-PC2 planes seem consistently different
between the two groups, even when analyzed for identical contexts: the left and right amygdala
PC1 coefficients are substantially higher in the case of patients, the prefrontal and hippocampal
PC1 coefficients are higher in the healthy controls (much higher for the prefrontal areas, and
moderately higher for the bilateral hippocampus). In order to verify these results, we perform
below more detailed group statistics.

A Kruskal-Wallis rank test on the loading values for controls and patients revealed that the
apparent difference seen in the plots was in fact not significant, so it could not be used as a
group differentiator.
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However, a similar rank test applied on the PCA coefficients revealed significant group
differences. For each individual, we used the long 176 data-point contrast, without further
temporal averaging. The most prominent difference was observed in the right amygdala
coefficients, which were significantly larger in patients (p = 0.02, H = 5.2, df = 1). Other
marginally significant differences appeared for the left amygdala (higher coefficients in
patients, p < 0.09, H = 2.76, df = 1) and for the Brodmann Area 9 (higher in controls, p = 0.07,
H = 3.22, df = 1). The other coefficients were not significantly different (p > 0.10).

4 Discussion
4.1 Our PCA approach and existing literature

Previous imaging work has already proposed the use of principal component analysis as an
exploratory, model-free technique in interpreting the shape of hemodynamic responses or
differences between two responses (Friston et al., 1995). We would like to place the unique
aspects of our approach within this context, address some limitations encountered by prior
studies when using PCA, and explore possible extensions.

When applied to MRI, ordinary PCA has generally run into serious difficulties because of the
extremely high number of dimensions in the data relative to the number of observations
(Viviani et al., 2004). Because of these difficulties, PCA is often limited to regions of interest
identified previously by the experimental model (Friston et al., 1993, Friston, 1997), as we
have done ourselves in our analysis. This limits somewhat the exploratory quality of the
analyses, but it makes the technique more meaningful and the results easier to interpret.

Such ROI based approaches have been employed to study the dynamics of a network of brain
regions, and the results have been interpreted in terms of functional connectivity, defined as
the correlation of a neurophysiological index measured in different brain areas. For example,
Friston et al. (1993) uses a recursive principal component analysis on a large PET data-set to
extract two independent principal components referred to as the “intentional brain system” and
the “monotonic time effects”.

More generally, research in the last few years has placed a special emphasis on machine
learning algorithms, adapted for more robust and performant pattern recognition in various
forms of data. Not surprisingly, these studies have reported that the characteristics of the
information extracted from the data are correlated with the capabilities of the classifier.
However, complex multivariate techniques may be computationally expensive, especially
when they have high predictive and classifying performance. The presence of redundant
features in the data — natural or artificially added to compensate lack of information (Huang,
2007) — can seriously increase the computation time and cost, as well as degrade the
algorithm’s accuracy. Since it involves a fast and inexpensive algorithm, Principal Component
Analysis has been successfully used to reduce high-dimensional spectral data and improve the
predictive performance of well known machine learning algorithms such as support vector
machines (Cao et al., 2003; Lei and Govindaraju, 2005) neural networks (Khoshgoftaar and
Szabo, 1994; Dorn et al., 2003) or others (Deegalla and Bostrom, 2006).

In imaging data in particular, multivariate techniques such as support vector machines and
neural networks have been shown to be effective in classifications and pattern analyses of time-
series (Wang et al., 2007; Weygandt et al., 2007). This stays true for clinical studies of
psychiatric patients, where neural networks have been successfully used on fMRI data (Luo
and Puthusserypady, 2007), but also on other clinical measures (Florio et al., 1994; Zou et al.,
1996; Politi et al., 2005; Ho et al., 2005). Since PCA can be used for direct, immediate results,
but also in conjunction with these other effective techniques, it is very important to establish
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its working parameters and limitations in the context of imaging data, as well as of other clinical
measures.

4.2 Our results
Our main result is the identification of an important common feature of all subjects, both
controls and patients: the evolution of the six-dimensional brain network we study is
constrained to remain very close to the two-dimensional plane of its first two principal
components PC1 and PC2. Our second result concerns the distinctions between controls and
patients, which appear in the positions of the PC1-PC2 planes — in the sense that the left and
right amygdala coefficients of the first principal component (which is by far the largest) are
significantly higher in the case of patients, and the coefficients of Brodmann Area 9 are
somewhat higher (trend) in controls. Our results support, in both controls and patients, brain
connectivity models that assume causality of activation between regions. Since it is unlikely
that such a robust property of the system’s trajectories can be accidental, we further suggest
that it is the reflection of a deterministic trend in the system, as hypothesized in the Introduction.

Our main dimensionality result is very suggestive, particularly in the light of its relevance to
inter-regional brain modulations. Firstly, it agrees unexpectedly well with theoretical
hypotheses; our own formal model of brain regulation under stress (Rǎdulescu, 2008) proposes
a two-dimensional Hopf bifurcation as the underlying essence of behavioral phenomena
present in fear extinction. This matching experimental result encourages a whole continuing
path of parameter estimation, system reconstruction and additional clinical validation of the
model, in order to further investigate the properties of healthy and pathological brain
modulations. Secondly, the result suggests that, when studying the evolution of a network of
brain regions, the most important features of the trajectories may not appear in the pre-defined
variables (the ROIs themselves), but rather in a subset of combinations of such variables (in
other words, in a “subnetwork” of the original network). Therefore, when analyzing and
interpreting the corresponding time series, it is important to work in the right eigenbasis in
order to obtain the most relevant results.

Our second result, that the principal component coefficients differentiate between controls and
patients, is quite unique in nature, since very few clinical studies of schizophrenia currently
embrace a systems approach to prefrontal-limbic dysregulation. This is consistent with our
previous work (Rǎdulescu and Mujica-Parodi, 2008), which suggests that patients show a
predominantly excitatory response, with inadequate inhibitory modulation via the PFC. Our
result implicitly suggests distinct attractor positions for the patients and controls. Future work
should concentrate more on the temporal evolutions, on defining the dynamics and refining
the geometric structure of these attractors (see Section 5).

The experimental conclusions agree well with the ones of our theoretical paradigm: although
both healthy and patient prefrontal-limbic systems seem to constrain the trajectories to live in
a two-dimensional plane, there are other intrinsic differences in the evolution of these
trajectories that tease apart the two populations. These differences are not to be found in the
mean activation statistics of different ROIs. Even more importantly, these differences are not
best represented by the evolution of a particular ROI, but by measures that concern a
combination of them (such as, in this case, the first principal component).

4.3 Conclusions and future work
Our analysis captured an important dynamical feature of our network: all subject trajectories
were almost embedded in a two-dimensional plane. Moreover, the largest principal component
of the six-dimensional distribution of data-points differentiated significantly between the
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control and patient populations. These results are evidence that modulations between brain
regions could be determinant factors for the system’s dynamical behavior and evolution.

Aside from the a priori choice of the ROIs and the typical pre-processing of the scans using
the canonical hemodynamic response function (see the Section 2.2), our approach in this paper
was designed to make as few dynamical assumptions as possible. The results support our
theoretical model of neural vulnerability to stress in schizophrenic patients versus controls,
which was previously developed independently of our experimental data (Rǎdulescu, 2008).

This encourages future efforts in the direction of bridging closer together the theoretical and
data-driven approaches. A simultaneous dynamical system analysis would provide an
interactive context for estimation and mutual validation of both these models. The ideal
approach should adopt in parallel bottom-up and top-down methods, as the most conservative
combination.

One aspect of our bottom-up system identification effort consists of using dynamic causal
modeling (Friston et al., 2003), to estimate the strengths of the linear and quadratic modulations
between brain regions. These should be sufficient for reconstructing the most important
dynamics. Our top-down analysis toolbox includes computing dynamic invariants (Lyapunov
exponents, attractor dimension) for both the theoretical and clinical systems, in both healthy
controls and patients, and compare the results between models and between populations. These
parameters are good measures of the complexity and chaos in the system as a whole (Faure
and Korn, 2001), while maintaining the ability to characterize these by only a few numerical
values — a key feature for clinical use.

Future work will expand the use of these techniques and include a larger number of patients,
preferably unmedicated, to be able to separate out for symptom profiles and severity effects
within the illness.
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Figure 1. Mean statistics for original time series
Left: Variability of mean ROI activation among controls (green) and patients (red) shown
along the six principal components. Right: Scatter plots of mean activation in controls (top,
green) and patients (bottom, red), shown in the respective PC1-PC2 planes.
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Figure 2. Mean statistics for contrast time series
Left: Scatter plot of mean activation minus rest for controls (green) and patients (red) in the
3D space of left amygdala, Brodmann Area 9 and right hippocampus. (The selection of this
particular subset of regions has no particular significance; for our first figures, LA, BA9 and
RH were chosen arbitrarily — in order to illustrate our preliminary ideas). Each dot represents
the mean for one subject. Right: Scatter plots of mean activation minus rest in controls (top,
green) and patients (bottom, red), shown in the respective PC1-PC2 planes. For controls,
PC1∼ (0.31, 0.22, 0.81, 0.31, 0.23, 0.18) and PC2∼ (-0.44, -0.41, 0.52, -0.07, -0.40, -0.42);
for patients, PC1∼ (-0.46, -0.68, -0.31, -0.28, -0.13, -0.34) and PC2∼ (0.56, -0.68, 0.34, 0.11,
0.26, 0.08).
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Figure 3. Examples of group prototypes
Prototypical activation of three ROIs during an average Rest ▷ Fear ▷ Rest ▷ Neutral ▷
Rest ▷ Happy ▷ Rest ▷ Anger run. The run was averaged over four repetitions; the group
prototype was taken over N = 65 controls. The regions are: the left amygdala (red), Brodmann
Area 9 (green) and right hippocampus (black). The prototype was taken over N = 65 controls
(left) and over N = 11 patients (right).
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Figure 4. Short (condition-independent) temporal group prototypes
Prototypical trajectories, averaged over all 16 Rest-Arousal repetition blocks. Each panel
shows one region of interest, as designated by the caption. The prototypical control is shown
in green; the prototypical patient is shown in red. The first portion of each graph (first 11 data-
points) represents the rest block activation; the second portion (last 11 data-points) represents
the arousal block activation.
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Figure 5. PCA for temporal group prototypes
PCA on N = 88 data-point group prototypes. Left: PCA loadings (standard deviations along
the principal components); controls are shown in green, patients in red. Right: Two-
dimensional trajectories, plotted in the planes defined by the first two principal components.
We identified the two different planes for controls (shown in green) and patients (shown in
red).
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Figure 6. PCA for overall group measures (N = 65 patients and N = 11 controls); no group
prototyping was performed
In both panels, controls are shown in green and patients in red. Left: The PCA analysis was
performed on N = 176 data-point contrasts, with no further time-averaging. Right: The PCA
analysis was performed on N = 11 data-point contrast temporal templates, where the time
average was taken over the four repeat runs. The four contrasts are plotted as separate curves.

Rǎdulescu and Mujica-Parodi Page 22

Psychiatry Res. Author manuscript; available in PMC 2010 December 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Temporal group prototypes for each of the four contrasts
Left: PCA loadings. Right: 11 data-point contrast trajectories for controls (green) and patients
(red) in the PC1-PC2 planes.
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