
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=nncs20

Download by: [195.158.87.197] Date: 29 June 2017, At: 00:20

Neurocase
The Neural Basis of Cognition

ISSN: 1355-4794 (Print) 1465-3656 (Online) Journal homepage: http://www.tandfonline.com/loi/nncs20

Applying fMRI complexity analyses to the
single subject: a case study for proposed
neurodiagnostics

Anca R. Rădulescu & Emily R. Hannon

To cite this article: Anca R. Rădulescu & Emily R. Hannon (2017) Applying fMRI complexity
analyses to the single subject: a case study for proposed neurodiagnostics, Neurocase, 23:2,
120-137, DOI: 10.1080/13554794.2017.1316410

To link to this article:  http://dx.doi.org/10.1080/13554794.2017.1316410

Published online: 31 May 2017.

Submit your article to this journal 

Article views: 18

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=nncs20
http://www.tandfonline.com/loi/nncs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13554794.2017.1316410
http://dx.doi.org/10.1080/13554794.2017.1316410
http://www.tandfonline.com/action/authorSubmission?journalCode=nncs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=nncs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/13554794.2017.1316410
http://www.tandfonline.com/doi/mlt/10.1080/13554794.2017.1316410
http://crossmark.crossref.org/dialog/?doi=10.1080/13554794.2017.1316410&domain=pdf&date_stamp=2017-05-31
http://crossmark.crossref.org/dialog/?doi=10.1080/13554794.2017.1316410&domain=pdf&date_stamp=2017-05-31


Applying fMRI complexity analyses to the single subject: a case study for proposed
neurodiagnostics
Anca R. Rădulescua and Emily R. Hannonb
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ABSTRACT
Nonlinear dynamic tools have been statistically validated at the group level to identify subtle differ-
ences in system wide regulation of brain meso-circuits, often increasing clinical sensitivity over con-
ventional analyses alone. We explored the feasibility of extracting information at the single-subject
level, illustrating two pairs of healthy individuals with psychological differences in stress reactivity. We
applied statistical and nonlinear dynamic tools to capture key characteristics of the prefrontal-limbic
loop. We compared single subject results with statistical results for the larger group. We concluded that
complexity analyses may identify important differences at the single-subject level, supporting their
potential towards neurodiagnostic applications.
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1. Introduction

Historically, neuroimaging has focused on measuring the
amplitude of activation levels in different regions of interest
for some specific task, or for resting state. In the past few
years, newer connectivity methods such as structural equa-
tion modeling (Büchel & Friston, 1997; Kim, Zhu, Chang,
Bentler, & Ernst, 2007), Granger causality (Roebroeck,
Formisano, & Goebel, 2005), and dynamic causal modeling
(Friston, Harrison, & Penny, 2003) have increased in popu-
larity. Designed to address effective connectivity, defined as
the directional influence that one neural region exerts over
another, these methods investigate temporal components
of the time series. A different approach builds upon this
work to ask how a negative feedback loop as a whole
responds to perturbation in the maintenance of homeosta-
sis. This represents a marked departure from investigating
node-specific amplitude fluctuations, or their correlation
between node pairs, and instead uses tools from nonlinear
dynamics. These tools have been used primarily in conjunc-
tion with statistics, for subject classification into behavioral
groups or for differentiation between patient and control
populations.

It has been argued that since the vast majority of fMRI
studies present group averaged data, it is possible that the
typical imaging findings may capture only one of many
potential neural mechanisms subserving the same cognitive
function (Friston & Price, 2003). Moreover, fMRI statistics are
liable to produce misleading results, not only through inap-
propriate use of statistical measures (e.g., uncorrected or
overcorrected data) but also due to intrinsic limitations of
statistical tools. Following up Huff’s (1954) classic book How
to Lie with Statistics, Culham (2006) synthesizes some of the
drawbacks of using statistical methods in neuroimaging to
readily draw conclusions about subject groups. For example,

group averaged data (as in Talairach space) are the standard
way to extract the group’s general pattern and notice trends
that may not be obvious in single subjects. However, inter-
preting group average data by itself can be misleading. For
example, if there is high anatomical variability in the focus of
activation, there may not be enough overlap for an area to
show up in the group averaged data. Moreover, in order to
perform statistical comparisons, neural data from all subjects
are transformed (e.g., resliced and normalized), making tem-
poral and spatial assumptions that are not necessarily valid
for all individuals, and thus introducing confounds in the
results.

On the other hand, case studies, while more suitable to
pin down which mechanisms are necessary for a given
function, encounter a range of distinct problems, primarily
related to signal-to-noise ratio, to the high variability
between individuals, and to the equally high heterogeneity
of behavioral symptoms. In “Neuroimaging of single cases:
benefits and pitfalls” (Danckert, Mirsattarri, & Bright, 2012),
the authors discuss the small proportion of case studies
versus group statistical studies in the current neuroima-
ging literature, they point out benefits and shortcomings,
and propose a combination of the two approaches as the
best way to advance our understanding of brain regulation
and function (see also Chatterjee, 2005; Friston & Price,
2003).

In this paper, we aim to illustrate how case study ana-
lyses could complement existing statistically based results,
providing more focused information to help build a sche-
matic brain profile of each subject at hand. In conjunction
with statistical analyses of a larger group of subjects, we
considered two particular subject pairs so that the two
subjects in each pair had very different emotional profiles:
one normally responsive to stress, and the other
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exceptionally nonreactive to stress. We applied a combina-
tion of linear and nonlinear analyses of amplitude, correla-
tion and signal frequency spectra, emphasizing for each
subject the interplay within a network of brain areas –
either known a priori to contribute to emotion regulation
or discovered to be involved through whole brain explora-
tory analyses. Instead of statistical tests, we used a system
of comparisons and thresholding, with the threshold values
established through a fine-tuning process, designed to iden-
tify the most prominent patterns. We then computed differ-
ences between the two cases and performed a customized
analysis for each subject, as well as comparisons
between all.

1.1. Complexity measures for fMRI

Complexity analyses of physiological data have gained popu-
larity in cardiology because their results provide clinically valu-
able diagnostic information (Huikuri et al., 2000; Montano et al.,
1994; Stamkopoulos, Diamantaras, Maglaveras, & Strintzis,
1998). More recently, complexity has been documented in the
brain, at many levels of neural function (He, 2014; Ide, Sien,
Zhang, Mujica-Parodi, & Li Chiang-Shan, 2016), from neurotrans-
mitter release (Lowen, Cash, Poo, & Teich, 1997), spiking activity
(Levina, Michael Herrmann, & Geisel, 2007; Rubinov, Sporns,
Thivierge, & Breakspear, 2011), local field potentials (Bédard &
Destexhe, 2009), slow cortical potentials (He & Raichle, 2009),
and electroencephalography (Freyer, Aquino, Robinson, Ritter, &
Breakspear, 2009).

There is now evidence that dynamic invariants can be used
diagnostically in identifying pathology in conjunction with a
variety of modalities: EEG (Daneshyari, Lily Kamkar, &
Daneshyari, 2010), MEG (Stam, 2005), NIRS (Xiao-Su, Hong, &
Ge, 2011), and fMRI. This suggests the importance in examin-
ing the complexity neural signals across multiple scales.
Recent research suggests complexity measures of BOLD sig-
nals as an important neural marker in the healthy brain
(Anderson, Zielinski, Nielsen, & Ferguson, 2014; Bassett &
Gazzaniga, 2011; Ciuciu, Abry, & He, 2014; He, Zempel,
Snyder, & Raichle, 2010) as well as in neuropsychiatric condi-
tions (He et al., 2010; Lai et al., 2010; Maxim et al., 2005;
Rădulescu, Rubin, Strey, & Mujica-Parodi, 2012; Tolkunov,
Rubin, & Lilianne R, 2010).

Complexity measures have been used to identify both
between-voxel and between-subject differences. For example,
active and inactive voxels in the human visual cortex showed
different complexity (measured as power-law and Hurst
exponents) during a visual task (Thurner, Windischberger,
Moser, & Barth, 2002). More recent results found different
voxel-wise values of the power law exponent (Bandettini
et al., 2008; Bullmore et al., 2009) across different functional
networks (e.g., attention, default, motor, saliency, and visual)
(He et al., 2010), across cognitive loads (Barnes, Bullmore, &
Suckling, 2009; Suckling, Wink, Bernard, Barnes, & Bullmore,
2008), as well as more generally between active and non-
active voxels (Shimizu, Barth, Windischberger, Moser, &
Thurner, 2004).

Theoretically, complexity and scale invariance measures
in brain physiology are to be optimally applied to time

series that are long, rich, and have strong signal-to-noise
ratio, similarly with 24-h ECG. In contrast, fMRI time series
tend to be short (5–10 min), sparse (up to TR = 2.5 s), and
subject to sufficient scanner and physiological artifacts that
significant preprocessing is most often required. As dis-
cussed above, there is increasing evidence supporting sen-
sitivity of complexity measures in differentiating between
mental conditions using fMRI. However, temporal analyses
of fMRI time courses require careful modality-specific opti-
mization, and careful consideration of whether the techni-
ques have sufficient signal-to-noise ratio to provide
information, in particular in the context of single-subject
analyses.

A few papers in the recent literature suggest different
methods for being best-suited to describe scale invariance
and chaotic behavior in fMRI data. Some studies have found
that, under certain circumstances, fMRI time series are well
approximated by stationary processes with a linear log–log
spectrum so that their scale invariance can be captured by
simply estimating the slope of the log–log spectrum. Other
studies have suggested that fMRI signals are best modeled by
multifractal processes (Ciuciu, Varoquaux, Abry, Sadaghiani, &
Kleinschmidt, 2012; Wink, Bullmore, Barnes, Bernard, &
Suckling, 2008).

A lot of effort has been invested in optimizing scale
invariance computations in fMRI time series. In order to
reconcile the most popular of these methods, Rubin,
Fekete, and Mujica-Parodi (2013) performed a systematic
comparative analysis of complexity computation methods,
specifically for fMRI signals. In their work, the authors discuss
the challenges associated with each method, investigate the
effects of data preprocessing, activation, and scanner differ-
ences, with a focus on optimizing the balance between
detection sensitivity and resilience to artifacts. The methods
investigated in the reference are power spectrum, structure
function, wavelet decomposition, second derivative, rescaled
range, Higuchi’s estimate of fractal dimension, aggregated
variance, and detrended fluctuation analysis. To permit direct
comparison across methods, all results were normalized to
Hurst exponents. The authors showed that complexity mea-
sures are highly correlated but have different sensitivity and
susceptibility to fMRI-specific artifacts and other external fac-
tors. These factors (choice of algorithm, signal processing,
time-series length, and scanner) interact with complexity
calculations in nontrivially distinct ways and ultimately have
a significant impact on the reliability and sensitivity of com-
plexity estimates.

The reference above bares more than theoretical rele-
vance onto our current study. That is because the fMRI
data in the current case study are identically aligned with
one of the datasets analyzed in the reference (in task design,
acquisitions parameters, and even physical scanner). Hence,
when selecting the optimal complexity measures to use for
our current analysis, we naturally followed the conclusions
in the reference, in which power spectrum, Higuchis fractal
dimension, and generalized Hurst exponent estimates were
most successful by all criteria employed (while other com-
plexity measures such as wavelet based estimates,
detrended fluctuation analysis, aggregated variance, and
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rescaled range were found to have a poor performance).
Based on this, we chose to investigate in our single subjects
a set of three different measures of complexity: power-spec-
tral scale invariance, generalized Hurst exponent, and
approximate entropy (ApEn).

1.1.1. Power spectrum scale invariance
The dynamic patterns in a network’s stationary oscillations
can be captured in the frequency domain by Fourier analysis,
using the power-spectral density of the signals recorded from
the network’s nodes. A classical measure used to estimate
the complexity of the signals consists of expressing the mean
square fluctuations at any particular frequency f, and how
these vary with frequency. Power spectrum scale invariance
(PSSI) means that there is no preferred temporal scale and
that the power-spectrum density of the signal follows a
power-law behavior: SðfÞ,fβ (He et al., 2010). In this context,
the scaling exponent β is close to 0 (white noise) at max-
imum entropy/chaos, and β<0 represents increasing
regularity.

Scale-free properties of brain activity as captured from
fMRI signals have been the subject of intense investigation
over the past decade (Bullmore et al., 2001). Originally
thought of as structured (or fractal) noise, scale-free brain
activity in brain networks has been shown in newer studies
to be rather a product of rich coupled dynamics in the net-
work, and PSSI values are believed to hold functional signifi-
cance (Boustani et al., 2009; Ciuciu et al., 2014; Fransson
et al., 2013; He, 2011; He et al., 2010). Indeed, empirical
PSSI values were correlated with signal variance across dif-
ferent brain regions (He, 2011), with larger values for default-
mode, saliency, and visual networks (Fransson et al., 2013;
He, 2011). In addition, recent studies reported altered fMRI
signal complexity in task-induced activations (Bianciardi et al.,
2009; Fransson, 2006; He, 2011) as compared to resting state,
supporting the idea that brain activity reflects even in the
second-order statistics of fMRI signals, and ruling out the
possibility that scale-free property of brain activity is simply
noise.

In terms of neural excitability, results can be interpreted as
brain efficiency, increasing when β is decreased (i.e., the
lower β, the more reactive the brain). Statistical studies that
have applied PSSI analyses to clinical fMRI have shown, for
example, that β is higher at rest as compared to task because
when you’re engaged in task performance, the serial correla-
tion in the time series becomes shorter (Ciuciu et al., 2014,
2012; He, 2011). Healthy neurobiological states are character-
ized by roughly β ¼ �1 (signals with spectra SðfÞ ¼ f�1 are
known as pink, or 1=f noise), while pathological neural time
series may be significantly shifted in either direction. Our
prior work demonstrated that as a neural circuit becomes
increasingly dysregulated in a neurological of neuropsychia-
tric illness, signal complexity of the affected nodes deviates
from an equilibrium value – as observed in trait anxiety,
epilepsy, and schizophrenia (Mujica-Parodi, Carlson, Cha, &
Rubin, 2014; Nedic et al., 2015; Rădulescu et al., 2012;
Tolkunov et al., 2010).

New evidence also suggests that connectivity may play a
key role in establishing the complexity of BOLD signals
(Anderson et al., 2014). Ourselves and others have investigated
mathematically the possibility that PSSI may be attained in the
brain as a form of meta-stability of a network in which a large
number of neural oscillators couple and decouple in response
to stimuli and network feedback (Buzsaki, 2006; Rădulescu,
2014).

1.1.2. The Hurst exponent
The Hurst exponent is also a measure of long-term memory
of time series, describing the rate at which autocorrelation
decreases as the lag increases. Even for a nonstationary
process XðtÞ, which is often the case in brain signals, one
may still end up with self-similar stationary increments whose
statistical moments of all orders q > 0 have power-law beha-
vior characterized by a single-scaling exponent H ¼ HðqÞ (the
Hurst exponent): h Xðt þ τÞ � XðtÞj jqi ¼ cq τj jqH, where τ is the
time lag, and the average h�i is over the time window. The
values of the Hurst exponent vary between 0 and 1, with
higher values indicating a smoother trend, less volatility, and
less roughness. A value of H in the range 0.5–1 indicates a
time series with long-term positive autocorrelation; a value in
the range 0–0.5 indicates a time series with long-term switch-
ing between high and low values in adjacent pairs. There are
a variety of techniques that exist for estimating H from
physiological time series (He, 2011; Maxim et al., 2005), with
accuracy depending on the data properties (Rubin et al.,
2013). For example, in fMRI data, H was found to be
increased in the early regions involved in the neurodegen-
erative process of Alzheimer’s disease (Maxim et al., 2005).
For structured noise, the Hurst parameter can be computed
from the PSSI value β through the relationship H ¼
βj j � 1ð Þ=2 (Schaefer, Brach, Perera, & Ervin, 2014). For exam-

ple, H ¼ 0:5 for Brown noise (when β ¼ �2), and H ¼ 0 for
pink noise (when β ¼ �1). When HðqÞ is a nonlinear function
of q, the underlying process XðtÞ (associated with the mea-
sured fMRI time series) is multifractal (Ciuciu et al., 2012;
Wink et al., 2008).

1.1.3. Approximate entropy
ApEn was introduced in 1991 (Pincus, 1991) as an entropy
measure that can be applied computationally to biological
systems, with a successful handle on the noise and shortness
of biological data streams (Pincus, 2003; Pincus & Singer,
1996). A variety of early studies used ApEn to quantify
heart rate (Ryan, Goldberger, Pincus, Mietus, & Lipsitz, 1994)
and respiration variability (Engoren, 1998), endocrine activity
in dysregulatory conditions (Roelfsema, Pincus, & Veldhuis,
1998; Schmitz et al., 1997), to predict epileptic seizures from
EEG data (Radhakrishnan & Gangadhar, 1998), and to analyze
bipolar (Glenn et al., 2006; Pincus, 2006), depressive, and
schizophrenic courses (Paulus, Geyer, & Braff, 1996; Pezard
et al., 1996; Tschacher, Scheier, & Hashimoto, 1997) from
behavioral data. ApEn has reemerged in newer studies as a
physiologically and functionally meaningful measure for
studying brain functions (Wang, Yin, Childress, & Detre,
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2014), and in particular as a potentially sensitive method for
the complexity analysis of fMRI time courses (Sokunbi,
Cameron, Ahearn, Murray, and Staff, 2015).

In our case study, we used all three complexity methods.
For the purposes of this paper, we chose to illustrate here the
results obtained with PSSI, which were strongest, and addi-
tionally describe results for ApEn in Appendix A. This also
allows us to compare the single-subject results with our prior
statistical results (described below), and to reconcile the con-
clusions with our theoretical modeling work, in which we have
also used the same PSSI to measure complexity of our simu-
lated solutions. As a proof of principle, we illustrate that the
method that we have used in our previous work in conjunc-
tion with statistics on identical or similar datasets can be
applied as single-subject analyses to obtain individually cus-
tomized results (brain-profiling), which confirm or can even
explain the statistics.

1.2. PSSI and prior results

Prior work leading to this study involved two fMRI datasets [S1,
previously described in Tolkunov et al. (2010), and S2, previously
described in Carlson, Greenberg, Rubin, and Mujica-Parodi
(2011)]. These two sets included overall 96 individuals, ranging
emotionally from extremely reactive to extremely nonreactive.
The average-to-reactive range (n = 65) was identified using
clinical questionnaires (study S1), while the average-to-nonreac-
tive range (n = 31) was identified using cortisol response in
anticipation of a first-time skydive (study S2). These two datasets
were used in our previous work (Carlson et al., 2011; Tolkunov
et al., 2010) to study the circuit response efficiency, using power-
spectral scale invariance (PSSI) of brain signals.

For all PSSI analyses (for both S1 and S2), we used mini-
mally preprocessed fMRI BOLD time series, which included all
conditions. Using methods previously optimized for fMRI
(Rubin et al., 2013), we calculated for each voxel the power-
spectral density as the squares of the Fourier transformation
amplitudes of the linearly detrended time series. We first
verified that our power spectra indeed obey a power law, by
fitting several common candidate distributions to sample
spectra of our longest time series. From the power-spectral
density, we computed the scaling parameter β by plotting the
power spectrum on a log–log scale and estimating the slope
by applying a linear fit to the data in a frequency range
chosen to avoid confounds due to either task design or phy-
siological variables such as heart rate or respiration.

Individuals who were in the middle range of the spectrum
had β values in the pink noise range, for both the amygdala
(excitatory) and prefrontal (inhibitory) areas. Individuals who
were more fearful showed limbic β values closer to 0, localized
to the amygdala. Individuals who were more fearless also
showed limbic β values closer to 0 but localized to the pre-
frontal cortex. These results fall within the general interpreta-
tion of complexity in terms of brain efficiency: β,0 in the
amygdala represents an efficient excitatory drive, which
explains the higher sensitivity to fear stimuli in this subject
group; β,0 in prefrontal areas represents increased efficiency
in inhibitory regulation and may explain the increased resili-
ence to fear stimuli.

In our modeling work (Rădulescu, 2014), we suggested a
testable framework for interpreting and unifying these results
in terms of prefrontal-limbic regulation, and emotional control
efficiency. In this study, we aim to verify if these results hold
qualitatively at a single-subject level, and whether single-sub-
ject analyses within the subject groups may provide more
complete explanations or may reveal additional trends which
escaped the general statistics.

2 Methods

2.1. Subjects

2.1.1. Dataset
In order to provide a consistent and informative comparison of
single-subject versus statistical approaches, we focused on the
dataset obtained through S2. This study was approved by the
institutional review board at Stony Brook University; all sub-
jects provided written informed consent. Twenty-three healthy
adults between the ages of 18 and 48 participated in one of
the two versions of the study (the differences between the
two versions being of imaging task design). A lengthy phone
screening, as well as the scheduled clinical interview for DSM-
IV, was administered to rule out subjects with current or prior
psychiatric illness. All subjects received a history questionnaire
and a physical exam; subjects were excluded if they had a
history of drug abuse, traumatic brain injury, cardiovascular
illness (including high blood pressure), regular nicotine use, or
any MRI exclusion criteria, including metal in the body, claus-
trophobia, or pregnancy/lactation. Trait anxiety scores ranged
from 20 to 53.

2.1.2. Case studies
As the first of our case study pairs, we chose specifically two
subjects in S2 which were tested as part of an original study for
the Discovery Channel for their popular science television series
Curiosity. The show aimed to illustrate how functional neuroima-
ging might one day be used for neurodiagnostics, by taking two
subjects with known differences in stress reactivity (based upon
their professions), and then determining if fMRI was able to
identify differences. One of the subjects, D, was a biology Ph.D.
(average stress reactivity); the other, T, was an explosive ordi-
nance disposal technician working in support of US Navy SEAL
missions [with exceptional nonreactivity to stress and sensation-
seeking behavior (Mujica-Parodi et al., 2014)]. The second case
study pair was chosen randomly from S2 so that one of the two
subjects (subject X) belonged to the high reactivity range, and
the other one (subject Y) to the low reactivity range.

2.2. Imaging design

The fMRI task, a block design using countdowns to imminent
aversive or benign noise, has previously been described (Carlson
et al., 2011) and is summarized briefly in Section 2.4. Subjects were
scanned on a 3-T Siemens Trio MRI scanner at the Stony Brook
University SCAN Center using a 12-channel SENSE parallel head
coil. Data were acquired using 232 T2*-weighted echo planar
single-shot images covering the whole brain (oblique coronal)
with the following parameters: TR = 2500 ms, SENSE factor = 2,
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TE = 22 ms, flip angle = 83°, matrix dimensions = 96 × 96,
FOV = 224 × 224 mm, slices = 36, slice thickness = 3.5 mm,
gap = 0. The anatomical data were used to generate a customized
echo planar imaging (EPI) template to normalize our EPI scans to
the standard frame of reference. The fMRI data analyses were
performed using the Statistical Parametric Mapping software
(SPM8; http://www.fil.ion.ucl.ac.uk/spm), using MATLAB 2010a.
Standard preprocessing procedures were performed, including
image realignment corrections for head movements, slice timing
corrections for acquisition order, normalization-to-standard
2 × 2 × 2 mm Montreal Neurological Institute space, and spatial
smoothing with a 6-mm full width at half maximum Gaussian
kernel.

2.3. Stimuli and equipment

The auditory anticipation task included both auditory events
and visual cues. All visual stimuli were presented using a
mirror attached to the head coil, which reflected onto a screen
positioned behind participants while they lay in the scanner.
Visual stimuli were presented on the screen using an MRI-
compatible 60-Hz projector with a 1024 × 768 resolution.
Auditory stimuli were presented through SereneSound
(Resonance Technology Inc., Northridge, CA, USA) 30-dB exter-
nal noise attenuating MRI-compatible headphones. Auditory
and visual stimuli were presented and the task was programed
with E-Prime 1.2 (Psychology Software Tools, Pittsburg, PA,
USA). Initiation of the experiment was triggered by the first
radiofrequency pulse of the EPI sequence.

2.4. Experimental procedure

The auditory anticipation task consisted of 20 trials/blocks of
anticipation: 10 aversive and 10 neutral. Each trial began with

a white fixation cue presented in the center of a black screen
(jittered 4000–8000 ms). The fixation cue was immediately
followed by a red X or a blue O for 1000 ms. Participants
were informed that the red X indicated that they would hear
a loud 100-dB) burst of white noise (aversive event), while the
blue O indicated that they would hear a soft (55-dB) presenta-
tion of the same white noise (neutral event). Preceding the
presentation of aversive and neutral events was a 16-s period
(block) of anticipation. During this block of anticipation, a
countdown from 16 to 1 (16 s; red text for aversive and blue
for neutral) was numerically presented in the center of the
screen. Aversive and neutral auditory events immediately fol-
lowed this period of anticipation and were 1000 ms in dura-
tion. After the presentation of the aversive or neutral event, a
screen appeared which asked participants to rate their level of
anxiety during the countdown on a 4-point scale (from
1 = “not anxious” to 4 = “very anxious”).

2.5. Modeling methods

For the first part of the study, we focused on the subject pair
from the Discovery dataset (subjects which we will call D and
T). This particular pair of individuals was chosen for our study
because they were recruited and tested precisely for the pur-
pose of carrying out a single-subject analysis. While they
underwent the same series of tests as the larger group S2,
these two subjects were specifically chosen in order to illus-
trate (for a popular science television show) the effectiveness
of using imaging methods to distinguish between two indivi-
duals with markedly different levels of resilience to stress. We
performed a single-subject analysis as well as a comparison
between the two, using a variety of methods and measures, as
described below.

Figure 1. Average time series, for subject D (left) and for subject T (right). We illustrate the whole (232 data points, all conditions included), average detrended time
series for the left and right amygdala (light colored curves – orange and pink, respectively) compared to those for the left and right Brodmann Area 45 (top panels,
dark color curves – blue and black, respectively) and of the left and right Brodmann Area 9 (bottom panels, blue and black). [To view this figure in color, please see
the online version of this journal.]

124 A. R. RĂDULESCU AND E. R. HANNON

http://www.fil.ion.ucl.ac.uk/spm


2.5.1. General linear model
We performed a traditional single-subject activation analy-
sis, as per the general linear model (GLM) provided by the
Statistical Parametric Mapping software, with familywise
error (FWE) corrected p < 0:01, and contiguous volume
threshold V ¼ 64 voxels (equivalent with the volume of a
cube of side 4 voxels). For both subjects, we analyzed the
contrasts Anxious > Rest, Rest > Anxious, Neutral > Rest,
and Rest > Neutral.

2.5.2. Hypothesis-driven, region of interest analysis
We (Rădulescu, 2014; Rădulescu & Mujica-Parodi, 2008) and
others (Banks, Eddy, Angstadt, Nathan, & Phan, 2007; Sotres-
Bayon, Bush, & LeDoux, 2004) have shown that the amyg-
dala and prefrontal regions form a negative feedback loop
that regulates emotional arousal. Taking this as a starting
point for our case studies, we investigated interactions
between the amygdala and Brodmann Areas 9 and 45,
which we have found in our prior work to reflect efficiency
of the individual’s emotional responses to stressors (Mujica-
Parodi et al., 2009; Rădulescu & Mujica-Parodi, 2008). In fact,
gross inspection of the region of interest (ROI) average time
series for our case studies in these regions (Figure 1) sug-
gested markedly different temporal evolutions between the
two subjects, with a dominant amygdala in subject D, and a
dominant prefrontal response in subject T. We investigated
this further using a cross-correlation analysis for six bilateral
regions of interest: amygdala, inferior frontal gyrus
(Brodmann Area 45), dorsolateral prefrontal cortex
(Brodmann Area 9), hippocampus, anterior cingulate, and
insula. We chose this subnetwork of regions based on their
known involvement in emotional regulation (Etkin, Egner, &
Kalisch, 2011; Goldin, McRae, Ramel, & Gross, 2008; Ochsner
et al., 2004; Phelps, 2004; Phelps & LeDoux, 2005), as well as
on our prior group analyses (Mujica-Parodi et al., 2014),
suggesting these regions as relevant to emotional proces-
sing of stressful stimuli.

One way to approach this 12-dimensional network more
comprehensively than by studying its combinations of node
pairs is to check if it naturally favors a low-dimensional
principal component (PC) subspace. The location and contri-
bution of these PCs can provide better information and
additional understanding of the temporal evolution of the
system as a whole. To this end, we used a PC analysis to
search for the regions within our model network that had the
highest contribution to the network dynamics for each
individual.

2.5.3. Exploratory analyses
Stepping away from any a priori assumptions, we performed
exploratory searches for locations with specific dynamic
properties related to amplitude, frequency band and signal
regularity, properties that typically suggest involvement of
the corresponding brain areas in emotional processing. As
per our previous work (Rădulescu et al., 2012; Tolkunov
et al., 2010) we calculated, for both subjects, the discrete
power spectrum of each voxel-wise time series, using the
discrete fast Fourier transform (fft). We performed a best

linear fit to the log–log spectra. We found the spectrum
(calculated with both fft and Welch methods) to have
close to linear behavior within a band width of 0.025–
0.2 Hz (the upper limit is the highest frequency permitted
by our temporal sampling resolution, and the lower limit
was chosen to insure the goodness of the linear fit). We
computed the value of the PSSI slope β corresponding to
the respective voxel. Since the results were comparable
between the two methods of estimating PSSI (see
Appendix B), we work henceforth with the β brain maps
obtained with the fft method.

We then used thresholding to search for (1) active voxel
clusters within the brain in which β was unusually high or
unusually low (compared to the optimal value β ¼ �1) for
either one of the two subjects and (2) regions in which the β
values differed substantially between the two subjects. This
combination allowed both a direct comparison, and an
implicit comparison of the results obtained independently
for each of the two subjects. Once these voxel clusters were
established, we further analyzed their overall dynamics by
calculating the cluster-wise mean PSSI and illustrating the
corresponding Pointcaré maps. In order to test the hypoth-
esis that these clusters are in fact part of a functional net-
work activated during the fMRI task, we computed to what
degree these clusters’ activity was more strongly cross-cor-
related among themselves than with other parts of the
brain.

For the second part of the study, we used PSSI to perform a
statistical analysis on S2. Our aim was to illustrate how using
methods that quantify brain dynamics at the single-subject
level can complement the more traditional statistical tests.
This may happen (1) by supporting and refining the broader
statistical results and (2) by finding additional patterns over-
looked by the statistics, hence revealing a bigger picture and
clearer connections, and providing a more complete descrip-
tion of the individual’s stress-resilience profile. In order to
statistically compare low and high-reactivity individuals, we
isolated two subgroups within S2, based on their trait anxiety
scores: the low-anxiety group (N ¼ 10, TA 2 ½20; 30�) and the
high-anxiety group (N ¼ 10, TA 2 ½35; 53�). We chose to dis-
card the subjects with intermediate scores (TA 2 ½31; 34�), so
as to obtain a clearer separation between the two emotional
subtypes, without compromising statistical power. For each of
these subjects, we calculated the voxel-wise PSSI values. We
then performed a Wilcoxon rank sum statistical test on the β
values between the two groups, retaining only the voxel
clusters with significant p value and with volume above a
specific threshold.

Our final goal is to use these results as a proof of principle
for the effectiveness of single-subject analyses. However, a
generalization of our results may be difficult to claim at this
stage, especially since our first subject pair was carefully picked
a priori for the study, based on their behavioral traits, so as to
maximize the potential for between-subject differences in brain
dynamics. In the third part of the study, we took the first steps
toward validating the methods in a more general setting, by
retesting these methods on an additional subject pair. In con-
trast with the first pair ðD; TÞ, the second pair ðX; YÞ is randomly
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chosen from the low and high-reactivity subgroups of S2. For
this new pair, we verify the consistency of our initial
conclusions.

3. Results

3.1. First subject pair

3.1.1. GLM
The activation clusters found by the GLM analysis are shown
for both subjects in Table 1. In both cases, the Task > Rest
contrasts revealed primary visual (occipital) activation regions,

while for Rest > Task, we found large clusters in the bilateral
lingual and calcarine cortices, and, in D’s case, in the
precuneus.

3.1.2. Amygdala–prefrontal dynamics
We computed the cross correlation functions between the
amydgala and the two prefrontal areas of our network (BA45
and BA9), shown in Figure 2. Since (as illustrated in Figure 1)
the left and right ROI time series were very similar, we show
here, for simplicity, the cross correlations using average bilat-
eral time series for our regions (i.e., obtained by averaging the
time series for the left and right hemisphere components of
each individual region); the same functions calculated sepa-
rately (for ispilateral and contralateral time-series pairs) look
very similar. Observing the small positive and negative lags
may help us identify potential differences in HRF latencies in
these regions between subjects or even understand the
effects of causal connections between the two coupled
regions. We noticed different trends in the two subjects. For
example, while both D and T exhibit positive
amygdala! BA45 correlations for small (2.1 s) lags, the con-
verse BA45 ! amygdala correlations are positive for D and
negative for T for small (2.1 s) lags.

The amygdala and prefrontal cortex form excitatory and
inhibitory components, respectively, of the negative feedback
loop that regulates emotion. Therefore, increased amygdala
activation subsequent to perception of stressful stimuli
induces an overall excitatory effect on prefrontal regions,
which in turn inhibit amygdala, contributing to fear extinction.

Table 1. Contiguous activation clusters identified by the single-subject GLM
analysis (FWE corrected p < 0:01, volume V > 64 voxels), for Anxious > Rest
(A > R), Rest > Anxious (R > A), Neutral > Rest (N > R), and Rest > Neutral
(R > N) contrasts.

Contrast Tal coordinates Anatomical region Volume (in voxels)

Subject D

A > R [−27 −90 15] Occipital Mid L, Calcarine L 396
[34 −93 8] Occipital Mid/Inf. R 246

R > A [−10 −78 −6] Lingual L, Calcarine L 217
N > R [−26 −91 15] Occipital Mid L 79
R > N [12 −71 7] Lingual L, Calcarine L 827

Lingual R, Calcarine R
Precuneus R

Subject T

R > A [4 −93 6] Lingual L, Calcarine L 604
Lingual R, Calcarine R

R > N [−6 −65 12] Lingual L, Calcarine L 682
Lingual R, Calcarine R

Figure 2. Cross correlation functions between amygdala and Brodmann Area 45 (top) and amygdala and Brodmann Area 9 (bottom), for subject D (left, in blue), and
for T (right, in pink). The lag (unit along the x-axis) is 2.1 s. For positive lags, the values can be interpreted as amygdala! BA45 and amygdala! BA9 cross
correlations, while for negative lags, the values represent BA45! amygdala and BA9! amygdala cross correlations. [To view this figure in color, please see the
online version of this journal.]
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The general belief has been that this prefrontal inhibition is
implemented via excitatory PFC projections to GABA-ergic
interneurons in the basolateral amygdala (BLA), which in turn
massively inhibit other amygdala cells, leading to fear extinc-
tion. Newer studies suggest a more complex circuit such that
the feedback arm of this regulatory loop is in fact composed
of a few different pathways, with potentially opposite effects.
For example, Likhtik, Pelletier, Paz, and Denis (2005) show that
the overall excitatory effect of the prefrontal cortex on the
amygdala is based on its activation of both pyramidal cells
and interneurons in the BLA, possibly with different time
scales. Moreover, the receptivity of the basolateral cells to
prefrontal inhibition seems to depend on the strength of the
amygdala to prefrontal feedforward projections. A different
balance between the magnitude and timing of these effects
may reflect in our directional cross-correlation results.

3.1.3. PC analysis
We performed a PC analysis, identifying the principal direc-
tions (eigenvectors) of the 12-dimensional phase space for
each subject, and the spread (eigenvalue, or loading) in each
of these directions. In our previous work, we have used this
technique in combination with group statistical tools, to dif-
ferentiate, based on trajectory geometry, between a group of
schizophrenia patients and a group of healthy controls
(Rădulescu & Mujica-Parodi, 2009).

We found that the loading values decay quite rapidly for
both subjects so that only the leading PCs have a considerable
contribution to the shape of the 12-dimensional trajectory (see
Figure 3, and also Table 2). In the case of subject D, the first PC
is almost five times larger in magnitude than the second one,
suggesting that the contribution of the first PC is so strong in
D’s case that his trajectory is almost one-dimensional. In the
case of subject T, the discrepancy between the two leading
PCs is less dramatic, with the trajectory being almost comple-
tely contained in a two-dimensional plane.

We then located, in each case, the direction of the first PC,
which captures most of the dynamic variability in the system.
Table 3 shows the coefficients representing the contribution
of each of the 12 variables (ROIs) to the leading PC vector. In
D’s case, the contribution of the amygdala is predominant,

followed by the hippocampus and insula, while the prefrontal
regions have clearly weaker contributions. In T’s case, the
contribution of the ROIs is much more balanced, with a slight
predominance of the BA9 components. This reinforces the
idea of T possessing unusually strong prefrontal control of
the amygdala during an emotional task, while in D, the pre-
frontal control is less tight, allowing the normal arousal and
extinction course in response to a stressor.

3.1.4. Exploratory power-spectral scale invariance
For each of the two subjects, we explored the whole brain,
searching for voxels whose signals had a PSSI value β smaller
than the threshold τ ¼ �1:75. In other words, we searched for
the voxels with activity in the pink-brown noise range (show-
ing markedly more structured signals in comparison with the
rest of the active brain). Out of this subset of the brain, we
retained only the contiguous clusters larger than V = 27 voxels
(equivalent with the volume of a cube of side 3). The values of
these parameters were finely tuned to best capture the rele-
vant clusters, while trying to avoid possible random con-
founds. For each subject, we found four clusters with the
required properties, characterized in Table 4, and also illu-
strated in Figure 4 for D, and in Figure 5 for T.

Figure 3. Loadings (eigenvalues) corresponding to the 12 principal components,
for subject D (in dark blue) and for subject T (in light pink). The loading values
decay very fast, suggesting that the 12-dimensional dynamics is in fact
embedded in a lower dimensional subspace. [To view this figure in color, please
see the online version of this journal.]

Table 2. Principal component characterization for subjects D and T.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

Loadings D 102.4 20.9 13.0 7.3 5.6 3.7 3.2 2.4 1.8 1.1 0.7 0.5
T 72.8 38.9 10.8 6.9 5.1 4.0 3.5 1.9 1.6 0.7 0.6 0.5

PC1–PC12 stand for the principal components of the system, arranged in the decreasing order of the eigenvalue magnitudes (loadings).In both cases, only the first
PCs contribute significantly to the variability in the system, with a more pronounced relative spread in the direction of the first component in D’s case (see also
Figure 3).

Table 3. Principal component characterization for subjects D and T, in a network in which the variables are temporal activations in the right and left amygdala (RA
and LA), right and left anterior cingulate cortex (LAC and RAC), right and left Brodmann Area 45 (RBA45 and LBA45), right and left Brodmann Area 9 (RBA9 and
LBA9), left and right hippocampus (RH and LH), right insula and left insula (RI and LI).

RA LA RAC LAC RBA45 LBA45 RBA9 LBA9 RH LH RI LI

PC1 D 0.43 0.73 0.06 0.07 0.09 0.09 0.02 0.05 0.25 0.35 0.14 0.18
Coeff. T 0.25 0.22 0.39 0.42 0.28 0.28 0.38 0.36 0.15 0.14 0.18 0.15

The coefficients of the first principal component emphasize the different ROI contributions to the network dynamics in each case. For D, the predominant
contributions are from the amygdala, hippocampus and insula, with comparatively minimal contributions from prefrontal regions and anterior cingulate. For T, the
contributions are more uniform among all regions, with a slight dominance of prefrontal regions.
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While some clusters were different between the two sub-
jects, the analysis also revealed two clusters situated for both D
and T within the precuneus, and respectively in the superior
parietal/angular cortex. One possible explanation may be that
these clusters belong to a basic network that activates regard-
less of the emotional profile of the subject. A good candidate is
the default mode network, which is known to include both
precuneus and parietal regions, tightly linked with each other.
In order to support the hypothesis of these clusters being
specifically networked together, we computed, for each subject,

the average cross correlation coefficient, over all voxel pairs, for
all pairs of clusters, and compared them with the average cross
correlations of these clusters with the whole brain (all shown in
Tables 5 and 6). The values show strongly pairwise-correlated
signals within our cluster “network,” with p-values a few orders
of magnitude smaller than the whole brain p-values, with the
exception of Cluster 2 for T (Lingual), which is not as tightly
correlated with Cluster 1 (cerebellum) and 4 (parietal).

We wanted to better understand and illustrate the differ-
ences between our two cases. For example, the two subjects’
regulatory networks could be tuned to different baselines so
that regions of relative low efficiency within one subject may in
fact correspond to a much higher relative efficiency in the other
subject. We performed a direct comparison and searched spe-
cifically for the voxels with the most pronounced differences in
β values between the two subjects (representing regions func-
tioning at different efficiency levels in the two subjects, in
response to identical conditions). We then compared these
differences with the statistical differences found between the
two subject groups to which D and T belonged, respectively.

More precisely, we looked for voxels for which the subject
difference in β was larger in absolute value than τ ¼ 1:5 and
imposed a cluster volume threshold of V > 43 contiguous
voxels. We found seven clusters, labeled and described in
Table 7: two cerebellar clusters with a positive βD � βT differ-
ence (i.e., β values for D were closer to white noise than those
for T), and five clusters with a negative βD � βT difference (i.e.,
β values for T were closer to white noise); of these five clusters,
four were situated in the superior frontal gyrus and dorsolat-
eral prefrontal cortex (Brodmann Areas 6, 8, 9, 10, and 46), and
one in a parietal region (in Brodmann Area 7).

3.2. Statistical results

We compared the voxel-wise PSSI between the low and high-
reactivity groups and retained only the voxels with signifi-
cantly different (p<0:01) values of β, additionally imposing a
cluster volume threshold of V>33. We found two voxel clus-
ters: the first, V ¼ 43 voxels large, situated in the right frontal
inferior orbital region and the second, V ¼ 44 voxels large,
situated in the right frontal superior region (Brodmann Area
10), as shown in Figure 8(a,b). An illustration of the distribu-
tion of β values within the first cluster is shown in Figure 8(c),
with the values in the high-reactivity group closer to white
noise than those in the low-reactivity group.

Table 4. Contiguous clusters larger than V ¼ 33, whose voxels were identified
to have β <� 1:75, for subject D (top) and for subject T (bottom).

Tal coordinates Anatomical region Volume (in voxels)

Subject D

Cluster 1 [2 −89 1] Calcarine L 44
Cluster 2 [−12 −75 7] Calcarine R 93
Cluster 3 [−8 −72 46] Precuneus L, R 235
Cluster 4 [44 −56 51] Parietal Inf., Sup, Angular L 248

Subject T

Cluster 1 [−42 −54 52] Cerebelum R 36
Cluster 2 [6 −67 11] Lingual L 72
Cluster 3 [−2 −66 46] Precuneus L 57
Cluster 4 [−42 −54 52] Parietal Sup, Angular R 41

The exploration not only found clusters in precuneus and parietal/angular
cortex for both subjects but also two additional clusters in each case, situated
in different regions for D and T.

Figure 4. Subject D: illustration of contiguous voxel clusters of volume V>33,
with voxel-wise β<� 1:75, as described in Table 4. (a) Coronal and axial view of
Cluster 1 (calcarine). (b) Coronal view of Clusters 2, 3, and 4 (calcarine, pre-
cuneus, and parietal); axial view of Cluster 2 (calcarine).

Figure 5. Subject T: illustration of contiguous voxel clusters of volume V>33 with voxel-wise β<� 1:75, as described in Table 4. Coronal view of all Clusters 1, 2, 3,
and 4; sagittal view of Cluster 4 (parietal); axial view of Cluster 3 (precuneus).
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Figure 6. Description of Cluster 4 (left frontal superior medial). (a) Time series for all voxels in Cluster 4, for D (in dark blue) and for T (in light pink);
cluster-wise average time series are shown in cyan (for D) and dark red (for T). (b) Cluster-wise PSSI β, calculated from the power spectrum density of the
average cluster time series, shown in blue for D, and in pink for T. (c) Distribution of β values within the cluster voxels. The values for D are in the pink
noise range (more structured), while those for T are within the white noise range (more chaotic). (d) Poincaré scatter plots, illustrating the variability
differences between the cluster average signals of the two subjects: the principal directions are comparable between D and T, but the principal
component ratio is larger for D (blue) than for T (red), suggesting a stronger preference/variability of D in the direction of its first PC. [To view this
figure in color, please see the online version of this journal.]

Figure 7. Description of Cluster 2 (left cerebellum). (a) Time series for all voxels in Cluster 2, for D (in dark blue) and for T (in light pink); cluster-wise
average time series are shown in cyan (for D) and dark red (for T). (b) Cluster-wise PSSI β, calculated from the power spectrum density of the average
cluster time series, shown in blue for D, and in red for T. (c) Distribution of β values within the cluster voxels. The values for D are in the white noise
range (more chaotic), while those for T are within the pink noise range (higher efficiency), which is the opposite scenario than that encountered in Cluster
4. (d) Poincaré scatter plots, illustrating the variability differences between the cluster average signals of the two subjects: the first principal component of
D is pointing in the direction of the second diagonal, perpendicular on that of T, suggesting larger jumps between consecutive points (higher variability).
[To view this figure in color, please see the online version of this journal.]
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3.3. Second subject pair

We chose randomly two other individuals from our subject
pool S2, with the only restriction based on their psycho-phy-
siological measures: the first subject (which will be referred to

as subject X) had a high trait anxiety score (TA ¼ 47) and high
average cortisol over the duration of the test (Cor ¼ 23:97),
suggesting high stress reactivity; the second (referred to as
subject Y) had low trait anxiety (TA ¼ 28) and a cortisol aver-
age reading almost 10 times lower (Cor ¼ 2:53), suggesting
low stress reactivity. For subjects X and Y, we performed the
same analyses as for the original pair D and T.

The ROI-based PC analysis confirmed only the leading prin-
cipal directions to be relevant to the time evolution, the
loadings decaying very fast in the 12-dimensional space (see
Table 8). The coefficients of the leading PC were found to be
higher for left amygdala in the more stress reactive subject X,
and generally higher for the anterior cingulate, prefrontal, and
hippocampal regions for the less reactive subject Y (see
Table 9). The values for Y are not as extreme as in the parti-
cularly stress nonreactive T, but the trend is clearly consistent
with our first results.

We continued with the exploratory analysis, by searching
in each subject for the clusters larger than V ¼ 33 contiguous
voxels with PSSI lower than β ¼ �1:75. The results, shown in
Table 10, confirm the involvement of visual regions in this
primary auditory task (see Section 4), as well as the contribu-
tions from the precuneus and the parietal regions (which
were detected by our analysis in both subjects X and Y). As
before, for each subject, the average correlations between
the time series within any pair of these clusters were found
to be much higher than the average correlations of the
clusters with the rest of the brain; the correlations between

Table 5. Subject D: Strength of cross correlation for each cluster pair, and
between each cluster and the rest of the brain.

Subject D

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Correlations between clusters: R values

Cluster 1 0.85 0.73 0.65 0.37
Cluster 2 0.73 0.93 0.74 0.44
Cluster 3 0.65 0.74 0.82 0.52
Cluster 4 0.37 0.44 0.52 0.84

Correlations between clusters: p values

Cluster 1 2:6� 10�22 3:9� 10�14 3:7� 10�11 10�4

Cluster 2 3:9� 10�14 6:4� 10�51 1:5� 10�16 2� 10�4

Cluster 3 3:7� 10�11 1:5� 10�16 2:3� 10�14 6:7� 10�5

Cluster 4 10�4 2� 10�4 6:7� 10�5 6� 10�16

Whole brain correlation values

R values 0.25 0.36 0.29 0.23
p Values 0.09 0.07 0.08 0.1

Top: Average R values, computed for each cluster pair over all pairs of time
series. Middle: Average pairwise p values. Bottom: Average R and p values,
computed by pairing the cluster average time series with the time series
corresponding to all other voxels in the active brain.

Table 6. Subject T: Strength of cross correlation for each cluster pair, and
between each cluster and the rest of the brain.

Subject T

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Correlations between clusters: R values

Cluster 1 0.81 0.25 0.56 0.55
Cluster 2 0.25 0.90 0.46 0.19
Cluster 3 0.56 0.46 0.85 0.61
Cluster 4 0.55 0.19 0.61 0.83

Correlations between clusters: p values

Cluster 1 4:3� 10�15 0:01 9:7� 10�9 1:8� 10�6

Cluster 2 0:01 10�39 1:8� 10�4 0:08
Cluster 3 9:7� 10�9 1:8� 10�4 7� 10�22 3:1� 10�7

Cluster 4 1:8� 10�6 0:08 3:1� 10�7 10�13

Whole brain correlation values

Cluster 1 Cluster 2 Cluster 3 Cluster 4

R values 0.34 0.37 0.26 0.39
p Values 0.07 0.06 0.09 0.06

Top: Average R values, computed for each cluster pair over all pairs of time
series. Middle: Average pairwise p values. Bottom: Average R and p values,
computed by pairing the cluster average time series with the time series
corresponding to all other voxels in the active brain.

Table 7. Clusters of largest differential PSSI, found via an exploratory search for
contiguous volumes larger than V ¼ 43 voxels, were β differs in absolute value
by more than the threshold τ ¼ 1:5 between D and T.

Clusters with largest differential β (D–T)

Anatomical region
Brodmann

Area Volume
Largest

difference

Cluster 1 Cerebellum Crus1 L 153 2.19
Cluster 2 Cerebellum 4, 5 L 89 2.52
Cluster 3 Frontal Sup R BA10 75 −2.06
Cluster 4 Frontal Sup Med L BA10, BA46 136 −2.55
Cluster 5 Frontal Sup Med LR BA8,BA9 123 −2.18
Cluster 6 Parietal Inf., Angular L 205 −2.34
Cluster 7 Frontal Mid, Precentral L BA6 76 −2.22

The list includes two cerebellar regions where the D’s signals were closer to
white noise, while T’s signals were in the brown noise range, as well as frontal
and parietal regions with the opposite pattern. More detail for two represen-
tative clusters is illustrated in Figures 6 and 7.

Table 8. Principal component characterization for subjects X and Y.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

Loadings X 51.4 30.8 11.9 7.9 6.6 5.0 3.1 2.1 2.1 1.1 0.9 0.6
Y 54.7 14.3 7.7 6.1 5.0 4.0 2.9 2.4 1.6 0.8 0.6 0.5

PC1–PC12 stand for the principal components of the system, arranged in the decreasing order of the eigenvalue magnitudes (loadings). In both cases, only the first
PCs contribute significantly to the variability in the system (compare with Table 2).

Table 9. Principal component characterization for subjects X and Y, in a network in which the variables are temporal activations in the right and left amygdala (RA
and LA), right and left anterior cingulate cortex (LAC and RAC), right and left Brodmann Area 45 (RBA45 and LBA45), right and left Brodmann Area 9 (RBA9 and
LBA9), left and right hippocampus (RH and LH), right insula and left insula (RI and LI).

RA LA RAC LAC RBA45 LBA45 RBA9 LBA9 RH LH RI LI

PC1 X 0.36 0.73 0.02 0.00 0.11 0.30 0.17 0.11 0.17 0.29 0.14 0.18
Coeff. Y 0.37 0.21 0.30 0.32 0.24 0.30 0.31 0.34 0.23 0.21 0.24 0.28

The coefficients of the first principal component emphasize the different ROI contributions to the network dynamics in each case (compare with Table 3).
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the precuneus and the parietal clusters were particularly
strong. For example, in subject X, Clusters 3 and 4 are corre-
lated with p,10�11, Clusters 4 and 5 with p,10�6, while
Cluster 5 is not overall correlated with the rest of the
brain (p ¼ 0:88).

When comparing the two subjects directly (searching for
clusters of size V > 64 voxels in which PSSI slopes differ
between subjects by more than 1.5 in absolute value), we
found a collection of 14 clusters, situated in the cerebellum,
occipital, calcarine, temporal, precuneus, parietal, and frontal
regions. Within the frontal cluster, the differences between the
PSSI values for X and the corresponding ones for Y were found
to be negative. This is consistent with our previous findings,
with frontal slopes closer to white noise in the case of the less
reactive subject Y and in the pink noise range for the more
reactive subject X.

4. Discussion

In this study, we applied complexity measures of fMRI time
series to case studies, in order to identify differences in func-
tional efficiency at the single-subject level. Our results gen-
erally supported those obtained using more conventional
techniques, such as the GLM, and statistical analyses of a
larger subject group including two of the case studies. The
complexity measures were, however, more sensitive in discri-
minating between subjects and identified additional patterns
overlooked by the statistical tests. This suggests the value of
complexity techniques when using imaging-derived quanti-
tative measures for neurodiagnostic (single-subject level)
applications.

It is interesting that both GLM and PSSI analyses identified
areas with known function in visual processing (Allen, Buxton,
Wong, & Courchesne, 1997; Macaluso, Frith, & Driver, 2000;
Rockland & Ojima, 2003), although the task was primarily
auditory. However, while the GLM in and of itself revealed
activation in occipital, calcarine, and lingual cortices, it was
the power-spectral analysis that may put these results in
perspective, further relating functional efficiency in these
areas to efficiency in frontal and parietal regions. This is
important, since studies that have identified increased activity
in the visual cortex in the absence of visual stimulation
(Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999)
had interpreted it as a top-down bias of neural signals in
favor of the attended location, derived from a fronto-parietal
network (which showed an even stronger signal increase
during the auditory expectation than did visual areas).

While the calcarine sulcus has a more primary visual func-
tion (Rockland & Ojima, 2003), lingual areas seem to play a
different role in vision, having been related to processing of
complex images and written language (Price, 2000), encod-
ing of visual memories and daydreaming (Dresler et al., 2014;
Hölzel et al., 2007). Involvement of lingual areas suggests a
higher level of cognitive processing during the anticipation

Figure 8. Clusters of significantly different PSSI between high and low reactivity groups (p < 0:01) found via an exploratory search for contiguous volumes
larger than V ¼ 33 voxels. Coronal and axial view of: (a) Cluster 1, V ¼ 43, right frontal inferior orbital and (b) Cluster 2, V ¼ 44, right frontal superior. (c)
Distribution of group average β values within the Cluster 1 voxels, shown together with error bars. (d) Distribution of group average β values within the
Cluster 2 voxels, shown together with error bars. The values for the low-reactivity group (in blue) are in the white noise range (more chaotic), while those
for the high-reactivity group (in pink) are within the pink noise range (higher efficiency), which is the scenario supported by our existing ROI results, as
well as by our current case study. [To view this figure in color, please see the online version of this journal.]

Table 10. Contiguous clusters larger than V ¼ 33, whose voxels were identified
to have β <� 1:75, for subject X (top) and for subject Y (bottom).

Tal coordinates Anatomical region
Volume

(in voxels)

Subject X

Cluster 1 [16 −74 −6] Cerebelum L 62
Cluster 2 [2 −91 16] Calcarine L 163
Cluster 3 [−2 −67 51] Precuneus L, R, Parietal

Sup L
554

Cluster 4 [−4 −49 60] Precuneus R 40
Cluster 5 [−34 −18 65] Precentral R 30

Subject Y

Cluster 1 [38 −71 −12] Cerebelum L 28
Cluster 2 [20 −99 5] Occipital, Calcarine L 75
Cluster 3 [−4 −85 12] Calcarine R 50
Cluster 4 [38 −79 11] Occipital Mid L 222
Cluster 5 [2 −82 23] Cuneus L 54
Cluster 6 [−26 −84 23] Occipital Mid R 58
Cluster 7 [48 −48 50] Parietal Inf., Angular R 177
Cluster 8 [10 −67 57] Precuneus L 38

The exploration not only found clusters in precuneus and parietal/angular
cortex for both subjects but also additional clusters, situated in different
regions for X and Y.
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periods, which may relate to the subject’s ability to inhibit
emotional arousal.

Our prior group ROI analyses (Mujica-Parodi et al., 2014),
further centralized and interpreted in our modeling work
(Rădulescu, 2014), revealed prefrontal signals closer to white
noise in more stress-nonreactive individuals as compared to
healthy controls. Our current exploratory statistics supports
these results: both significant clusters found by the statistical
comparison between the low and high-reactivity groups were
in frontal regions, with signals significantly closer to white
noise in the highly nonreactive individuals. The single-subject
results in frontal/prefrontal areas are in line with the statistics.
We found that T (the stress resilient subject in the first pair)
had flatter spectra than D in two of the clusters identified by
the analysis, situated in the frontal cortex. Notice the consis-
tency with Y, the stress resilient subject in the second pair,
also showing flatter spectra than X in the one frontal cluster
identified by the analysis of this pair. Hence, both case study
comparisons supported the statistical results, in that stress
resilience was associated with more chaotic (i.e., closer to
white noise) frontal/prefrontal time series. Recall that β,0 in
the prefrontal cortex can be interpreted as increased efficiency
of the inhibitory component of the fear response in nonreac-
tive subjects. Note that the other clusters (e.g., situated in the
cerebellum and parietal cortex) showed an opposite effect
(with D’s signals closer to white noise, and T’s signals in the
optimal pink noise range).

The single-subject analysis further suggested that, beyond
clear overlaps, the network recruited during the anticipation
task may be different and/or differently regulated between
two individuals. First, our PC decomposition found different
predominant directions in the subjects’ phase space, support-
ing the idea of a higher amygdala contribution to dynamics in
the case of D and X – leading to higher sensitivity to the
anticipation stimuli, and a stronger arousal response to stres-
sors – and a higher contribution from frontal regions (in the
case of T), as well as anterior cingulate and hippocampus
regions (in the case of Y) – leading to stronger inhibitory
control, and higher stress resilience.

The idea was supported by the PSSI voxel differences found
by our exploration, which identified networks of clusters with
both similarities and differences between the two subjects. For
example, clusters in the posterior (visual) and central (associa-
tive) precuneus and the superior parietal/angular cortex were
found to have signals close to brown noise in both subjects,
implying that these regions operate with high efficiency in
both subjects. The precuneus and the parietal cortex are both
well known as parts of the default mode network. The pre-
cuneus has been related to self-referential processing, imagery
and memory, and more recently to aversive conditioning
(Pizzagalli, Greischar, & Davidson, 2003). New hypotheses sug-
gest that these functional aspects can be explained on the
basis of the high centrality of the precuneus in the cortical
network. Olaf Sporns and Ed Bullmore have proposed that the
precuneus has a crucial role as a central and well connected
“small-world network” hub between parietal and prefrontal
regions (Bullmore & Sporns, 2009), which are interlinked by
specialized hub regions, ensuring that overall path lengths
across the network are short. Our current findings (very high

cross-correlation coefficients between the precuneus and par-
ietal clusters in both subjects) are in line with this theory.

In addition to these regions common to all subjects, we
also identified regions operating at significantly different
efficiency levels between the two individuals in each pair.
To fix our ideas, we will focus primarily on further inter-
preting the results for our first pair and only briefly discuss
and draw comparisons with the second pair. This can be
seen as an example of how this type of analysis may
provide subject-customized information on brain regula-
tion efficiency, as well as means of targeting the sources
of behavioral differences between two individuals.

For example, D showed additional involvement of calcarine
areas (tightly correlated with the precuneus and the parietal
clusters, as previously discussed), while for T our analysis
identified two clusters in the cerebellum and the lingual
gyrus. These differences were also identified by our analysis
within the second subject pair, although not as prominent as
for D–T. (This was to be expected, given the less dramatic
behavioral differences between X and Y.)

Our results are consistent with recent theories of the
involvement of cerebellar areas in higher cognitive proces-
sing and neural computation. The cerebellum has been long
thought to play its most important role in motor control
(Fine, Ionita, & Lohr et al., 2002; Houk, Buckingham, & Barto,
1996), but recent studies have found it to also be crucially
involved in cognitive functions such as attention and lan-
guage (Rapp, 2001), and in the regulation of fear and plea-
sure responses (Turner et al., 2007). It has been argued that
the function of the cerebellum is best understood in terms of
what neural computations it performs as a device for super-
vised learning (Doya, 2000). This may provide an explanation
for the fact that, in our case, subject T, with tighter emotional
control when anticipating aversive stimuli, was also the sub-
ject showing a more efficient regulation of cerebellar areas
recruited during the anticipation: when searching for direct
differences between D and T, we found two cerebellar clus-
ters with β values for T significantly smaller than those for D
(i.e., a cluster-average β,0 for D and β,� 2 for T).

The most important differences between subjects D and
T were those reported in prefrontal regions, where the β
values for T were close to white noise, while for D, they were
in the brown noise range (β,� 2). These results are signifi-
cant in a few ways. First, they suggest that the cerebellum
and the prefrontal cortex, while both being hypothesized to
contribute to emotional regulation, do so by different
mechanisms and with different effects [e.g., the cerebellum
is believed to perform supervised learning, while the cere-
bral cortex performs unsupervised learning (Doya, 2000)].

Second, the results in Brodmann Areas 9 and 10 agree very
well with our previous statistical results on emotional regula-
tion. In group analyses applied to a few of our datasets, we
have found the dorsolateral prefrontal cortex to be involved in
emotional regulation. Symptoms of general anxiety were
further correlated with decreased Brodmann Area 9 efficiency
in inhibiting arousal (Carlson et al., 2011; Tolkunov et al., 2010),
while symptoms of schizophrenia were associated with sub-
optimal responses in both Brodmann Areas 9 and 10
(Rădulescu & Mujica-Parodi, 2009, 2008).
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The most prominent differences in prefrontal efficiency
between the two subjects appeared, however, in
Brodmann Areas 6, 8, and 46, areas which had not pre-
viously identified by our group analyses, but which all
support the idea of exacerbated prefrontal control in the
stress resilient subject T during the anticipation task. The
superior frontal gyrus (Brodmann Area 6) is a known pre-
motor area (Chouinard & Paus, 2006), shown to activate “in
preparation for action” during tasks such as anticipation of
object properties (Schubotz & Yves Von Cramon, 2001) or
of reward (Ernst et al., 2004). Brodmann Area 8 is involved
in the management of uncertainty (Volz, Schubotz, &
Cramon, 2005). Differences found in the Brodmann Area
46 may suggest underlying differences in sustaining atten-
tion and working memory (Courtney, Petit, Maisog,
Ungerleider, & Haxby, 1998; Petrides, 2000), through the
involvement of the dorsolateral prefrontal cortex in judg-
ments about input relevance. Recent studies relating sti-
mulation of BA46 with efficient treatment of depression
(Fox, Buckner, White, Greicius, & Alvaro, 2012) have
strengthened the evidence of its ties with emotional reg-
ulation mechanisms (Siegle, Thompson, Carter, Steinhauer,
& Thase, 2007).

Overall, the results for our second subject pair showed
similar basic trends and differences between emotional
reactivity types as in the case of our original pair, with the
variability that one would naturally expect to find between
different individuals. Importantly, these clusters had failed
to be detected by the same measures when used in con-
junction with group statistics, although our current findings
are qualitatively replicable between single subjects. This
suggests once more the importance of using single-subject
methods to support traditional statistical analyses when
interpreting imaging data for clinical decisions on specific
individuals.

A limitation of this study is that it illustrates scale-free
properties of brain signals in a univariate, rather than multi-
variate setting. There is increasing supporting evidence that
estimating the amount of fractality (and its fluctuations from
rest to task) is more accurate in the latter setting (Pellé et al.,
2016). Our future studies on scale-free dynamics from fMRI
data will focus on computing multifractal measures of spa-
tially regularized signals, to compensate for their shortness in
time. Future work will also address other datasets and per-
form a more systematic set of comparisons to ensure that
this type of results is independent of the task and consistent
for many subject pairs.
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Appendix A

Time series were preprocessed as described in Section 2, with an addi-
tional normalization for standard deviation (see below). For a voxel-wise
time series u ¼ u1; ; uNð Þ, and for a fixed integer “bin size” m � 1 and a
fixed “filter level” r > 0, the approximate entropy is defined as follows. For
xi ¼ ui; ; uiþm�1ð Þ, consider:

Cm;r
i ðuÞ ¼ # j such that d xi; xj

� � � r
� �

N�mþ 1

where # designates cardinality of a set, and d xi; xj
� �

represents the max-
imum distance between corresponding components of xi and xj . Then, we
can define:

Φm;rðuÞ ¼
PN�mþ1

i¼1
log Cm;r

i ðuÞ
N�mþ 1

Finally, the approximate entropy for the given parameters m and r is

ApEnm;rðuÞ ¼ Φm;rðuÞ � Φmþ1;rðuÞ

For infinite time series u ¼ ðu1; ; uN; � � �Þ, this becomes in the limit the
theoretical Eckmann–Ruelle entropy:

E� RðuÞ ¼ lim
r!0

lim
m!1 lim

N!1
Φm;rðuÞ � Φmþ1;rðuÞ� �

Intuitively, the E–R entropy and its ApEn computational variation for
finite time series measure the (logarithmic) likelihood that patterns
which are close will remain close in the future. However, despite simila-
rities in their definitions, ApEnm;r is not intended as an approximation of
the E–R entropy. While a nonzero value for the E–R entropy ensures that
a deterministic system is chaotic, ApEn cannot identify chaos. ApEn
should be regarded as a family of statistics rather than a unique mea-
sure. That is, the actual value of the ApEn for a specific parameter pair
ðm; rÞ is largely irrelevant in and of itself; rather, ApEnm;r is intended for
comparisons between signals when using the same ðm; rÞ. It was shown
that the optimal value of m (i.e., the value where ApEn is most stable to
changes in m) is the maximum m for which 22

m
<N (where N is the length

of the time series) (Pincus & Singer, 1996). Computations in empirical
data suggested that an appropriate range for the noise filter r is 20–40%
of the standard deviation of the signal (Pincus, 1991).

In our dataset, we computed ApEn for each voxel, using m ¼ 2 and
r ¼ 0:3, after previously normalizing all our time series to unit standard
deviation. The normalization was performed in order to avoid simply
capturing differences in the standard deviation of the series when apply-
ing r as the same fraction of standard deviation for all signals. As in the
case of PSSI, we then thresholded our three-dimensional ApEn brain
maps, finely tuning the threshold until separate clusters emerged
(Figure A1). Clusters with low ApEn were found in frontal and orbito-

frontal cortices of both subjects. In addition, subject D exhibited addi-
tional low ApEn clusters in the hippocampus and in the precuneus, and
subject T showed an additional cluster with low ApEn in the cerebellum
(Table A1). This is in agreement with existing results, showing the neo-
cortex to have lower entropy than the rest of the brain, with some of the
lowest regions located in the precuneus and the orbito-frontal cortex
(Wang et al., 2014). The differences between subjects point toward an
emphasized default (precuneus) and limbic function (hippocampus) in D,
versus increased regularity in prefrontal regions in T.

There are known similarities and differences between the dynamic
trends that can be best captured using ApEn (which is a phase space
measure, incorporating signal amplitudes) and PSSI (which is computed in
the frequency domain) (Pincus & Goldberger, 1994). While the clusters
found with ApEn are different than those identified using PSSI, the results
agree qualitatively, in that they identify more efficient excitatory emotion
regulatory regions in stress high responders, and more efficient inhibitory
regions in nonresponders.

Appendix B

To obtain our power spectra, we used the fft method of finding the square
moduli of the Fourier coefficients. However, there are other power spec-
trum estimators, which typically use averaging or windowing to eliminate
asymptotic bias. In our original 2009 study on PSSI (Tolkunov et al., 2010),
we used windowing (the Welch periodogram) when computing the spec-
tra. We switched to the fft estimator in our subsequent paper (Rădulescu
et al., 2012), after demonstrating that for our particular data characteris-
tics, the results were comparable between the two methods, and thus the
additional noise-averaging obtained by windowing was not necessary in
order to detect the PSSI clusters. We have henceforth chosen to consis-
tently use fft in all our analyses on similar datasets. This conveniently
eliminates the need for choosing a window size or type, as well as
facilitates the comparison of results across different studies. While, in
particular, we applied fft in the current analysis, we wish to demonstrate
in this section that the results remain qualitatively similar when using
instead a Welch periodogram approach.

We computed the PSSI slopes based on a Welch periodogram, using
eight windows with 50% overlap. As expected, the slopes using the Welch
method were not identical with the values that we obtained using fft. We
noticed, however, that an appropriate adjustment of the threshold value
from τ ¼ �1:75 to τ ¼ �1:5 accounted for this range shift, and in the end,
the clusters identified for each subject were very similar between the two
methods. In other words, while windowing did lead to changes in the log–
log slopes, the between-voxel differences in these slopes (and ultimately
the thresholded results) were comparable. This comparison is illustrated in
Figure A2. The clusters detected with the fft method are shown in red, and
those detected with the Welch method are shown in green (with signifi-
cant overlaps), with subject D represented on the left, and subject T on
the right.

Figure A1. Partial view of the contiguous clusters of volume V>33 with ApEn<τ: for subject D, with threshold τ ¼ 1:1 (left); for subject T, with τ ¼ 0:96 (right). The
clusters are described in Table A1.
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Figure A2. Comparison of clusters obtained with fft versus Welch estimators. The fft clusters, computed with threshold τ ¼ �1:75, are shown in red; the Welch
clusters, computed with threshold τ ¼ �1:5, are shown in green. (a) Cluster overlap for subject D; (b) Cluster overlap for subject T.

Table A1. Contiguous clusters larger than V ¼ 33, whose voxels were identified
to have ApEn < 1.1 (for subject D) and ApEn < 0.96 (for subject T).

Tal coordinates Anatomical region Volume (in voxels)

Subject D

Cluster 1 [30 −14 −11] Hippocampus L 106
Cluster 2 [−10 74 −5] Frontal Med/Sup, Mid Orb R 180
Cluster 3 [−8 −69 48] Precuneus L, R 89

Subject T

Cluster 1 [30 −70 −35] Cerebelum Crus L 77
Cluster 2 [−14 56 −16] Frontal Sup Orb R 109
Cluster 3 [12 74 11] Frontal Sup L 117
Cluster 4 [−12 39 48] Frontal Sup/Med R 119
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