A MODEL FOR FOLD AND NAPPE DEVELOPMENT IN THE DOVFREFJELL MOUNTAINS, WESTERN NORWEGIAN CALEDONIDES

VOLLMER, Frederick W., Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455

The Western Gneiss Terrane of central Norway consists of a series of ductile fold nappes formed at depths of 20-60 km in the continental crust during a Silurian continental collision. A study in the northern Dovrefjell suggests that complex interference patterns characteristic of the region are the result of a single progressive deformation. Following, or coeval with, the initial stacking of four thrust sheets was the development of tight to isoclinal folds, including sheath folds, with E-W axes parallel to a strong stretching lineation, and associated with a proto-mylonitic transposition foliation. Final large scale folding was produced by steep heterogeneous shear antithetic to the earlier east-verging structures.

Computer-simulated passive folding was used to model the deformation. Simple shear of undulose layers of low amplitude (\(\leq 1:50 \)) creates strong sheath folding at about \(\gamma = 20 \). Active folding should additionally accentuate this. A rotation and antithetic heterogeneous shear was then imposed. Cross-sections through the model exhibit the main geometric features observed in outcrop and map pattern.

To account for these kinematics a model for ductile nappe formation is proposed based on the instability of slip lines in a non-linear plastic material flowing under gravity. Using present flow laws quartz rich rocks will flow (\(-\log e = 13\) to 10 sec\(^{-1}\)) at 500-600°C and 20 km if surface slopes are 1-2°. Additional horizontal deviatoric stress, or a decrease in surface slope, will strongly steepen the slip lines. This places layering sub-parallel to old slip lines into a shortening field, resulting in fold formation. As only small stress increases are required (\(\leq 10 \text{ MPa} \)) multiple generations of folding can easily occur. Larger rotation of slip lines may result in antithetic shearing.