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Abstract. A generalization of the well-known Wilson-Cowan model of
excitatory and inhibitory interactions in localized neuronal populations
is presented, by taking into consideration distributed time delays. A sta-
bility and bifurcation analysis is undertaken for the generalized model,
with respect to two characteristic parameters of the system. The stability
region in the characteristic parameter plane is determined and a com-
parison is given for several types of delay kernels. It is shown that if a
weak Gamma delay kernel is considered, as in the original Wilson-Cowan
model without time-coarse graining, the resulting stability domain is un-
bounded, while in the case of a discrete time-delay, the stability domain
is bounded. This fact reveals an essential difference between the two sce-
narios, reflecting the importance of a careful choice of delay kernels in the
mathematical model. Numerical simulations are presented to substanti-
ate the theoretical results. Important differences are also highlighted by
comparing the generalized model with the original Wilson-Cowan model
without time delays.

Keywords: Wilson Cowan model, distributed delays, stability, bifurca-
tions,chaos

1 Introduction

The original mathematical model describing excitatory and inhibitory interac-
tions in localized neuronal populations has been derived in 1972 by Wilson and
Cowan [10]. In this model, denoting by E(t) and I(t) the proportions of excita-
tory and inhibitory cells firing per unit of time, at the time instant t, it has been
assumed that E(t + τ) and I(t + τ ′) are equal to the proportion of cells which
are sensitive (i.e. not refractory) and which also receive at least threshold exci-
tation at the moment of time t. Therefore, as a first step, the following system
of integral equations has been obtained:




E(t+ τ) =

(
1−

∫ t

t−r

E(s)ds

)
· Se

[∫ t

−∞
h(t− s) (c1E(s)− c2I(s) + Pe(s)) ds

]

I(t+ τ ′) =

(
1−

∫ t

t−r′
I(s)ds

)
· Si

[∫ t

−∞
h(t− s) (c3E(s)− c4I(s) + Pi(s)) ds

]

(1)
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In this system, the first factors in the right hand side represent the proportion of
sensitive excitatory / inhibitory cells, where r is the absolute refractory period
(msc), the functions Se, Si are sigmoid threshold functions, their arguments
denoting the mean field level of excitation / inhibition generated in an excitatory
/inhibitory cell at time t (assuming that individual cells sum their inputs and
that the effect of the stimulation decays exponentially with a time course h(t)).
Moreover, ci > 0 are connectivity coefficients representing the average number
of excitatory / inhibitory synapses per cell and Pe, Pi denote external inputs.

Applying time-coarse graining, the well-known Wilson-Cowan model [10] has
been obtained and analyzed, consisting of a system of ordinary differential equa-
tions without time delays. Generalizations of this model including discrete time-
delays have been investigated in several papers, often considering refractory pe-
riods r, r′ being equal to zero. Based on the integral terms appearing in the
original model (1) as arguments of the threshold functions, the following model
with distributed delays will be analyzed in this paper:





u̇(t) = −u(t) + f

[
θu +

∫ t

−∞
h(t− s) (au(s) + bv(s)) ds

]

v̇(t) = −v(t) + f

[
θv +

∫ t

−∞
h(t− s) (cu(s) + dv(s)) ds

] (2)

where u(t) and v(t) represent the synaptic activities of the two neuronal popu-
lations, a, b, c, d are connection weights and θu, θv are background drives. The
activation function f is considered to be increasing and of class C1 on the real
line.

In system (2), the delay kernel h : [0,∞) → [0,∞) is a probability density
function representing the probability that a particular time delay occurs. It is
assumed to be bounded, piecewise continuous and satisfy

∫ ∞

0

h(s)ds = 1, with the average time delay τ =

∫ ∞

0

sh(s)ds <∞.

The particular case of discrete time delays (Dirac kernels) has been discussed in
[4]. However, there are other important classes of delay kernels often used in the
literature, such as Gamma kernels or uniform distribution kernels. It is worth
mentioning that in the original Wilson-Cowan model [10], a weak Gamma kernel
h(t) = τ−1 exp(−t/τ) has been used, so this case should be the original reference
point. Analyzing mathematical models with particular classes of delay kernels
(e.g. weak Gamma kernel or strong Gamma kernel h(t) = 4τ−2t exp(−2t/τ))
may shed a light on how distributed delays affect the dynamics differently from
discrete delays. However, in the modeling of real world phenomena, one usually
does not have access to the exact distribution, and approaches using general
kernels may be more appropriate [1–3, 5–9, 11].

Initial conditions associated with system (2) are of the form:

u(s) = ϕ(s), v(s) = ψ(s), ∀ s ∈ (−∞, 0],

where ϕ, ψ are bounded real-valued continuous functions defined on (−∞, 0].
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2 Main stability and bifurcation results

The equilibrium states of system (2) are the solutions of the following algebraic
system: {

u = f(θu + au+ bv)
v = f(θv + cu+ dv)

(3)

The linearized system at an equilibrium state (u⋆, v⋆) is





u̇ = −u+ φ1

∫ t

−∞
h(t− s) (au(s) + bv(s)) ds

v̇ = −v + φ2

∫ t

−∞
h(t− s) (cu(s) + dv(s)) ds

(4)

where φ1 = φ1(u
⋆, v⋆) = f ′(θu + au⋆ + bv⋆) > 0 and φ2 = φ2(u

⋆, v⋆) = f ′(θv +
cu⋆ + dv⋆) > 0.

Applying the Laplace transform to the linearized system (4), we obtain:

{
zU(z)− u(0) = −U(z) + φ1H(z) (aU(z) + bV (z))
zV (z)− v(0) = −V (z) + φ2H(z) (cU(z) + dV (z))

(5)

where U(z) and V (z) represent the Laplace transforms of the state variables u
and v respectively, while H(z) is the Laplace transform of the delay kernel h.

System (5) is equivalent to:

(
z + 1− aφ1H(z) −bφ1H(z)

−cφ2H(z) z + 1− dφ2H(z)

)(
U(z)
V (z)

)
=

(
u(0)
v(0)

)
(6)

and hence, the characteristic equation associated to the equilibrium state (u⋆, v⋆)
is

∆(z) = (z + 1)2 − αH(z)(z + 1) + βH2(z) = 0 (7)

where

α = aφ1(u
⋆, v⋆) + dφ2(u

⋆, v⋆) = af ′(θu + au⋆ + bv⋆) + df ′(θv + cu⋆ + dv⋆);

β = (ad− bc)φ1(u
⋆, v⋆)φ2(u

⋆, v⋆) = (ad− bc)f ′(θu + au⋆ + bv⋆)f ′(θv + cu⋆ + dv⋆).

The following delay-independent stability and instability results are easily
obtained, based on the properties of the Laplace transform and the particularities
of the characteristic equation (7):

Theorem 1 (Delay-independent stability and instability).

1. In the non-delayed case, the equilibrium state (u⋆, v⋆) of system (2) is locally
asymptotically stable if and only if

α < min{2, β + 1} (8)
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2. If the following inequality holds:

|α|+ |β| < 1 (9)

then the equilibrium state (u⋆, v⋆) of system (2) is locally asymptotically
stable for any delay kernel h(t).

3. If the following inequality holds:

β < α− 1 (10)

then the equilibrium state (u⋆, v⋆) of system (2) is unstable for any delay
kernel h(t).

It is important to note that the characteristic equation (7) has a root z = 0 if
and only if β = α−1. To investigate for which combinations of parameters (α, β)
the characteristic equation will have complex conjugated roots of the form ±iω,
we further assume that that Ĥ(z) = H(z/τ) does not depend on the average
time delay τ . In fact, for the most important classes of delay kernels we have:

a. Dirac kernel: Ĥ(z) = e−z;

b. p-Gamma kernel: Ĥ(z) =

(
p

p+ z

)p

;

c. Uniform kernel: Ĥ(z) = e−z · sinh(ρz)
ρz

.

We will further define Ĥ(iω) = ρ(ω)e−iθ(ω). The following equation will play an
important role in the bifurcation analysis to follow:

τ sin θ(ω) + ω cos θ(ω) = 0. (11)

A careful and lengthy theoretical investigation leads to the following theorems
which characterize the stability region S(α, β) of the equilibrium (u⋆, v⋆) from
the (α, β)-plane (see Fig. 1).

Theorem 2. Assuming that the equation (11) has at least one positive real root,
let us denote:

ωτ = min{ω > 0 : τ sin θ(ω)+ω cos θ(ω) = 0} and µτ = (ρ(ωτ ) cos θ(ωτ ))
−1
.

The boundary of the stability region S(α, β) of the equilibrium state (u⋆, v⋆) of
system (2) is given by the union of the line segments and curve given below:

(l0) : β = α− 1 , α ∈ [1 + µτ , 2] ;

(lτ ) : β = µτ (α− µτ ) , α ∈ [2µτ , 1 + µτ ] ;

(γτ ) :





α =
2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]

β =
1

ρ2(ω)

(
1 +

ω2

τ2

) , ω ∈ (0, ωτ ).

At the boundary of the stability domain S(α, β), the following bifurcation phe-
nomena take place in a neighborhood of the equilibrium (u⋆, v⋆) of system (2):
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a. Saddle-node bifurcations take place along the open line segment (l0);
b. Hopf bifurcations take place along the open line segment (lτ ) and curve (γτ );
c. Bogdanov-Takens bifurcation at (α, β) = (2, 1);
d. Double-Hopf bifurcation at (α, β) =

(
2µτ , µ

2
τ

)
;

e. Zero-Hopf bifurcation (α, β) = (1 + µτ , µτ ).

Theorem 3. If the equation (11) does not admit any positive real root, the
boundary of the stability region S(α, β) of the equilibrium state (u⋆, v⋆) of system
(2) is given by the union of the half-line and curve given below:

(l0) : β = α− 1 , α ∈ (−∞, 2];

(γτ ) :





α =
2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]

β =
1

ρ2(ω)

(
1 +

ω2

τ2

) , ω > 0.

At the boundary of the stability domain S(α, β), the following bifurcation phe-
nomena take place in a neighborhood of the equilibrium (u⋆, v⋆) of system (2):

a. Saddle-node bifurcations take place along the open half-line (l0);
b. Hopf bifurcations take place along the curve (γτ );
c. Bogdanov-Takens bifurcation at (α, β) = (2, 1).
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Fig. 1. Stability domain S(α, β) for different types of delay kernels, with a fixed average
time delay τ = 1. The stability domains are obtained based on Theorem 2 (left and
right) and Theorem 3 (middle). The blue shaded region represents a delay-kernel-
invariant subset of S(α, β). Along the blue curves and line segments Hopf bifurcations
take place, while the red line corresponds to saddle-node bifurcations.

In Fig. 1, the stability domains given by the previous theorems are repre-
sented for four different delay kernels with the same average time delay τ = 1.
In each subfigure, the blue rhombus represents the delay-independent part of the
stability domain given by Theorem 1. It is important to note that compared to
discrete time-delays, the stability domains in the case of Gamma delay kernels
are much larger. Moreover, in the case of a weak Gamma kernel (as it was the one
included in the original Wilson-Cowan model [10], and therefore it produces the
behavior of the model in its pure form, before the coarse-grain approximation),
the stability region is unbounded, as in Theorem 3.

.
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3 Numerical simulations

The sigmoid activation function is chosen as in [4]: f(x) = (1 + exp(−δx))−1.
For all numerical simulations, the following values of the system parameters
are chosen: θu = 0.1, θu = 0.2, a = d = −6, b = c = 3 and δ = 40. The
following equilibrium is computed: (u⋆, v⋆) = (0.0660694, 0.076733), with the
characteristic parameters: α = −31.8118 and β = 188.846. Based on Theorem 2,
the critical value of the average time delay τ⋆ responsible for the occurrence of a
Hopf bifurcation which causes the loss of asymptotic stability of the equilibrium
(u⋆, v⋆) is determined in the case of a Dirac kernel τ⋆0 = 0.0674893 and a strong
Gamma kernel τ⋆2 = 0.202917. The Hopf bifurcations are supercritical, causing
the appearance of stable limit cycles, as it can be seen in Figs. 2.
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Fig. 2. Evolution of state variables u(t) and v(t) of system (2) with discrete time-
delay (left) and strong Gamma kernel (right) for valued of the average time delay
τ ∈ {0.07, 0.1, 0.5, 1} (top to bottom). The values of the parameters are fixed: θu = 0.1,
θu = 0.2, a = d = −6, b = c = 3 and δ = 40. The same initial condition has been
chosen in a neighborhood of the equilibrium.

On the other hand, in the case of a weak Gamma kernel, from Theorem 3 it
follows by numerical computations that for the specific values of α and β given
above, the equilibrium (u⋆, v⋆) is asymptotically stable, for any τ > 0. Therefore,
no oscillations or bursting behavior is expected to occur in a neighborhood of the
equilibrium if a weak Gamma kernel is considered in the mathematical model.
This reflects an important difference between the different types of behavior that
can be observed for different types of delay kernels. The weak Gamma kernel has
a particular importance as it has been included in the original Wilson-Cowan
model before applying time-coarse graining.
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Fig. 3. Periodic, quasi-periodic and chaotic orbits shown in the (u, v)-phase-plane for
the Wilson-Cowan model with discrete time-delay, obtained for different values of τ .
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Numerical simulations also reveal complex bursting and quasi-periodic be-
havior in the Wilson-Cowan model with a discrete time delay (see Fig. 3), sug-
gesting a series of bifurcations involving limit cycles. Interestingly, these phe-
nomena could not be observed in the case of strong Gamma kernels with the
same system parameters.

4 Conclusions

A local stability and bifurcation analysis has been presented for a generalization
of the Wilson-Cowan model of excitatory and inhibitory interactions in local-
ized neuronal populations, incorporating general distributed delays. Essential
differences have been pointed out for different scenarios involving diverse delay
kernels, emphasizing the importance of a careful choice of delay kernels in the
mathematical model.
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