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Abstract The placenta is the key organ of maternal–fetal interactions, where
nutrient, oxygen, and waste transfer take place. Differences in the morphology of the
placental chorionic surface vascular network (PCSVN) have been associated with
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172 C. Anghel et al.

developmental disorders such as autism, hinting that the PCSVN could potentially
serve as a biomarker for early diagnosis and treatment of autism. Studying PCSVN
features in large cohorts requires a reliable and automated mechanism to extract
the vascular networks. This paper presents two distinct methods for PCSVN
enhancement and extraction. Our first algorithm, which builds upon a directional
multiscale mathematical framework based on a combination of shearlets and
Laplacian eigenmaps, is able to intensify the appearance of vessels with high success
in high-contrast images such as those produced in CT scans. Our second algorithm,
which applies a conditional generative adversarial neural network (cGAN), was
trained to simulate a human-traced PCSVN given a digital photograph of the
placental chorionic surface. This method surpasses any existing automated PCSVN
extraction methods reported on digital photographs of placentas. We hypothesize
that a suitable combination of the two methods could further improve PCSVN
extraction results and should be studied in the future.

Keywords Placenta · Autism · Vascular networks · Shearlets · Wavelets ·
Laplacian eigenmaps · Neural networks · Deep learning · cGAN · Generative
models

1 Introduction

The placenta has been the subject of increased medical research attention, as
the variability in its structure has been shown to indicate pregnancy complica-
tions [12, 18, 22] and developmental delays such as autism [6, 32, 34]. For example,
placental chorionic surface vascular networks (PCSVNs) of a high-autism risk
cohort consisting of infants with a biological sibling with autism [29] generally
exhibit fewer branching points than their low-autism risk counterparts [6]. Although
it is known that autism is highly heritable and more prevalent in males, a host of
genetic and environmental factors have been associated with the disorder, including
advanced maternal and paternal age, gestational diabetes, maternal infection and
nutritional deficiencies, exposure to pharmaceutical drugs or pesticides and hypoxic
damage [27, 28, 30]. No conclusive single factor or cause is known.

Studies linking PCSVN features and autism necessarily relied on completely
connected PCSVNs to compute networks’ geometric characteristics such as vessel
curvature, branching angles, lengths, and thickness. Currently, the only reliable way
to extract PCSVNs is through a laborious tracing process that is done manually by
a trained researcher on a computer [33]. This process typically takes 4–8 h with a
few rounds of validations, prohibiting any large-scale studies with PCSVNs.

In 2013, Chang et al. established an algorithm to extract the placental chorionic
surface vascular networks with a multiscale framework [5]. This method worked
relatively well in identifying small vessels; however, it was unable to produce a
completely connected network due to the glare caused by the placenta’s irregular
texture and shape and the significant interference caused by the villus trees near
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Fig. 1 Ongoing research goals

the edges of the placental chorionic surface. Even when photographs are taken with
a polarized filter, the vessels are difficult to distinguish as the rough and irregular
surface of the placental tissue is incorrectly identified as part of the vasculature.
Creating high-contrast images of placenta ex-vivo to allow for an automated PCSVN
extraction has been extremely challenging. In this paper, we present two distinct
algorithms toward automating PCSVN enhancement and extraction. One algorithm
combines a tool from harmonic analysis and signal processing with a technique
from machine learning; the second algorithm is based on a particular type of neural
network called a conditional generative adversarial network (cGAN).

This research is an essential part of a large research agenda to discover potential
causes of autism through the structural and functional features exhibited in the
PCSVNs, as shown in Fig. 1. Ultimately, we wish to decide whether an intervention
for autism is needed upon delivery simply by taking a digital photograph of the
PCSVN, as indicated by the dashed connection in Fig. 1. In order to accomplish
this, we need to precisely identify which features from the PCSVNs are capable of
differentiating placentas that are associated with autism from those in the general
population. Extracting a detailed description of the vascular networks from digital
photographs of the placenta, the purpose of this research project, serves as a crucial
step in this ultimate research goal.

radulesa@newpaltz.edu



174 C. Anghel et al.

Due to the nature of our work, we chose to present the two methods in a parallel
fashion where each section contains a complete treatment of the mathematical
background, data sets used, parameter selections, and results. In particular, Sect. 2
discusses the work on the multiscale framework with shearlets and Laplacian
eigenmaps, denoted by Shearlets-LE henceforth. Section 3 discusses the work with
the conditional generative adversarial network. Section 4 concludes our work with
a summary and future directions.

2 Vessel Enhancement Using Shearlets and Laplacian
Eigenmaps

Wavelets are used to obtain a multiscale representation for square-integrable
functions and signals via decomposition into elements that give both location and
scale information at increasingly precise resolution [8, 10]. Since they came to
interest in the 1980s, wavelets have generated a plethora of fascinating mathematical
results and numerical applications such as detecting singularities and denoising. In
numerical applications, using wavelets offers two great advantages: the existence of
fast transforms as well as fast pyramidal schemes based on the introduction of the
multiresolution analysis (MRA) by Y. Meyer and S. Mallat in 1989 [3, 26]. Another
benefit of wavelet-representation is the flexibility in the choice of the function
which generates the system. For example, the standard Haar wavelet, a basic step
function, has advantages such as simplicity, orthogonality of the induced system,
and compact support; however, it presents poor differentiability properties, which
can cause severe errors in certain approximations. To compensate for this, other
types of wavelets include characteristics such as exponential decay, smoothness, or
directionality; the last property caters specifically to our present needs.

Placenta chorionic surface vascular network images, like most natural images
and signals, exhibit curves or line-like edges, i.e. discontinuities along smooth
regions, some of which exhibit the same structure at different scales. In Fig. 2, via
visual inspection, one can distinguish vessels of different sizes (or scales) with the
same elongated and at times tortuous shapes from other regions of the placenta.
The sharper differences in color between these regions, or, equivalently, the high
pixel intensity gradient along the boundary of these distinct regions, constitute
discontinuities in the image. To clarify further, we use the term “discontinuity” not
to refer to the vessels being disconnected, but to the discontinuities in the pixel
intensity values.

In a previous work, Chang et al. [5] established an algorithm based on a
multiscale Frangi filter [14], a method that is based on images’ second-order
characteristics.

Directional methods such as curvelets, contourlets, shearlets, etc., also target
exactly this type of applications [4, 11, 17, 23]. These wavelet methods optimally,
i.e., sparsely, represent functions with certain geometric features using basis
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Fig. 2 Types of discontinuities in pixel intensities of the placenta image. Our method exploits
strong differences in pixel values, i.e., the discontinuity along the boundary of vessel and non-
vessel regions (a). However, a significant pixel intensity gradient close to the boundary can also
be picked up as a discontinuity (b). That is, the boundaries of thicker vessels may be mistaken for
vessels themselves

functions that include orientation in addition to location and scale information. In
particular, as opposed to traditional wavelets, directional representations contain
anisotropic elements occurring at all scales and locations and exploit the geometric
regularity of edges. We thus expect directional shearlets to be an appropriate
representation system for PCSVN images. In addition, shearlets-based algorithms
are faster than Frangi-based filtering schemes, making them a superior choice for
improved computational efficiency.

To further highlight the vessel structure after applying shearlets, we introduce a
kernel method for manifold recovery called Laplacian Eigenmaps (LE) [2, 19, 25].
One reason for introducing this additional enhancement tool is that in shearlets and
other similar methods, directionality is better captured when the images are smooth
away from singularities along smooth curves, where the curves have bounded
curvature. In the placenta images, we observed that certain non-vessel parts exhibit
strong curve-like features or ripples due to glare and discoloration. Therefore, we
cannot simply rely on directional methods to enhance the appearance of vessels.
In addition, based on the work in [9, 35], we expect that different structures such
as the difference between the interior or contours of the vessels will be enhanced
by different vectors in the LE representation. These vectors of features will be
referred to as eigenimages. Next, we give some background and algorithmic details
on shearlets and LE.

radulesa@newpaltz.edu
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2.1 Mathematical Background

2.1.1 Shearlets

Shearlet representations are obtained by applying parabolic dilations Da , shearing,
and translations to a wavelet function, ψ [17, 23]. The matrix Da is a parabolic
scaling, i.e., if f (x, y) = χ{y≥x2},

fa(x, y) = Daf (x, y) = f (ax, a2y),

as opposed to traditional scaling fa(x, y) = f (ax, ay) for classical wavelets.
The parabolic scaling (for which the principal length2 ∼ width holds) allows for
highly anisotropic elements at fine scales. Directionality is captured by a shearing
operator Sm:

Sm =
(

1 m

0 1

)

.

The variable m parametrizes the orientations with slopes rather than angles, as is
the case for curvelets and contourlets [4, 11]. Hence, if m is an integer, the integer
lattice is left invariant, a useful property in computations.

Now, suppose that ψ ∈ L2(R2) and x ∈ R
2. A (regular) discrete shearlet system

associated with a function ψ is the collection of dyadic parabolic dilations, and
integer-shearing and -translations of the function ψ written as

{ψj,k,l} = {23j/4ψ
(

SkD2j x − l
)

j, k∈Z, l∈Z2}, (1)

where the coefficient 23/4 is only needed for normalization purposes. Informally, a
square integrable function f can be represented as a series of shearlets

f =
∑

j,l,k

〈f,ψj,l,k〉ψj,l,k, (2)

where the mother wavelet, ψ , meets some admissibility conditions that we will not
discuss here. In particular, ψ is chosen such that the collection {ψj,l,k} forms a “tight
frame” for L2(R2), i.e., if f ∈ L2(R2), then the equation

‖f ‖2
L2 =

∑

j,l,k

∣

∣〈f,ψj,l,k〉
∣

∣
2

holds. Hence, one can view a tight frame as an orthonormal basis, with the caveat
that a tight frame may contain redundant elements.

Near edges, shearlets perform much better than a classical Fourier basis or a
wavelet basis. While the k-term approximation error for these bases are, respec-
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tively, ‖f − fk‖2
L2 = O(k−1/2) and ‖f − fk‖2

L2 = O(k−1) near edges [4], with
shearlets, we obtain

‖f − fk‖2
L2 = O

(

k−2 (log k)3
)

within log factors of optimal rate k−2 [17, 23]. One major theoretical advantage
of shearlets compared to other directional representation systems is that shearlets
provide sparse approximation of anisotropic features while providing a unified
treatment of the continuum and digital realm in the sense of allowing faithful
implementation.

2.1.2 Laplacian Eigenmaps

Suppose that we are given the set of vectors X = {x1, . . . , xN } ⊂ R
D , where D is

large. The Laplacian Eigenmaps (LE) algorithm is a nonlinear, locality-preserving,
dimensionality reduction algorithm that finds vectors Y = {y1, . . . , yN } ⊂ R

d ,
where d � D, such that the important information, in particular, a certain notion
of similarity between points in the original data X, is retained in Y . We assume that
the data set X is sampled from a manifold embedded in R

D . The steps of the LE
algorithm are as follows [2].

Adjacency Matrix Construction

Given N vectors of dimension D sampled from a data set, we construct an adjacency
graph G that represents the data with nodes (or vertices) formed by the N vectors,
and with edges that represent the distances between the nodes that are defined to
be “close.” In our work, the data vectors are each pixel of an image in three (RGB)
dimensions; for example, for a 512×512 image, N = 262,144 and D = 3. There are
two ways of establishing the notion of closeness for this neighborhood construction.
In both cases, we start by computing the Euclidean distances between all pairs of
points xi and xj , for i, j = 1, . . . , N . Then, one option is to define two nodes as
connected by an edge if the Euclidean distance between them is less than some pre-
defined, fixed ε. Although this option is geometrically intuitive, it can be difficult to
choose an appropriate ε, and it often yields disconnected graphs. In our work, we use
the second option: the k-nearest neighbors method. Here, the nodes are connected
if xi is among the k nearest neighbors of xj or vice versa. The main advantage of
using the k nearest neighbors scheme is that we have more control over the degree
of connectivity of our graph. All of the information for the graph G is stored in an
adjacency matrix A:

Aij =
{

1, if xj is in the ε-neighborhood of xi,

0, otherwise.

where A is symmetric.

radulesa@newpaltz.edu
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Heat Kernel as Weights

The adjacency matrix A can be modified by assigning weights to the edges of the
graphs. Given σ > 0, we add weights to the edges of the graphs using the heat
kernel as follows:

wi, j =
{

e
−‖xi−xj ‖2

2
σ if i and j are connected,

0 otherwise.
(3)

Now, note that by using this type of weights, we would need to determine the
appropriate σ . Although there are simpler alternatives (e.g., set wi, j = 1 if xi and
xj are connected by an edge and wi, j = 0 otherwise) that avoid choosing σ ,
the heat kernel is a better option from a geometrical point of view, as it preserves
all information and better encodes relative closeness between points. The Laplace
operator that we define next, based on these weights, is analogous to the Laplace
Beltrami operator on manifolds, whose eigenfunctions have properties that are
desirable for embedding. Interested readers are referred to the original paper [2] for
a complete discussion on the geometric implications of LE as well as the relation
between heat flow and the Laplace Beltrami operator on manifolds.

Minimization Problem

Given the weight matrix W = [wi,j ], where wi,j ’s are the heat kernel weights
defined above, we can set up a minimization problem that will allow us to find a
collection of embedding vectors Y that can be used to better represent the original
observations. Consider the d × N matrix YT = [y1, y2, . . . , yN ], where yi is
a column vector that gives a d-dimensional representation of the ith observation
(node). Define an N × N diagonal matrix D with components di,i such that
di,i = ∑

j

wi,j and 0 otherwise. Each component di,i that is associated with the

ith node gives a measure of how supported this node is, i.e., a large di,i reflects the
fact that the ith node is strongly connected to other nodes in the graph. This could
be because that there are many non-negligible weights associated with this node or
fewer, but large weights. Now, to find Y, we solve the minimization problem

argmin
YT DY=I

1

2

∑

i,j

‖yi − yj‖2
2 wi,j = argmin

YT DY=I
trace

(

YT LY
)

, (4)

where L = D − W is an N × N Laplace operator and I is a d × d identity matrix.
Now, assume that the graph G is connected. This is a safe assumption as using

the k nearest neighbors algorithm would ensure that. The Laplace operator is a
symmetric, positive semidefinite matrix that can be thought of as an operator on
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functions defined on vertices of G. Then, the constrained minimization problem is
solved as follows:

• First, find the eigenvalues and eigenvectors solutions of the generalized eigen-
value problem

Lξl = λlDξl, l = 0, 1, . . . N − 1. (5)

• Order the eigenvalues from the lowest to the highest, 0 = λ0 ≤ λ1 ≤ . . . ≤
λN−1.

• Ignore the eigenvectors corresponding to the zero eigenvalue and use the next d

eigenvectors for embedding in the d-dimensional Euclidean space by setting the
representation for xi to

yi = [ξ1(i), ξ2(i), . . . , ξd(i)]. (6)

The justification for eliminating the zero eigenvalue is that since the graph is
connected, the vector of all ones is the only eigenvector associated with this
eigenvalue. For a formal justification of the above steps, please refer to [7].

2.2 Implementation

2.2.1 Data Sets

There were two types of image data available for our implementations. The first is a
collection (201 images) of digital photographs of raw, formalin-fixed placental fetal
surface images from the National Children’s Study (used in Sects. 3.2.1 and 4.1).
Secondly, we had access to a smaller collection (5 images) of digital photographs
of PCSVN where the placental fetal vasculature was heparin flushed and perfused
with a 1% agarose 30% barium sulfate solution. Within the barium-perfused data
set, we have images of raw placenta ex-vivo without any alteration as well as images
of formalin-fixed placentas. The purpose of injecting PCSVN with barium was to
enhance the image contrast, thereby mitigating some of the imaging challenges that
were native to the digital photographs of raw, formalin-fixed placentas. We focus
our work on the Shearlets-LE algorithm to the barium-perfused PCSVN images in
this section.

Figure 3 shows raw and formalin-fixed images from the same placenta. The
rationale behind examining both raw and fixed images is that when we look for
nodal connections along vessel paths each type of image presents some advantages
and disadvantages. For example, fixed images do not exhibit bright speckles but
the structural connection from one vessel to another may disappear; furthermore,
individual vessels even appear fractured. In fact, they appear to have two distinct
color profiles, i.e., non-negligible differences in the RGB values, between the

radulesa@newpaltz.edu
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Fig. 3 Left: a patch of the barium-perfused raw PCSVN image. Right: a patch of the barium-
perfused formalin-fixed PCSVN image. Both images belong to the same placenta

interior of the vascular region and its boundary—in the topological sense—away
from the nonvascular regions. The significant pixel intensity gradient at those
locations causes our algorithm to treat the boundary as a separate structure and
separate vessels’ interior from their boundary. Thus, instead of being part of the
vascular paths, some boundaries seem to form separate, thin, neighborhood vessels
in some eigenimages. On the other hand, although the disconnection issue is not
as severe in the raw image, fresh blood speckles caused by glare can manifest as
tubular structures that lead to corrupted enhancement results.

2.2.2 Parameter Selection

Shearlets

• Number of scales. The parameter s gives us the depth of the decomposition,
i.e., the number of scales (from largest to finest) used to decompose the image.
Therefore, when combined with shearing, this increases the diversity of basis
elements used. Since PCSVN images show significant curvilinear structure away
from the vessels, we need to choose s carefully, as a large value may result in
capturing unwanted details. In this work, the ideal number of scales was chosen
to be 4, i.e., s = 4.

• Thresholding factor. We use a thresholding routine for selecting the shearlet coef-
ficients; this essentially translates to a smoothing process since the coefficients of
the shearlets are picking up noise when they are below a certain value. Therefore,
thresholding along with varying scales allow us to control the amount of desired
versus undesired features. Although an optimal threshold value is a function of
the images, after a careful study of our images, we found that picking a threshold
that keeps wavelet coefficients of magnitudes within the top 5–10% works well
in general.

radulesa@newpaltz.edu
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Laplacian Eigenmaps

• Number of nearest neighbors, k. Currently, there is not yet a systematic way to
make an appropriate choice [2]. If N , the number of observations is large, it is
important to pick the right k: (1) in general, k may increase with N , but aspects
such as the sparsity of the data should come to play; (2) since the computational
costs are higher as the number of neighbors increases (it affects the sparsity of
W ), our goal is to find k small enough such that the quality of the representation
is good. In our work, we used several values of k and observed the resulting
eigenimages. We found that, if k ≥ 5, increasing the number of nearest neighbors
does not affect the quality of the vessel enhancement. Since the cost of computing
eigenvectors is high, we picked k = 5.

• Heat kernel parameter. There is also no principled way to find this parameter. In
[2], the authors suggested that choosing a smaller σ tends to improve the quality
of the representation for bigger but still relatively small k; for small values of
k, the results do not seem to depend significantly on σ . In our work, a value of
σ around 1 gives good results based on visual inspection. Below 0.5, we obtain
poor quality while increasing σ by orders of magnitude (up to 100) did not affect
the quality of the vessel enhancement.

2.2.3 Algorithm

1. Pre-processing. Make subsections of the images with size 512 × 512 or 256 ×
256, as images of dyadic size are needed for the shearlet algorithm. For the
barium-perfused images, we analyze subsections or patches of size 512 × 512.
After an initial crop to remove irrelevant background and undesired foreground
objects such as scissors, the five placenta images in our data set yielded anywhere
between 6 and 20 subsections with an average of 12.6 subsections.

2. Shearlets. Efficiently highlight curved, slanted vessel structures using a basis
composed of directional elements at various scales.

3. LE. Emphasize vessel structures at different scales by finding points in neighbor-
hoods with similar structures and enhancing the similarity between these points.

4. Thresholding. Treat the remaining highlighted, nonvascular areas as noise.
Study the differences between the noise and the vessels, and throw away the
noise by setting its intensity value to zero.

2.3 Results

Our discussion on the performance of the Shearlets-LE algorithm will be strictly
qualitative as the ground truth traces to the barium-perfused images are not available
at this time. Basically, the algorithm takes an RGB image as an input and outputs a
grayscale image in which the vessels are enhanced. In the experiments performed on
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Fig. 4 Top row: Shearlets-LE enhancement result on a selected barium-perfused raw placenta
image. Bottom row: Shearlets-LE enhancement result on a selected barium-perfused fixed placenta
image. Left: Original PCSVN image; Middle: Enhanced image after applying the Shearlets-LE
algorithm to the left image; Right: Enhanced image after applying a thresholding routine to the
middle image. The results here clearly show that the vascular structure is significantly highlighted
using the Shearlets-LE algorithm

raw and Barium-perfused images, where hard-thresholding was possible, pixels in
regions detected as non-vessels have value zero while regions identified as vessels
have non-zero values. This allows us to have a notion of vessel extraction in the
same sense as the cGAN output in the next section. On the other hand, the algorithm
did not produce substantial intensity value differences between vessel-like and non-
vessel-like regions on the National Children’s Study (NCS) images using hard
thresholding.

The preliminary results show that the vessel structure of the PCSVN is effectively
captured by the Shearlets-LE algorithm on fixed and raw placentas. Figure 4
gives a representative result from running the algorithm on five placentas (about
60 images after cropping). Note that we only present the first eigenimages, but
we observed that for many subsections of the placenta images, the next three
eigenimages give a particularly precise delineation of the vessels. At this point,
we do not have a technique to interpolate those images, but we believe that those
images may be very useful when we combine Shearlets-LE and neural networks in
future work. Visually, the algorithm gives a satisfying enhancement of arteries and
veins of various sizes; the algorithm effectively learned directional and anisotropic
variability exhibited through the tortuous vasculature network. With the appropriate
parameters described previously, the shearlets were able to capture directional and
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curved structures in the original images while smoothing structures away from
the vessels. They do so by treating variations in nonvascular regions as noise. LE
emphasizes vessel structures remaining after applying shearlets at different scales by
finding points in neighborhoods with similar structures and enhancing the similarity
among these points. In addition, intensity hard-thresholding further enhanced the
image contrast.

To do the hard-thresholding, we studied the color scale of a few eigenimages
using MATLAB’s colorbar command. We noted that many pixels in the lower
grayscale could be classified as background and have their values set to zero. For
some eigenimages where the difference was particularly obvious, we simply use the
imbinarize command in MATLAB. This was more effective in the fixed images,
where noisy parts were removed while the vessels were maintained. Noticeably,
superior smoothing was observed on fixed images in non-vessel-like region due to
the lack of speckles induced by glare and fresh blood. It is worth noting that every
step of the algorithm was essential; using only shearlets or applying LE directly to
images produced significantly inferior results.

The Shearlets-LE algorithm successfully amplifies the appearance of vascular
networks in barium sulfate perfused placentas in the absence of glare and dis-
coloration. Perfusing placental vascular networks with a barium solution helps
significantly with the automation of our proposed research agenda; however, a
major limitation to generalize this approach is the lack of data available, as it is
extremely difficult to obtain this type of data in an uncontrolled clinical setting.
Furthermore, our algorithm was only tested on a small number of images. Future
work on expanding our results to a larger collection of images is much needed.

3 Vessel Extraction Using a Conditional Generative
Adversarial Network

Taking advantage of the recent research in deep learning and the improvement
in computational resources, we propose to tackle the PCSVN extraction problem
with a neural network in our second approach. Previously, a classic neural network
algorithm was applied to a set of 16 PCSVN images from the University of North
Carolina’s Pregnancy, Infection, and Nutrition Study (UNC-PIN) [1]. Pixel-wise
features such as the magnitude and the direction of the intensity gradient were
fed into the network. The target output was a binary value representing whether
or not the pixel represented a blood vessel. Consequently, the networks were
small, consisting of layers of 8–15 neurons (see Sect. 3.1). Because of the memory
limitations, only a number of random pixels were chosen from each image and
passed into the neural network in order to limit the size of the training set.

In contrast, our work here uses a deep neural network with a complex architecture
and millions of parameters. Each input is a cropped RGB photo of the placenta itself,
rather than a feature vector; and the target output is a corresponding traced PCSVN
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image, obtained by a trained expert [33]. Isola et al. [21] recently developed a very
flexible conditional generative adversarial network (cGAN) for image-to-image
translation, called pix2pix. We use their implementation in this work. Briefly,
the purpose of the cGAN is to learn the relationship between pairs of corresponding
images, such that given one member of the pair it can generate the other. Examples
of pairs include aerial photographs and maps, night and day photos of the same
scene and, of special interest to us, photo and line drawings of the same object.

3.1 Machine Learning Background

3.1.1 Convolutional Neural Networks

Neural Network Basics

The neural networks discussed here are networks used for supervised learning. The
neural network learns the mapping between the input and the desired output when it
is provided with a sufficient number of matched training examples. The validation
set is used to select the best model hyperparameters while the test set is used to
evaluate the performance of the final selected model. The test sets are not used
in the training nor the validation; thus, the performance on this set gives the best
indication of whether the neural network could be used to automate the process of
vessel extraction.

A neural network is a machine-learning method to model a function f ∗ from
inputs x to desired outputs y. If y = f ∗(x), a feedforward network defines a mapping
f to approximate f ∗; that is, y ≈ f (x; θ), in terms of the parameters θ which are
learned during training [16]. Note that hyperparameters are values chosen in the
design of the neural network, such as the loss function, number of layers, initial
learning rate, etc.; parameters refer to values learned from the data by the neural
network, not set manually.

The function f is a composition of simpler functions. A neural network is
composed of layers of neurons. Each neuron applies a very simple function to its
input. For instance, given an input x, an ReLU neuron outputs max(0, x); it is often
used in conjunction with an affine function, returning max(0, wT x + b), where w
and b are network parameters (Fig. 5).

The networks used here, feedforward neural networks, can be represented by an
acyclic graph which shows how the functions are composed together. The neurons
in one layer receive inputs from multiple neurons in the previous layer, and send
output to multiple neurons in the succeeding layer (Fig. 5).

The parameters of every neuron are updated using backpropagation [36], a
method consisting of the following two stages applied repeatedly. During the
forward pass, the values from inputs to outputs are computed using the composition
of functions from each layer, keeping the parameters constant. During the backward
pass, the error between the output f (x; θ) and the target y is computed and

radulesa@newpaltz.edu



Placental Vessel Extraction 185

Fig. 5 Left: A schematic diagram of one ReLU neuron. Right: An example of a neural network
composed of layers. The input layer consists of n input nodes and one bias term. In this case, the
network has a single hidden layer with three neurons. The output layer contains two neurons. All
neurons within one layer apply the same activation function

propagated back through the network layers. The parameters θ of the neurons are
updated by gradient descent such that the error, or the loss, is minimized.

Convolutional Layers

The types of neural networks used in image processing have convolutional layers
which learn the filters to best extract features from the image, with no prior
knowledge. Unlike the fully connected layers described previously, filters take a
local region of the input at a time, but sweep across the entire image.

We can think of the input x of a convolutional layer as a volume of size W ×H ×
D, where W is the width of the image, H is the height and D = 3 if we restrict to
RGB images of three channels. A convolutional filter k is of size F × F × D, e.g.
4 × 4 × 3. The entries of the filter are learned parameters of the network. The output
at a position along an interior point of the image is the dot product of the filter and
the values from an F × F patch of the image [16]:

S(i, j) = (k ∗ x)(i, j) =
3
∑

l=1

∑

m

∑

n

x(i + m, j + n, l)k(m, n, l). (7)

Each filter produces a two-dimensional activation map when it is passed along,
in “hops” of stride S, across the image. If D2 different filters are used for that
convolutional layer, the layer’s output will have depth D2. Output width and height
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Fig. 6 The weights of the
4 × 4 filters (R channel) of
the first convolutional layer in
the generative network
applied to placenta images

depend on F and S, in the simplest case. This output volume is then processed by
the next layer of the network. A nonlinear function (such as ReLU) can be applied
after a convolutional layer.

After training, the filters of the first convolutional layer learn low-level features.
Figure 6 shows the 64 filters, with F = 4, for the first convolutional layer of the
trained network in this project. Most filters do not converge to random weights, but
show a gradient of intensity, or an area of greater intensity, across the small square.
Empirically, after training, the filters learned by the first layer of a convolutional
neural network often resemble Gabor filters [24] used in texture analysis; these
filters activate when they encounter edges along a certain orientation or a patch
of a certain color [16]. Deeper layers of the network capture more complex features.

3.1.2 Conditional Generative Adversarial Network

As mentioned above, a convolutional neural network learns the mapping from
the input image to the output image. A conditional generative adversarial neural
network (cGAN) additionally learns the loss function. Instead of minimizing a
metric of the discrepancy between the output and the target images, cGAN uses a
coupling of two neural networks to create output images which are indistinguishable
from the targets. Given one member in the pair of the training images (e.g., a digital
photograph of the placenta), a generator network generates the other (e.g., the traced
PCSVN), competing against an adversary who tries to distinguish it against the
ground truth (e.g., manually traced PCSVN). A detailed exposition of the method
can be found in [21]; here, we present a brief overview.

Generative adversarial networks (GANs) and their optimization are introduced
in [15]. In a GAN, a generator network G produces samples G(z) from a noise
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prior pz(z), in order to approximate the target images y. The discriminator D is the
(adversarial) neural network with input either y or G(z); it outputs the probability
that the input came from the data rather than being generated. In other words, the
network D can be represented as a function with a scalar output in the range [0,1].

For a GAN, the optimization function can be written as follows (adapted from
equations (1) of [15] and (20.81) of [16]):

L (G,D) = Ey∼pdata

[

log D(y)
] + Ez∼pz(z)

[

log (1 − D (G(z)))
]

. (8)

The adversarial networks work in competition with each other: G to minimize the
objective and D to maximize it, so that

G∗ = arg min
G

max
D

L (G,D). (9)

A conditional GAN (i.e., cGAN) uses not only z, but also an input image x (in
our case, the photographs) to simulate the outputs y (traces). More formally, let x be
an input image, y an output image, and z a noise vector. The generator, G, is trained
to learn a mapping G(x, z) ≈ y. The discriminator, D, is trained to distinguish
between G(x, z) and y. From equation (1) of [21], the objective function is now:

L (G,D)=Ex,y∼pdata(x,y)

[

log D(x, y)
]+Ex∼pdata(x),z∼pz(z)

[

log (1−D (x,G(x, z)))
]

.

(10)
Additionally, as in regular convolutional neural networks, we would like the output
image, G(x, z), to be close to the target y using an appropriate norm. In [21], this
is achieved by adding an L1 penalty to the objective function. The final objective
is then:

G∗ = arg min
G

max
D

L (G,D) + λEx,y,z [||y − G(x, z)||1] . (11)

The L1 norm was chosen as it produces less blurry outputs compared to L2.
The structure of the G network is based on the U-Net architecture [31], an

established, frequently used network for image segmentation. The D network
classifies small patches of the image as real (from y) or fake (from G(x, z))
and averages these decisions across all responses for one image. Therefore, the
discriminator can work on arbitrarily large images since it works on a local scale.
Both G and D networks are formed from modules of three layers: a convolutional
layer followed by a layer which performs batch normalization [20], followed by a
layer of ReLU neurons. (Normalizing data by subtracting the mean and dividing by
the standard deviation is a common preprocessing step in machine learning. Batch
normalization is a variant of this transformation applied before non-linear function
layers within the network itself. Without it, small changes in the input of a deep
neural network can propagate into large changes across the network, making training
difficult.)
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3.2 Application

3.2.1 Data Sets

Training a deep neural network, i.e., one with many layers and many weights,
requires a sufficiently large number of images. To this end, we used 201 digital
photographs of formalin-fixed placentas from the National Children’s Study (NCS).
The photographs were taken at delivery or following pathology evaluation using a
polarized filter. The images were made available to us through Placental Analytics,
LLC. The NCS data set has the benefit of having high-quality, manually traced
PCSVNs, serving as the ground truth in the supervised training of the cGAN.
The tracings were done with a validated protocol [13, 33]; colors were used to
differentiate vessel diameters which range from 3 to 19 pixels. A random sample
of 10% of the tracings were traced by a second tracer, to check the tracing for
consistency [6].

3.2.2 Preprocessing

The preprocessing steps began with turning the traced PCSVN images into black
and white. The images were then cropped into non-overlapping squares of 256 ×
256 pixels for the neural network. Since the feature of our interest, the vasculature,
does not have an orientation, we also rotated each cropped image by 90◦, 180◦, and
270◦ to augment the data set for the training. After removing 80% of the images
under 10 KB in size, which were blank or non-informative, the resulting data set
has 7210 training and 2357 validation images associated with 121 and 40 placentas,
respectively. The remaining 40 placentas constitute the testing set.

3.2.3 Conditional Generative Adversarial Network

We used the pix2pix implementation from Isola et al. [21] with a few adjustments.
A thorough parameter search is needed in future work; at present, the network ran
for 25 iterations at a learning rate of 0.0002, followed by 25 iterations for a decaying
rate. The L1 regularization parameter λ in the code was set to 100. Complete details
of the options can be found at https://github.com/canghel/placenta/docs.

3.2.4 Postprocessing

Given a cropped (256×256) image, pix2pix outputs the reconstructed estimate of
the vasculature trace for that image. The cropped images were then patched together
to form a fully reconstructed PCSVN. The outputs from the rotated patches were
rotated and reassembled back into the respective traces for the same placenta, which
were then averaged together. Doing this produced an undesirable tiling artifact since
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the squares do not overlap. A simple way to improve the reconstructed result is to
generate overlapping squares from the photographs, pass them through the cGAN,
and average the resulting reconstructions. To this end, we translated the original
tiling by 64, 128, and 192 pixels to generate additional reconstructions for the
interior of the images. Note that the pre-and post-processing will likely change in
future work. Full-size images can be input into the pix2pix network, and cropped
automatically during training only.

3.3 Results

The Matthews Correlation Coefficient (MCC) is used to quantitatively evaluate the
performance of the vessel extraction method. It is an aggregate measure of the
confusion matrix when the accuracy is expected to be low and the classes are
imbalanced, as is the case for placenta images. Additionally, it allows for a more
consistent comparison to previous work in [1, 5].

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

. (12)

The averaged reconstructions from pix2pix were thresholded to create binary,
black and white images. In our case, “positives” represent the pixels identified as
belonging to vessels in the manual, ground truth trace. Thus, T P represents the
number of pixels identified as blood vessel in both the cGAN reconstruction and
the trace. Similarly, T N is the number of true negatives, FP is the number of false
positives, and FN is the number of false negatives.

Figure 7 gives an illustrative example of the worst, average, and best cGAN
reconstructed result on the test set. Notice that the cGAN reconstructed traces
captured large veins and arteries and filtered out noise from the irregular texture
of the surrounding tissue. The region near the umbilical cord insertion was blurry
and the thinner vessels were not captured well. Interestingly though, the variation in
the thickness of the larger vessels often matches the photograph more closely than
the hand-drawn trace. This is because the hand-traces are limited to lines of fixed
pixel widths, while cGAN produces smoother transitions for vessels which vary in
thickness.

The average MCC on the 40 test placentas is 0.76, ranging from 0.67 to 0.84, as
shown in Fig. 8. In comparison, previous methods returned a maximum MCC value
of 0.4 on 16 images of a similar data set (UNC-PIN) [1, 5].

As expected, reconstructions of the placentas used from training had higher MCC
values than those for the validation and testing sets. Using the overlapping patches
in the cGAN reconstructions helped to increase the MCC in the test set (Wilcoxon
signed rank test, p-value = 1.82e−12) and in the validation sets (Wilcoxon signed
rank test, p-value = 3.46e−11), but not for the training set, as illustrated in Fig. 9.
As averaging may have the effect of blurring an image, this result may indicate that
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Fig. 7 Left to right: An illustrative example of the worst, average, and best cGAN reconstructed
results on the test set in terms of the Matthews Correlation Coefficient (MCC) values. Top row:
Test NCS photographs; Middle row: cGAN reconstructed PCSVN images; Bottom row: Manually
traced ground truth images

cGAN was overfitting the training set, highlighting the importance of further work
on a thorough parameter search.

4 Discussion

4.1 Comparison of Shearlets-LE and cGAN

We have developed and presented two parallel methods for the automation of
PCSVN extraction from digital photographs of placentas. Here we apply both
algorithms to cropped photographs (256×256) in the NCS data set for comparison.
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Fig. 8 MCC distributions for the training, validation, and test sets. For each data set, the averaged
results consist of averaged reconstructions from both rotated and overlapping 256 × 256 pixel
squares. The non-averaged results are obtained from four reconstructions each consisting of non-
overlapping squares, one for each angle of rotation

By incorporating structures at various scales and orientations as well as neigh-
borhood information, the combination of shearlets and LE is effective in picking
up directional and curved structures in the image, and is particularly successful in
highlighting small vessels as shown in the bottom row, second column of Fig. 10.

The pix2pix cGAN is a completely general method, initially blind to the
relationship between the images. It learns this relationship from the images them-
selves in two ways: by determining the parameterization of suitable filters and by
using an adversarial loss function which extends the simple penalty of deviation
in the L1 norm from the ground truth. It is particularly suited to vessel detection in
placentas where both the vasculature and the tissue itself vary greatly in shape, color,
and texture. It performed much better than all previous approaches. The cGAN
reconstructed images, as shown in the third column of Fig. 10, exhibit well-captured
global structures, i.e., large vessels.

The two methods are complementary, and we expect a combination of the two
can lead to improved results.
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Fig. 9 Comparison of the MCC values in averaged and non-averaged cGAN reconstructions.
The dashed line is the 45◦ line y = x. Using the overlapping patches in the cGAN reconstructions
helped to increase the MCC in the test and validation sets

Fig. 10 Top and bottom: Two illustrative examples to compare the results of PCSVN extraction
using the Shearlets-LE and cGAN algorithms. Left: 256 × 256 patch images in the NCS data
set; Middle left: Shearlets-LE enhanced result; Middle right: cGAN reconstructed result; Right:
Traced ground truth. Notice that the quality of the Shearlets-LE enhancement varies, especially in
the background. On the other hand, the cGAN was able to capture large vessels very well but fails
at the finer scales

4.2 Future Directions

As described above, we would like to combine the strengths of both methods in
our future work. One simple way to do this is to input Shearlets-LE enhanced
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images into the cGAN directly or as additional pseudo-color channels of the RGB
images. In some way, the enhanced images may also incorporate prior knowledge
of the vessel morphology into the cGAN. The Shearlets-LE transform highlights
the curvilinearity of the vessels, a feature that is important in distinguishing vessels
from non-vessels.

Another property of the vessels is their connectedness. In training the cGAN,
the traces may also be replaced by their skeletonizations, i.e., thin lines marking
the midpoints of the vessels, to emphasize the tree structure of the vasculature
and to de-emphasize the thickness of the vessels. The outputs from the different
cGANs trained on different training images (Shearlets-LE transformed inputs,
skeletonization outputs, etc.) can be averaged to form the final estimate of a
reconstructed trace. Such ensemble models frequently improve performance. The
first step, however, is to optimize the performance of the pix2pix cGAN by
performing a full parameter search for learning rate, etc., and to compare it to
previous methods on the same image data set.

Further postprocessing of the full reconstructed traces from the cGANs may be
an equally important step. The intuition is similar to that reported in [5], where
curvilinear and vessel enhancement steps removed noise from the image obtained
with only a multiscale filter. We only used cropped images from the placentas
in training the cGAN; the full image of a trace contains additional structural
information that was not exploited, such as the position of the umbilical chord and
the tree structure of the vasculature.

The work presented here has focused on enhancing vessel structure and auto-
mated vessel network extraction (Fig. 1). We are optimistic that, with the additional
extensions described, it will soon be possible to obtain black and white tracings of
the vasculature. From these tracings, the skeletonization of the traces is straightfor-
ward, and various properties of the vessels such as mean tortuosity, mean thickness,
etc., can be computed as in [6]. While identifying arteries and veins separately will
be an additional challenge, using the entire PCSVN as a whole may be sufficient to
identify interesting associations with ASD risk. The advantage of automation is that
studies linking PCSVN features with ASD and other developmental delays can be
easily scaled up to hundreds and thousands of images.

5 Computational Time and Software Specifications

For the Shearlets-LE method, the details of the implementation are as follows:

• The proposed method took roughly 12 min for a 512 × 512 patch image on a
2.9 Ghz Intel Core i7 CPU. This calculation was not computationally prohibitive.

• For shearlets, we used the shearlets package by www.shearlab.org. A useful com-
panion can be found at http://www.math.tu-berlin.de/fileadmin/i26_fg-kutyniok/
Kutyniok/Papers/ShearLab3D.pdf.
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• For Laplacian Eigenmaps, we used Matlab’s Toolbox for Dimensionality Reduc-
tion by Laurens van der Maaten (https://lvdmaaten.github.io/drtoolbox/) with
various additions/optimizations by A. Cloninger, T. Doster, A. Halevy, K.
Yacoubou Djima.

The details for the cGAN work are as follows:

• Image preprocessing was done in Python 3.6.1. Figures were produced in the
R programming language (v3.3.3) with the BoutrosLab.plotting.general (BPG)
package (v5.3.4) http://labs.oicr.on.ca/boutros-lab/software/bpg. Codes for all
processing can be found at https://github.com/canghel/placenta/clean-code.

• The cGAN implementation comes from the pix2pix model in [21], imple-
mented in PyTorch https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
(Retrieved July 19, 2017).

• Training required 8 h on Intel Xeon Processor (10 M Cache, 3.50 Ghz) CentOS
6.5 64 bit with NVIDIA GeForce GTX 1080 GPU, but once trained the testing
time was minimal (4 min and 15 s for all 7124 overlapping 256 × 256 cropped
test images).
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