Chapter 10

Two-Sample Tests

Learning Objectives

In this chapter, you learn how to use hypothesis testing for comparing the difference between:

- The means of two independent populations
- The means of two related populations
- The proportions of two independent populations
- The variances of two independent populations by testing the ratio of the two variances

Two-Sample Tests

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 vs. Group 2</td>
<td>Same group before vs. after treatment</td>
<td>Proportion 1 vs. Proportion 2</td>
<td>Variance 1 vs. Variance 2</td>
</tr>
</tbody>
</table>

Difference Between Two Means

Population means, independent samples

- Goal: Test hypothesis or form a confidence interval for the difference between two population means, $\mu_1 - \mu_2$

- The point estimate for the difference is $\bar{X}_1 - \bar{X}_2$

- σ_1 and σ_2 unknown, assumed equal
- σ_1 and σ_2 unknown, not assumed equal

Hypothesis Tests for Two Population Means

- **Lower-tail test:**
 - $H_0: \mu_1 \geq \mu_2$
 - $H_1: \mu_1 < \mu_2$
 - i.e., $\mu_1 - \mu_2 \leq 0$

- **Upper-tail test:**
 - $H_0: \mu_1 \leq \mu_2$
 - $H_1: \mu_1 > \mu_2$
 - i.e., $\mu_1 - \mu_2 > 0$

- **Two-tail test:**
 - $H_0: \mu_1 = \mu_2$
 - $H_1: \mu_1 \neq \mu_2$
 - i.e., $\mu_1 - \mu_2 = 0$
Hypothesis tests for $\mu_1 - \mu_2$

Two Population Means, Independent Samples

- **Lower-tail test:**
 - $H_0: \mu_1 - \mu_2 \leq 0$
 - $H_1: \mu_1 - \mu_2 > 0$

- **Upper-tail test:**
 - $H_0: \mu_1 - \mu_2 \geq 0$
 - $H_1: \mu_1 - \mu_2 < 0$

- **Two-tail test:**
 - $H_0: \mu_1 - \mu_2 = 0$
 - $H_1: \mu_1 - \mu_2 \neq 0$

- **The test statistic is:**
 $$t_{\text{STAT}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- **Where t_{STAT} has d.f. = $n_1 + n_2 - 2$**

- **Assumptions:**
 - Samples are randomly and independently drawn
 - Populations are normally distributed or both sample sizes are at least 30
 - Population variances are unknown but assumed equal

Pooled-Variance t Test Example

You are a financial analyst for a brokerage firm. Is there a difference in mean yield ($\alpha = 0.05$)?

Assuming both populations are approximately normal with equal variances, is there a difference in mean yield ($\alpha = 0.05$)?

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYSE</td>
<td>1.30</td>
<td>1.16</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>3.27</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Calculating the Test Statistic

$$t_{\text{STAT}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}} = \frac{3.27 - 2.53}{\sqrt{\frac{1.5021}{21} + \frac{1.5021}{25}}} = 2.040$$
Chapter 10

Hypothesis Test Solution

\[H_0: \mu_1 - \mu_2 = 0 \text{ i.e. } (\mu_1 = \mu_2) \]

\[\text{df} = 21 + 25 - 2 = 44 \]

Critical Values: \(t = 2.0154 \)

Test Statistic:

\[t_{\text{stat}} = \frac{3.27 - 2.53}{\sqrt{\left(\frac{1}{21} \cdot 1.16 \cdot 0.23\right)}} = 2.040 \]

Decision:

Reject \(H_0 \) at \(\alpha = 0.05 \)

Conclusion: There is evidence of a difference in means.

Confidence Interval for \(\mu_1 - \mu_2 \)

Since we rejected \(H_0 \) can we be 95% confident that \(\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}} \)?

95% Confidence Interval for \(\mu_{\text{NYSE}} - \mu_{\text{NASDAQ}} \)

\[
(3.27 - 2.53) \pm 2.015(1.16)(0.23) = (0.009, 1.471)
\]

Since 0 is less than the entire interval, we can be 95% confident that \(\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}} \)

Excel Pooled-Variance t Test Comparing NYSE & NASDAQ

Decision: Reject \(H_0 \) at \(\alpha = 0.05 \)

Conclusion: There is evidence of a difference in means.

Confidence Interval for \(\mu_1 - \mu_2 \)

Since we rejected \(H_0 \) can we be 95% confident that \(\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}} \)?

95% Confidence Interval for \(\mu_{\text{NYSE}} - \mu_{\text{NASDAQ}} \)

\[
(0.009, 1.471)
\]

Since 0 is less than the entire interval, we can be 95% confident that \(\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}} \)

Minitab Pooled-Variance t Test Comparing NYSE & NASDAQ

Decision: Reject \(H_0 \) at \(\alpha = 0.05 \)

Conclusion: There is evidence of a difference in means.

Confidence Interval for \(\mu_1 - \mu_2 \)

Since we rejected \(H_0 \) can we be 95% confident that \(\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}} \)?

95% Confidence Interval for \(\mu_{\text{NYSE}} - \mu_{\text{NASDAQ}} \)

\[
(0.009, 1.471)
\]

Since 0 is less than the entire interval, we can be 95% confident that \(\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}} \)

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed or both sample sizes are at least 30
- Population variances are unknown and cannot be assumed to be equal

The test statistic is:

\[
t_{\text{stat}} = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{S_1^2 \cdot \frac{1}{n_1} + S_2^2 \cdot \frac{1}{n_2}}
\]

\(\sigma_1^2 \) and \(\sigma_2^2 \) unknown and not assumed equal
Chapter 10

10-4

Prof. Shuguang Liu

Related Populations

The Paired Difference Test

Tests Means of 2 Related Populations

Related samples

Paired or matched samples
Repeated measures (before/after)
Use difference between paired values:

- Eliminates Variation Among Subjects
- Both Populations Are Normally Distributed
- Or, if not Normal, use large samples

The Paired Difference Test:
Finding \(t_{\text{STAT}} \)

- The test statistic for \(\mu_D \) is:

\[
 t_{\text{STAT}} = \frac{\bar{D} - \mu_D}{S_D / \sqrt{n}}
\]

Where \(t_{\text{STAT}} \) has \(n - 1 \) d.f.

The Paired Difference Test: Possible Hypotheses

Paired Samples

Lower-tail test:
- \(H_0: \mu_D \geq 0 \)
- \(H_1: \mu_D < 0 \)

Upper-tail test:
- \(H_0: \mu_D \leq 0 \)
- \(H_1: \mu_D > 0 \)

Two-tail test:
- \(H_0: \mu_D = 0 \)
- \(H_1: \mu_D \neq 0 \)

Reject \(H_0 \) if \(t_{\text{STAT}} < t_{\alpha/2} \)
Reject \(H_0 \) if \(t_{\text{STAT}} > t_{\alpha/2} \)

Where \(t_{\text{STAT}} \) has \(n - 1 \) d.f.

Related Populations

The Paired Difference Test

The paired difference is \(D_i \), where

\[
 D_i = X_{1i} - X_{2i}
\]

The point estimate for the paired difference population mean \(\mu_D \) is \(\bar{D} \):

\[
 \bar{D} = \frac{\sum D_i}{n}
\]

The sample standard deviation is \(S_D \):

\[
 S_D = \sqrt{\frac{\sum (D_i - \bar{D})^2}{n-1}}
\]

\(n \) is the number of pairs in the paired sample

Related Populations

The Paired Difference Test

The Paired Difference Confidence Interval

The confidence interval for \(\mu_D \) is

\[
 \bar{D} \pm t_{\alpha/2} \frac{S_D}{\sqrt{n}}
\]

where

\[
 S_D = \sqrt{\frac{\sum (D_i - \bar{D})^2}{n-1}}
\]

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

<table>
<thead>
<tr>
<th>Salesperson</th>
<th>Number of Complaints:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before (1)</td>
</tr>
<tr>
<td>C.B.</td>
<td>6</td>
</tr>
<tr>
<td>T.F.</td>
<td>20</td>
</tr>
<tr>
<td>M.H.</td>
<td>3</td>
</tr>
<tr>
<td>R.K.</td>
<td>0</td>
</tr>
<tr>
<td>M.O.</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
 \bar{D} = \frac{\sum D_i}{n} = -4.2
\]

\[
 S_D = \sqrt{\frac{\sum (D_i - \bar{D})^2}{n-1}} = 5.67
\]

Paired Difference Test: Example

\[
 D = \frac{\sum D_i}{n}
\]
Chapter 10

Paired Difference Test:

Solution

- Has the training made a difference in the number of complaints (at the 0.01 level)?

\[
\begin{align*}
H_0 &: \mu = 0 \\
H_1 &: \mu \neq 0
\end{align*}
\]

\[\alpha = 0.01\]

\[d = 4.2\]

\[t_{0.005} = \pm 4.604\]

\[d.f. = n - 1 = 4\]

Decision: Do not reject \(H_0\) (\(t_{\text{stat}}\) is not in the reject region)

Conclusion: There is insufficient evidence there is significant change in the number of complaints.

Paired t Test In Excel

Paired T-Test and CI: After, Before

<table>
<thead>
<tr>
<th></th>
<th>After</th>
<th>Before</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>2.40</td>
<td>6.60</td>
</tr>
<tr>
<td>StdDev</td>
<td>2.61</td>
<td>7.80</td>
</tr>
<tr>
<td>SE Mean</td>
<td>1.17</td>
<td>3.49</td>
</tr>
</tbody>
</table>

95% CI for mean difference: (-11.25, 2.85)

T-Test of mean difference = 0 (vs not = 0): T-Value = -1.66 P-Value = 0.173

Two Population Proportions

Goal: test a hypothesis or form a confidence interval for the difference between two population proportions, \(\pi_1 - \pi_2\)

The point estimate for the difference is \(\hat{p}_1 - \hat{p}_2\)

In the null hypothesis we assume the null hypothesis is true, so we assume \(\pi_1 = \pi_2\) and pool the two sample estimates

The pooled estimate for the overall proportion is:

\[
\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}
\]

where \(X_1\) and \(X_2\) are the number of items of interest in samples 1 and 2

\[Z_{\text{STAT}} = \left(\frac{p_1 - p_2}{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}\right)
\]

where \(p = \frac{X_1 + X_2}{n_1 + n_2}\), \(p_1 = \frac{X_1}{n_1}\), \(p_2 = \frac{X_2}{n_2}\)

Two Population Proportions

(continued)
Hypothesis Test Example:
Two population Proportions

Is there a significant difference between the proportion of critical values indicated they would vote Yes between men and the proportion of women who will vote Yes on Proposition A?

- In a random sample, 36 of 72 men and 35 of 50 women indicated they would vote Yes
- Test at the .05 level of significance

The pooled estimate for the overall proportion is:

\[\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{36 + 35}{72 + 50} = \frac{71}{122} = 0.582 \]

Hypothesis Test Example:
Two population Proportions

The hypothesis test is:

- The hypothesis test is:
 - Upper-tail test:
 \[H_0: \pi_1 - \pi_2 = 0 \] (the two proportions are equal)
 \[H_1: \pi_1 - \pi_2 > 0 \] (there is a significant difference between proportions)
 - Two-tail test:
 \[H_0: \pi_1 = \pi_2 \] (the two proportions are equal)
 \[H_1: \pi_1 \neq \pi_2 \] (there is a significant difference between proportions)

The sample proportions are:

- Men: \(p_1 = 36/72 = 0.50 \)
- Women: \(p_2 = 35/50 = 0.70 \)

The test statistic for \(x_1 - x_2 \) is:

\[z = \frac{\hat{p} - \pi_0}{\sqrt{\frac{1}{n_1} \frac{1}{n_2}}} \]

Decision: Reject \(H_0 \) if \(z_s > 1.96 \) or \(z_s < -1.96 \)

Conclusion: There is evidence of a difference in proportions who will vote Yes between men and women.

Two Proportion Test In Excel

- Since \(-2.20 < -1.96 \)
- Or
- Since \(p-value = 0.028 < 0.05 \)
- We reject the null hypothesis

Conclusion: There is evidence of a difference in proportions who will vote yes between men and women.
Two Proportion Test in Minitab Shows The Same Conclusions

<table>
<thead>
<tr>
<th>Sample</th>
<th>X</th>
<th>N</th>
<th>Sample p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>72</td>
<td>0.500000</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>50</td>
<td>0.700000</td>
</tr>
</tbody>
</table>

Difference = p (1) - p (2)

Estimate for difference: -0.2

95% CI for difference: (-0.371676, -0.028324)

Test for difference = 0 (vs not = 0): Z = -2.28 P-Value = 0.022

Confidence Interval for Two Population Proportions

\[
\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}
\]

The F Distribution

- The F critical value is found from the F table
- There are two degrees of freedom required: numerator and denominator
- The larger sample variance is always the numerator
- When \(F_{STAT} = \frac{S_1^2}{S_2^2} \) \(df_1 = n_1 - 1 \); \(df_2 = n_2 - 1 \)
- In the F table, the numerator degrees of freedom determine the column, and denominator degrees of freedom determine the row

F Test: An Example

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

<table>
<thead>
<tr>
<th></th>
<th>NYSE</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>Mean</td>
<td>3.27</td>
<td>2.53</td>
</tr>
<tr>
<td>Std dev</td>
<td>1.30</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Is there a difference in the variances between the NYSE & NASDAQ at the \(\alpha = 0.05 \) level?
F Test: Example Solution

- Form the hypothesis test:
 \[H_0: \sigma_1^2 = \sigma_2^2 \] (there is no difference between variances)
 \[H_a: \sigma_1^2 \neq \sigma_2^2 \] (there is a difference between variances)

- Find the F critical value for \(\alpha = 0.05 \):
 \[\text{Numerator d.f.} = n_1 - 1 = 21 - 1 = 20 \]
 \[\text{Denominator d.f.} = n_2 - 1 = 25 - 1 = 24 \]
 \[F_{\alpha/2} = F_{0.025, 20, 24} = 2.33 \]

- The test statistic is:
 \[F_{\text{STAT}} = \frac{S_1^2}{S_2^2} = \frac{1.3^2}{1.1^2} = 1.256 \]

- Conclusion:
 There is insufficient evidence of a difference in variances at \(\alpha = .05 \) because:
 \[F_{\text{STAT}} = 1.256 < 2.327 = F_{0.05/2, 20, 24} \]
 or
 \[p\text{-value} = 0.589 > 0.05 = \alpha. \]

Two Variance F Test In Excel

Conclusion: There is insufficient evidence of a difference in variances at \(\alpha = .05 \) because:

\[F_{\text{STAT}} = 1.256 < 2.327 = F_{0.05/2, 20, 24} \] or
\[p\text{-value} = 0.589 > 0.05 = \alpha. \]

Chapter Summary

- Compared two independent samples
 - Performed pooled-variance t test for the difference in two means
 - Performed separate-variance t test for difference in two means
 - Formed confidence intervals for the difference between two means
- Compared two related samples (paired samples)
 - Performed paired t test for the mean difference
 - Formed confidence intervals for the mean difference
- Compared two population proportions
 - Formed confidence intervals for the difference between two population proportions
 - Performed Z-test for two population proportions
 - Performed F test for the ratio of two population variances