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Abstract Many natural systems are organized as net-
works, in which the nodes interact in a time-dependent
fashion. The object of our study is to relate connec-
tivity to the temporal behavior of a network in which
the nodes are (real or complex) logistic maps, cou-
pled according to a connectivity scheme that obeys cer-
tain constrains, but also incorporates random aspects.
We investigate in particular the relationship between
the system architecture and possible dynamics. In the
current paper, we focus on establishing the frame-
work, terminology and pertinent questions for low-
dimensional networks. A subsequent paper will fur-
ther address the relationship between hardwiring and
dynamics in high-dimensional networks. For networks
of both complex and real node maps, we define exten-
sions of the Julia and Mandelbrot sets traditionally
defined in the context of single-map iterations. For three
differentmodel networks, we use a combination of ana-
lytical and numerical tools to illustrate how the system
behavior (measured via topological properties of the
Julia set) changeswhen perturbing the underlying adja-
cency graph. We differentiate between the effects on
dynamics of different perturbations that directly mod-
ulate network connectivity: increasing/decreasing edge
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weights, and altering edge configuration by adding,
deleting or moving edges. We discuss the implications
of extending Fatou–Julia theory from iterations of sin-
gle maps, to iterations of ensembles of maps coupled
as nodes in a network.
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network architecture · Uni-Julia set · Equi-Mandelbrot
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1 Introduction

1.1 Network architecture as a system parameter

Because many natural systems are organized as net-
works, in which the nodes (be they cells, individu-
als, populations or Web servers) interact in a time-
dependent fashion, the study of networks has been an
important focus in recent research. One of the particu-
lar points of interest has been the question of how the
hardwired structure of a network (its underlying graph)
affects its function, for example in the context of opti-
mal information storage or transmission between nodes
along time. It has been hypothesized that there are two
key conditions for optimal function in such networks: a
well-balanced adjacency matrix (the underlying graph
should appropriately combine robust features and ran-
dom edges) and well-balanced connection strengths,
driving optimal dynamics in the system. However, only
recently has mathematics started to study rigorously
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(through a combined graph theoretical and dynamic
approach) the effects of configuration patterns on the
efficiency of network function, by applying graph theo-
retical measures of segregation (clustering coefficient,
motifs,modularity, rich clubs), integration (path length,
efficiency) and influence (node degree, centrality). Var-
ious studies have been investigating the sensitivity of a
system’s temporal behavior to removing/adding nodes
or edges at different places in the network structure
and have tried to relate these patterns to applications to
natural networks.

Brain functioning is one of the most intensely stud-
ied contexts which requires our understanding of the
tight inter-connections between system architecture
and dynamics. The brain is organized as a “dynamic
network,” self-interacting in a time-dependent fashion
at multiple spatial and temporal scales, to deliver an
optimal range for biological functioning. The way in
which these modules are wired together in large net-
works that control complex cognition and behavior is
one of the great scientific challenges of the twenty-
first century, currently being addressed by large-scale
research collaborations, such as the Human Connec-
tome Project. Graph theoretical studies of empiri-
cal data support certain generic topological proper-
ties of brain architecture, such as modularity, small
worldness, the existence of hubs and “rich clubs”
[4,19,20].

In order to explain how connectivity patterns may
affect the system’s dynamics (e.g., in the context of
stability and synchronization in networks of coupled
neural populations), and thus the observed behavior, a
lot of effort has been thus invested toward formal mod-
eling approaches, using a combination of analytical and
numericalmethods fromnonlinear dynamics and graph
theory, in both biophysical models [8] and simplified
systems [18]. These analyses revealed a rich range of
potential dynamic regimes and transitions [3], shown
to depend as much on the coupling parameters of the
network as on the arrangement of the excitatory and
inhibitory connections [8]. The construction of a real-
istic, data-compatible computational model has been
subsequently found to present many difficulties that
transcend the existing methods from nonlinear dynam-
ics and may in fact require: (1) new analysis and book-
keeping methods and (2) a new framework that would
naturally encompass the rich phenomena intrinsic to
these systems—both of which aspects are central to
our proposed work.

In a paper by Rǎdulescu and Verduzco-Flores [16],
one of the authors of this paper first explored the idea
of having network connectivity as a bifurcation para-
meter for ensemble dynamics in a network of coupled
oscillators and investigated the relationship between
classes of system architectures and classes of their pos-
sible dynamics. As expected, when translating connec-
tivity patterns to network dynamics, the main difficul-
ties were raised by the combination of graph complex-
ity and the system’s intractable dynamic richness. In
order to break down and better understand this depen-
dence, we started to investigate it in simpler theo-
retical models, where one may more easily identify
and pair specific structural patterns to their effects on
dynamics. The logistic family is historically perhaps
the most-studied family of maps in nonlinear dynam-
ics, whose behavior is by now relatively well under-
stood. Therefore, we started by looking in particu-
lar at how dynamic behavior depends on connectiv-
ity in simple networks with logistic nodes. This paper
focuses on definitions, concepts and observations in
low-dimensional networks. Future work will address
larger networks, as well as other classes of maps.

Dynamic networks with discrete nodes and the
dependence of their behavior on connectivity parame-
ters have been previously described in several con-
texts over the past two decades. For example, in an
early paper, Wang considered a simple neural network
of only two excitatory/inhibitory neurons and ana-
lyzed it as a parameterized family of two-dimensional
maps, proving existence of period doubling to chaos
and strange attractors in the network [21]. Masolle
and Attay [14] have found that in networks of delay-
coupled logistic maps, synchronization regimes and
formation of anti-phase clusters depend on coupling
strength and on the edge topology (characterized by
the spectrum of the graph Laplacian) [1]. Yu et al. [22]
have constructed and studied a network, wherein the
undirected edges symbolize the nodes’ relation of adja-
cency in an integer sequence obtained from the logistic
mapping and the top integral function.

In our present work, we focus on investigating, in
the context of networked maps, extensions of the Julia
and Mandelbrot sets traditionally defined for single-
map iterations. For three different model networks, we
use a combination of analytical and numerical tools
to illustrate how the system behavior (measured via
topological properties of the Julia sets) changes when
perturbing the underlying adjacency graph. We differ-
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entiate between the effects on dynamics of different
perturbations that directly modulate network connec-
tivity: increasing/decreasing edge weights, and alter-
ing edge configuration by adding, deleting or moving
edges.We discuss the implications of considering a rig-
orous extension of Fatou–Julia theory known to apply
for iterations of single maps, to iterations of ensembles
of maps coupled as nodes in a network.

1.2 Networking logistic maps

The logistic map is historically perhaps the best-known
family ofmaps in nonlinear dynamics. Iterations of one
single quadratic function have been studied starting in
the early nineteenth century, with the work of Fatou
and Julia.

The prisoner set of a map f is defined as the set of
all points in the complex dynamic plane, whose orbits
are bounded. The escape set of a complex map is the
set of all points whose orbits are unbounded. The Julia
set of f is defined as their common boundary J ( f ).
The filled Julia set is the union of prisoner points with
their boundary J ( f ).

For polynomial maps, it has been shown that the
connectivity of a map’s Julia set is tightly related to the
structure of its critical orbits (i.e., the orbits of themap’s
critical points). Due to extensive work spanning almost
one century, from Julia [10] and Fatou [7] until recent
developments [2,15], we now have the following:
Fatou–Julia Theorem. For a polynomial with at least
one critical orbit unbounded, the Julia set is totally dis-
connected if and only if all the bounded critical orbits
are aperiodic.
For a single iterated logistic map [5,6], the Fatou–Julia
Theorem implies that the Julia set is either totally con-
nected, when the orbit of the critical point 0 is bounded,
or totally disconnected, when the orbit of the critical
point 0 is unbounded. In previous work, the authors
showed that this dichotomy breaks in the case of ran-
dom iterations of two maps [17]. In our current work,
we focus on extensions for networked logistic maps.
Although Julia and Mandelbrot sets have been stud-
ied somewhat in connection with coupled systems [9],
none of the existing work seems to address the basic
problems of how these sets can be defined for networks
of maps, how different aspects of the network hard-
wiring affect the topology of these sets, and whether
there is any Fatou–Julia-type result in this context.

These are some of the questions addressed in this
paper, which is organized as follows: In Sect. 2, we
introduce definitions of our network setup, as well as
of the extensions of Mandelbrot and Julia sets that
we will be studying. In order to illustrate some basic
ideas and concepts, we concentrate on three exam-
ples of 3-dimensional networks, which differ from
each other in edge distribution, and whose connectivity
strengths are allowed to vary. In Sect. 3, we focus on the
behavior of these 3-dimensional models when we con-
sider the nodes as complex iterated variables. We ana-
lyze the similarities and differences between node-wise
behavior in each case, and we investigate the topolog-
ical perturbations in one-dimensional complex slices
of the Mandelbrot and Julia sets, as the connectivity
changes from one model to the next, through interme-
diate stages. In Sect. 4, we address the same questions
for real logistic nodes, with the advantage of being able
to visualize the network Mandelbrot and Julia sets, as
3-dimensional real objects. In both sections, we conjec-
ture weaker versions of the Fatou–Julia theorem, relat-
ing points in theMandelbrot setwith connectivity prop-
erties of the corresponding Julia sets. Finally, in Sect. 5,
we interpret our results both mathematically and in the
larger context of network sciences. We also briefly pre-
view future work on high-dimensional networks and
on networks with adaptable nodes and edges.

2 Our models of networked logistic maps

We consider a set of n nodes coupled according to
the edges of an oriented graph, with adjacency matrix
A = (A jk)

n
j,k=1 (on which one may impose additional

structural conditions, related to edge density or distrib-
ution). In isolation, each node xk , 1 ≤ k ≤ n, functions
as a discrete nonlinear map fk , changing at each iter-
ation t ∈ N as xk(t) → xk(t + 1). When coupled
as a network with adjacency A, each node will also
receive contributions through the incoming edges from
the adjacent nodes. Throughout this paper, wewill con-
sider an additive rule of combining these contributions,
for a couple of reasons: first, summingweighted incom-
ing inputs is one simple, yet mathematically non-trivial
way to introduce the cross talk between nodes; second,
summingweighted inputs inside a nonlinear integrating
function is reminiscent of certain mechanisms studied
in the natural sciences (such as the integrate and fire
neural mechanism studied in our previous work in the
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context of coupled dynamics). The coupled systemwill
then have the following general form:

xk(t) −→ xk(t + 1) = fk

(
n∑

k=1

g jk A jk xk

)

where g jk are the weights along the adjacency edges.
One may view this system simply as an iteration of an
n-dimensional map f = ( fk)nk=1, with f : Rn → R

n

(in the case of real-valued nodes), or, respectively,
f : Cn → C

n (in the case of complex-valued nodes).
The new and exciting aspect that we are proposing in
our work is to study the dependence of the coupled
dynamics on the parameters, in particular on the cou-
pling scheme (adjacency matrix)—viewed itself as a
system parameter. To fix these ideas, we focused first
on defining these questions and proposing hypotheses
for the case of quadratic node dynamics. The logistic
family is one of the most-studied families of maps in
the context of both real and complex dynamics of a
single variable. It was also the subject of our previous
modeling work on random iterations.

In this paper in particular, we will work with
quadratic node maps, with their traditional parame-
trization fc(z) = z2 + c, with fc : C → C and c ∈ C

for the complex case and fc : R → R and c ∈ R

for the real case. The network variable will be called,
respectively, (z1, . . . , zk) ∈ C

n in the case of com-
plex nodes, and (x1, . . . , xk) ∈ R

n in the case of real
nodes.We consider both the particular case of identical
quadratic maps (equal c values) and the general case
of different maps attached to the nodes throughout the
network. In both cases, we aim to study the asymp-
totic behavior of iterated node-wise orbits, as well as
of the n-dimensional orbits (which we will call multi-
orbits). As in the classical theory of Fatou and Julia, we
will investigate when orbits escape to infinity or remain
bounded, and howmuch of this information is encoded
in the critical multi-orbit of the system.

For the following definitions, fix the network (i.e.,
fix the adjacency A and the edge weights g). To avoid
redundancy, we give definitions for the complex case,
but they can be formulated similarly for real maps:

Definition 2.1 For a fixed parameter (c1, . . . , cn) ∈
C
n , we call the filledmulti-Julia set of the network the

locus of (z1, . . . , zn) ∈ C
n which produces a bounded

multi-orbit in C
n . We call the filled uni-Julia set the

locus of z ∈ C so that (z, . . . , z) ∈ C
n produces

a bounded multi-orbit. The multi-Julia set (or the

multi-J set) of the network is defined as the bound-
ary in C

n of the filled multi-Julia set. Similarly, one
defines the uni-Julia set (or uni-J set) of the network
as the boundary in C of its filled counterparts.

Definition 2.2 We define the multi-Mandelbrot set
(or the multi-M set) of the network the parameter
locus of (c1, . . . , cn) ∈ C

n for which the multi-orbit
of the critical point (0, . . . , 0) is bounded in C

n . We
call the equi-Mandelbrot set (or the equi-M set) of
the network the locus of c ∈ C for which the crit-
ical multi-orbit is bounded for the equi-parameter
(c1, c2, . . . , cn) = (c, c, . . . , c) ∈ C

n . We call the kth
node equi-M set the locus c ∈ C such that the compo-
nent of the multi-orbit of (0, . . . , 0) corresponding to
the kth node remains bounded in C.

We study, using a combination of analytical and numer-
ical methods, how the structure of the Julia and Man-
delbrot sets varies under perturbations of the node-wise
dynamics (i.e., under changes of the quadratic multi-
parameter (c1, c2, . . . c3)) and under perturbations of
the coupling scheme (i.e., of the adjacencymatrix A and
of the coupling weights g). In this paper, we start with
investigating these questions in small (3-dimensional)
networks, with specific adjacency configurations. In a
subsequent paper, wewillmove to investigate how sim-
ilar phenomena may be quantified and studied analyt-
ically and numerically in high-dimensional networks.
In both cases, we are interested in particular in observ-
ing differences in the effects on dynamics of three dif-
ferent aspects of the network architecture: (1) increas-
ing/decreasing edge weights, (2) increasing/decreasing
edge density and (3) altering edge configuration by
adding, deleting or moving edges.

While a desired objective would be to obtain gen-
eral results for all network sizes (since many natural
networks are large), we start by studying simple, low-
dimensional systems. In this study, we focus on simple
networks formed of three nodes, connected by different
network geometries and edge weights. To fix our ideas,
we will follow and illustrate three structures in partic-
ular (also see Fig. 1): (1) Two input nodes z1 and z2
are self-driven by quadratic maps, and the single out-
put node z3 is driven symmetrically by the two input
nodes; z1 additionally communicates with z2 via an
edge of variable weight a, which can take both posi-
tive and negative values. We will call this the simple
dual model. (2) In addition to the simple dual scheme,
the output node z3 is also self-driven, i.e., there is a

123

Author's personal copy



Real and complex behavior for networks

Fig. 1 Three-dimensional networks used as simple coupling
setups to study the dependence of the Mandelbrot set topology
on coupling strength and on network architecture. We will call

these three constructions: a the simple dual model, b the self-
drive model and c the feedback model

self-loop on z3 of weight b (which can be positive or
negative). We will call this the self-drive model. (3) In
addition to the self-drive model, there is also feedback
from the output node z3 into the node z2, via a new
edge of variable weight f . We will call this the feed-
back model. Unless specified, edges have positive unit
weight. Notice that the same effect as negative feed-
forward edges from z1 and z2 into z3 can be obtained
by changing the sign of b, etc. The three connectivity
models we chose to study and compare are described
by the equations below:

Simple dual model Self-drive model Feedback model

z1→ z21+c1 z1→ z21+c1 z1→ z21+c1

z2→(az1+z2)
2+c2 z2→(az1+z2)

2+c2 z2→(az1+z2+ f z3)
2+c2

z3→(z1+z2)
2+c3 z3→(z1+z2+bz3)

2+c3 z3→(z1+z2+bz3)
2+c3

For a fixedmulti-parameter (c1, c2, c3) ∈ C
3 for exam-

ple, one can see all three systems as generated by a net-
work map f = ( fc1 , fc2 , fc3) : C3 → C

3, defined as
f (z1, z2, z3) = ( fc1([Az]1), fc2([Az]2), fc3([Az]3)),
for any z = (z1, z2, z3)t ∈ C

3.
We try to classify and understand the effects that

coupling changes have on the topology of multi-J and
multi-M sets for both complex and real networked
maps. We do not expect all classical topology results
on the Julia and Mandelbrot sets for single maps (e.g.,
Fatou–Julia theorem, or connectivity of the Mandel-
brot set) to carry out for networks of coupled maps.
However, since the topology of the full sets in C

3 is
somewhat harder to inspect, we study as a first step
their equi-slices and node-wise equi-slices, which are
objects in C.

We will track and compare in particular the dif-
ferences between the three models, but also the geo-
metric and topological changes produced on the equi-

slices within each one model for different values of
the parameters a, b and f . None of these results, how-
ever, can be directly extrapolated to similar conclusions
on the full sets. To offer some insight into the latter,
we study the multi-M and multi-J sets in the context
of real maps, for which the objects can be visualized
in R3.

3 Complex coupled maps

3.1 Equi-Mandelbrot sets

A first intuitive question is when the nodes of the net-
work have similar behavior, and whether if one node-
wise orbit is bounded, the others will remain bounded.
This relationship is trivial to establish in some cases,
such as, for example, in the simple dual model with
independent input nodes (i.e., a = 0). Indeed, in this
model, for any fixed c ∈ C, the origin’s orbit in C

3

under ( fc, fc, fc) can be described as:

z1 : 0 → c → c2 + c → (c2 + c)2 + c → · · ·
z2 : 0 → c → c2 + c → (c2 + c)2 + c → · · ·
z3 : 0 → c → (2c)2 + c → 4(c2 + c)2 + c . . .

The projection of the orbit in any of the three compo-
nents only depends on the previous states of z1 and z2,
and these three sequences are simultaneously bounded
inC; hence, the node-specific equi-Mandelbrot sets are
all identical with the traditional Mandelbrot set. Some
basic connections between node-wise equi-M sets in
each of the three models are stated below. We will
prove these incrementally (recall that the dual model
is a particular case of self-drive for b = 0, and the
self-drive is a particular case of feedback model with
f = 0).
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Fig. 2 Differences between node-specific equi-Mandelbrot
slices, for different connectivity patterns. a For the simple dual
model with a = −2/3, the equi-Mandelbrot set for the nodes z2
and z3 are identical (red), but different from the set for the node
z1 (blue). b For the self-drive model with negative feedback,
a = −2/3 and b = 1/3, the equi-Mandelbrot sets for the three
nodes z1, z2 and z3 (shown, respectively, in blue, green and red)

are all different. c For the feedback model with negative feed-
back, a = −2/3 and b = 1/3, f = −1, the equi-Mandelbrot set
for the nodes z2 and z3 are identical (red), but different from the
set for the node z1 (blue). In all panels, the computations were
generated based on L = 100 iterations, and for an escape radius
of R = 10. (Color figure online)

Proposition 3.1 In the simple dual model, the node-
wise equi-M sets for the nodes z2 and z3 are identical
subsets of the traditional Mandelbrot set (which is the
equi-M set for node z1).

Proof The simple case a = 0 was already discussed.
We will now assume a �= 0. Suppose the critical
orbit for node z2 is bounded by a radius M , that is
z2(n) ≤ M , for all n. Hence (omitting the subscript n
for simplicity):

M ≥ |z2(n + 1)| = |(az1 + z2)
2 + c|

≥ |az1 + z2|2 − |c| �⇒ √
M + |c|

≥ |az1 + z2| ≥ |az1| − |z2|
It follows that:

|az1| ≤ √
M + |c| + |z2|

≤ √
M + |c| + M, where a �= 0 (1)

Hence, if the orbit z2 is bounded, then the orbit of
z1 is bounded. This applies in particular for the critical
orbit, showing that the equi-M set for z2 if a subset of
the equi-M set for z1.

We will next show that, for the simple dual model,
corresponding orbits of z2 and z3 are simultaneously
bounded. For instance, suppose that an orbit z2(n) is
bounded byM > 0. It follows, as shown above, that the
corresponding z1(n) orbit is bounded by some K > 0.

Then:

z3(n + 1) = |(z1 + z2)
2 + c| ≤ |z1 + z2|2 + |c|

= |(az1 + z2) + (1 − a)z1|2 + |c|
≤ (|az1 + z2| + |1 − a||z1|)2

+ |c| ≤ (M + |1 − a|K )2 + |c| (2)

Hence, the orbit z3(n) is bounded. The converse is sim-
ilar, showing that the z2 and z3 equi-M sets are always
identical subsets of the z1 equi-M set in the simple
dual model. In Fig. 2a, we show that these are generally
strict subsets and that a non-symmetric communication
a �= 0 can introduce significant differences between the
traditional Mandelbrot set of the independent node z1
and the equi-M subsets for z2 and z3. For example, it
is not hard to show that, for a = −2/3 (illustrated in
Fig. 2a), the point c = −2 belongs to the Mandelbrot
set of z1 (the critical orbit has period three), but not to
the equi-M set of z2 and z3. 	


An additional self-drive b �= 0 applied to the out-
put node changes the balance of inputs to z3, in the
following sense:

Proposition 3.2 In the self-drive model, the node-wise
equi-M sets of z2 and z3 remain subsets of the standard
Mandelbrot set, but the equi-M set of z3 is strictly con-
tained in the equi-M set of z2 (Fig. 2b).
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Proof To prove the first part of this statement, take
a point c in the equi-M set of z3, meaning that the
orbit of z3 is bounded: There exists M > 0 such that
|z3(n)| ≤ M , for all n ≥ 0. We can express:

|z3(n + 1)| = |(z1 + z2 + bz3)
2 + c|

≥ |z1 + z2 + bz3|2 − |c|
It follows that:

|z1 + z2| − |bz3| ≤ |z1 + z2 + bz3|
≤ √|z3(n + 1)| + |c| ≤ √

M + |c|
Hence,

|z1 + z2| ≤ √
M + |c| + |bz3|

≤ √
M + |c| + |b|M (3)

that is, the sequence ξ(n) = z1(n) + z2(n) is also
bounded in radius by K1 = √

M + |c| + |b|M . Let
us recall that

|ξ(n + 1)| = |z21 + c + (az1 + z2)
2 + c|

= |z21 + [(a − 1)z1 + ξ ]2 + 2c|
= z21 + (a − 1)2z21 + 2(a − 1)z1ξ + ξ2 + 2c

=
∣∣∣∣∣∣
[√

(a − 1)2 + 1z1 + (a − 1)ξ√
(a − 1)2 + 1

]2

+ ξ2
(
1 − (a − 1)2

(a − 1)2 + 1

)
+ 2c

∣∣∣∣
≥

∣∣∣∣∣
√

(a − 1)2 + 1z1 + (a − 1)ξ√
(a − 1)2 + 1

∣∣∣∣∣
2

−
∣∣∣∣ ξ2

(a − 1)2 + 1
+ 2c

∣∣∣∣ (4)

It follows that

|k1z1 + k2ξ |2 ≤ |ξ(n + 1)| +
∣∣∣∣ ξ2

(a − 1)2 + 1
+ 2c

∣∣∣∣
�⇒ |k1z1 + k2ξ | ≤ K2 (5)

where k1 = √
(a − 1)2 + 1, k2 = (a − 1)√

(a − 1)2 + 1

and K2 =
√
K1 + K 2

1

(a − 1)2 + 1
+ |2c|. It follows

that |k1z1| ≤ K2 + |k2ξ | ≤ K2 + |k2|K1; hence,
the orbit of the node z1 is also bounded. Now recall
that: ξ = z1 + z2 is bounded. Since we can write
|z2| = |ξ − z1| ≤ |ξ | + |z1|, it follows that z2 is also

bounded. This proves that the equi-M set of z3 is a sub-
set of the equi-M set of z2, which is in turn a subset of
the traditional Mandelbrot set (i.e., the equi-M set of
z1).

To prove that these inclusions are strict, one can eas-
ily find points which are in the equi-M set of z2, but
not in the equi-M set of z3. For example, for the para-
meters in Fig. 2b, c = −3/4 is in the M set of z1 (the
critical orbit is eventually fixed), and it is in the equi-M
set of z2, but it is not in the M set of z3. Indeed, for this
particular c value, z1(n) = −3/4, for all n ≥ 2 (fixed
point). Since a = −2/3, we can calculate, for n ≥ 2:
z2(n+1) = [1/2+z2(n)]2−3/4 = z22(n)+z2(n)−1/2,
with z2(2) = −3/4. One can easily show that if
z2 ∈ [−1, 0], then z22 + z2 − 1/2 ∈ [−1, 0]; hence,
it follows by induction that the critical orbit of z2 is
contained in [−1, 0] (i.e., bounded). 	

Finally, introducing any arbitrary feedback f �= 0 re-
couples the behavior of nodes z2 and z3, producing a
common equi-Mandelbrod set, largely shrunk from the
simple dual version:

Proposition 3.3 In the feedback model with b �= 0
and f �= 0, the node-wise equi-M sets for the nodes
z2 and z3 are again identical subsets of the traditional
Mandelbrot set (Fig. 2c).

Proof The proof is a slightly more general version of
that for Proposition 3.2. Suppose first that the orbit of
z3 is bounded in radius byM . As before, it follows that:

M ≥ |z3(n + 1)| = |(z1 + z2 + bz3)
2 + c|

≥ |z1 + z2 + bz3|2 − |c|
Hence, as before

|ξ | = |z1 + z2| ≤ |b|M + √
M + |c| = K1

Call ψ = ξ + f z3 so that:

|ψ | ≤ |ξ | + | f z3| ≤ K1 + | f |M = K2

We calculate:

|ξ(n + 1)| = |z21 + (az1 + z2 + f z3)
2 + 2c|

= |z21 + [(a − 1)z1 + ξ + f z3)
2 + 2c|

= |z21 + [(a − 1)z1 + ψ]2 + 2c|
= |z21 + (a − 1)2z21 + 2(a − 1)z1ψ

+ψ2 + 2c|
=

∣∣∣([1 + (a − 1)2]z21 + 2(a − 1)z1ψ
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Fig. 3 Differences between equi-Mandelbrot slices in the case of the simple dual model, as the cross talk parameter a increases: a
a = −2/3, b a = −1/3, c a = 0 (traditional Mandelbrot set), d a = 1/3 and e a = 2/3

+ a − 1

(a − 1)2 + 1
ψ2

)

+
(
1 − a − 1

(a − 1)2 + 1

)
ψ2 + 2c

∣∣∣∣
=

∣∣∣(k1z1 + k2ψ)2 + k3ψ
2 + 2c

∣∣∣ (6)

where k1 = √
(a − 1)2 + 1, k2 = a − 1

(a − 1)2 + 1
and

k3 = 1

(a − 1)2 + 1
. Hence

|k1z1 + k2ψ | ≤ |ξ(n + 1)| + k3|ψ |2 + 2|c|
≤ K1 + k3K

2
2 + 2|c| = K3 (7)

Sinceψ is bounded, it follows that z1 is bounded. Since
ξ is bounded, it follows that z2 is bounded. This proves
that the equi-M set of z3 is a subset of the equi-M sets
of z2 and z1.

Conversely, suppose that the orbit of z2 is bounded
in radius by M > 0. It follows that the sequence
corresponding to az1 + f z3 is also bounded. Recall
that the case f = 0 was covered by the previous
proposition; hence, we can assume now that f �= 0.
Hence, ξ = hz1 + bz3 is bounded by a constant
K1, where h = ba/ f , for f �= 0. As before, call
ψ = hz1 + bz3 + z2, and notice that ψ is bounded
by K1 + M .

|ξ(n + 1)| = |h(z21 + c) + b[(z1 + z2 + bz3)
2 + c]|

= |hz21 + b[ψ + (1 − h)z1]2 + c(h + b)|
= |hz21 + b(1 − h)2z21 + 2b(1 − h)z1ψ

+ bψ2 + c(h + b)| (8)

If k21 = h + b(1 − h)2 �= 0, then we again have:

|ξ(n + 1)| = |(k1z1 + k2ψ)2 + k3ψ
2 + c(h + b)|

(9)

where k2 = b(1 − h)

k1
and k3 = b − k22. Since ψ

is bounded, it follows that z1 is bounded. Since ξ is
bounded, it further follows that z3 is bounded.

We look separately at the case k21 = h+b(1−h)2 =
0, for which Eq. (8) becomes:

|ξ(n + 1)| = |2b(1 − h)z1ψ + bψ2 + c(h + b)| (10)

Since b �= 0, it follows that b(1− h) �= 0. Since ξ and
ψ are bounded, it immediately follows that z1 is also
bounded.
This concludes the proof that the equi-M sets of z2 and
z3 are identical, and both subsets of the equi-M set of
z1. 	

For the rest of the section, the term “equi-M set” will
be referring to the equi-Mandelbrot set of the network,
which is the intersection of the three node-specific sets.
We illustrate the equi-M set for the three models and
for different levels of cross talk a, b and f between
nodes.

Starting with the simple dual input version of the
model, we show in Fig. 3 the effects of changing the
level a of talk between the input nodes, on the shape of
the equi-M set. It is not surprising that, in both positive
and negative a ranges, increasing |a| gradually shrinks
the equi-Mandelbrot set. This can be motivated intu-
itively by the fact that an additional contribution to the
node z2 may cause the critical orbit to increase faster
in the z2 and subsequently the z3 components; hence,
points in the traditional set will no longer be included
in the mutants for a �= 0.

As a increases in the positive range, we noticed that
the network M sets form nested subsets (which is not
true for the negative range), that they remain connected
for all values of a, and that the Hausdorff dimension
of the boundary increases with a (in Fig. 3, notice an
increased wrinkling of the boundary as a takes larger
positive values, and an increase smoothing as a takes
negative values with increasing absolute value). Pertur-
bations of a in the positive range seem to have a much
more substantial contribution to the size of the equi-
M set, while perturbations of a in the negative range
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have a lesser influence on the size and affect mostly the
region close to the boundary of the equi-M set, and the
boundary topological details. We will track the same
changes in a in the other network models and investi-
gate whether this trend is consistent.

Figure 4 illustrates the evolution of the equi-M set
in the case of the model with self-drive, for a grid of
positive and negative values of the input connectivity a
and of the self-drive b. Below are some simple visual
observations based on our numerical computations, to
be addressed analytically in future work.

Decreasing b in the negative range produces no
alteration of the M sets when a > 0. However, it
induces dramatic changes in shape and connectivity
when a < 0. If for b > 0 relatively large, increasing
a only slightly alters the shape of the set, for small
b > 0 the size of the set is also altered with increas-
ing a (generating smaller and smaller subsets), and the
complexity of its boundary also seems to increase. The
effects of varying a < 0 for a fixed value of b become
more dramatic with decreasing b in the negative range.
These effects include changes in shape and topology,
the region a < 0 and b < 0 allowing theM set to break
into multiple connected components.

3.2 Uni-Julia sets

In this section, we will track the changes in the uni-
Julia set when the parameters of the system change.
One of our goals is to test, first in the case of equi-
parameters c ∈ C, then for general parameters in C

3,
whether a Fatou–Julia-type theorem applies in the case
of our three networks.

First, we try to establish a hypothesis for connect-
edness of uni-J sets, by addressing numerically and
visually questions such as: “Is it true that if c is in the
equi-M set of a network, then the uni-Julia set is con-
nected?” “Is it true that, if c is not in the equi-M set
of the network, then the uni-Julia set is totally discon-
nected?” Clearly, this is not simply a C3 version of the
traditional Fatou–Julia theorem, but rather a slightly
different result involving the projection of the Julia set
onto a uni-slice. Notice that a connected uni-J set inC
may be obtained from a disconnectedC3 network Julia
set and conversely that a disconnected uni-J projection
may come from a connected Julia in C

3. We will fur-
ther discuss C3 versions of these objects in the context
of iterations of real variables, where one can visualize

the full Mandelbrot and Julia sets for the network as
subsets of R3. Here, we will first investigate uni-J sets
for equi-parameters (c1, c2, c3) = (c, c, c), with a par-
ticular focus on tracking the topological changes in the
uni-J set as the system approaches the boundary of the
equi-M set and leaves the equi-M set.

First, we fix the network type and the connectivity
profile (i.e., the parameters a, b and f ), and we observe
how the uni-J sets evolves as the equi-parameter c
changes. In Figs. 5 and 6, we illustrate this for two
examples of self-driven models: one with b = −1 and
a = 0, the other with b = −1/3 and a = −2/3.
As the parameter point (c, c, c) approaches the bound-
ary of the equi-M set, the topology of the uni-J set
if affected, with its connectivity breaking down “close
to” the boundary.

Second, we look at the dependence of uni-Julia sets
on the coupling profile (network type). As an example,
we fixed the equi-parameter c = −0.117 − 0.76i , and
we first considered a simple dual networkwith negative
feed-forward and small cross talk a = −0.05. We then
added self-drive b = −1 to the output node and then
additionally introduced negative feedback f = −0.75.
The three resulting uni-Julia sets are shown in Fig. 7.
Notice that a small degree of feedback f produces a
more substantial difference than a larger change in the
self-drive b.

Third, one can study the dependence of uni-Julia
sets on the strength of specific connections within the
network. As a simple illustration of how complex this
dependence may be, we show in Figs. 8 and 9 the
effects on the uni-J sets of slight increases in the cross
talk parameter a, for two different values of the equi-
parameter c.

An immediate observation is that for uni-J sets, the
dichotomy from traditional single-map iterations no
longer stands: uni-J sets can be connected, totally dis-
connected, but can also be disconnected into a (finite
or infinite) number of connected components, without
being totally disconnected. Based on our illustrations,
we can further conjecture, in the context of our three
models, a description of connectedness for uni-J sets,
as follows:

Conjecture 3.4 For any of the threemodels described,
and for any equi-parameter c ∈ C, the uni-J set is
connected only if c is in the equi-M set of the network,
and it is totally disconnected only if c is not in the equi-
M set of the network.
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Fig. 4 Equi-M sets for the model variation 2 (with self-drive),
for different values of the parameters a and b. The rows show,
from bottom to top, increasing values of the self-drive: b = −1,
b = −2/3; b = −1/3; b = 0 (this row representing the simple
dual model, as shown in Fig. 3); b = 1/3; b = 2/3; b = 1. The

columns show, from left to right, increasing values of cross talk
between the two input nodes: a = −2/3, a = −1/3, a = 0,
a = 1/3 and a = 2/3. All the equi-M sets were generated from
L = 100 iterations and plotted at the same scale, in the complex
square [−1.75, 1.25] × [−1.5, 1.5]
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Fig. 5 Uni-Julia sets for a self-drive network with a = 0 and
b = −1, for different values of the equi-parameter c (markedwith
colored dots on the equi-M template in upper left): a c = −1.38
(red), b c = −1.25 (green), c c = −0.75 (blue), d c = 0.25
(orange) and e c = −0.15 + 0.75i (purple). Both equi-M and
uni-J sets coincide in this case with the traditional Mandelbrot
and Julia sets for single-map iterations. All sets were based on

100 iterations. The color map (also shown along the color bar
on the right) represents, on a scale from 1 (darkest) to 100 (light-
est), the number of iterations necessary for each point in the C

plane to escape the disk of radius 2 around the origin. The filled
uni-Julia sets, of points which never escape, are shown in black.
(Color figure online)

Fig. 6 Uni-Julia sets for a self-drive network with a = −2/3
and b = −1/3, for different values of the equi-parameter c
(marked with colored dots on the equi-M template in upper left):
a c = −1 (red),b c = −0.9+0.08i (green), c c = 0.25 (orange),
d c = −0.595 (blue), e c = −0.11 + 0.66i (dark purple), f
c = −0.63 (cyan), g c = −0.11 + 0.7i (magenta). For the first
four panels, c is in the equi-M set; for the last two, c is outside of

the equi-M set. All sets were based on 100 iterations. The color
map (also shown along the color bar on the right) represents, on
a scale from 1 (darkest) to 100 (lightest), the number of itera-
tions necessary for each point in the C plane to escape the disk
of radius 2 around the origin. The filled uni-Julia sets, of points
which never escape, are shown in black. (Color figure online)
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Fig. 7 Evolution of the
uni-Julia set for fixed
equi-parameter
c = −0.117 − 0.76i , as the
network profile is changed,
from a simple dual with
a = −0.05, to b self-drive
with additional b = −1, to c
feedback with additional
f = −0.75

Fig. 8 Evolution of the uni-Julia set for a self-drive network with b = −1 and equi-parameter c = −0.117 − 0.76i , as the input cross
talk a is increased. The panels show, left to right: a = −0.07, a = −0.05, a = 0, a = 0.05 and a = 0.07

Fig. 9 Evolution of the uni-Julia set for a self-drive networkwith
b = −1 and equi-parameter c = −0.62 − 0.432i , as the input
cross talk a is increased. The panels show, in order: a = −0.022,

a = −0.02, a = −0.015, a = −0.01, a = 0, a = 0.01 and
a = 0.015, a = 0.02

Remark The conjecture implies a looser dichotomy
regarding connectivity of uni-J sets than that delivered
by the traditional Fatou–Julia result for single maps: If
c is in the equi-M set of the network, then the uni-J
set is either connected or disconnected, without being
totally disconnected. If c is not in the equi-M set of the
network, then the uni-J set is disconnected (allowing
in particular the case of totally disconnected).
Finally, we want to remind the reader that uni-Julia sets
can be defined for general parameters (c1, c2, c3) ∈ C

3,
as shown in Fig. 10.

4 Real case

The same definitions apply for iterations of real
quadraticmaps,with the real case presenting the advan-
tage of easy visualization of full Julia and Mandelbrot
sets, rather than having to consider equi-slices, as we
did in the complex case. In Figs. 11 and 12, we illus-
trate a few multi-M and multi-J sets, respectively, for
some of the same networks considered in our complex
case.
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Fig. 10 Uni-Julia sets for a
general parameter
(c1, c2, c3) ∈ C

3, with
c1 = −0.75,
c2 = −0.117 − 0.76i and
c3 = −0.62 − 0.432i . The
panels represent uni-J sets
for a self-drive network with
b = −1, as the cross talk a
changes from a a = 0, to b
a = 0.1, to c a = 0.15

Fig. 11 Real network Mandelbrot sets in the parameter space
(c1, c2, c3) ∈ R

3. a Simple dual network with a = −1. b Self-
drive network with a = −1 and b = 1. c Self-drive network with

a = 1/2 and b = 1. Plots were generated with 50 iterations and
in resolution 2003

Fig. 12 Real network Julia sets in the node-variable space
(z1, z2, z3) ∈ R

3. The first two panels represent self-drive net-
works with a = 1/2 and b = 1, with equi-parameters, respec-
tively: a c = −0.589, b c = −0.4 − 0.08i . c The third panel

shows the self-drive network with a = 0 and b = −1, for
c = −0.62 − 0.432i . Plots were generated with 50 iterations
and in resolution 2003

Moving to illustrate the relationship between the
multi-M and the multi-J set in this case, consider,
for example, the self-drive real network with a = 1/2
and b = 1, for different multi-parameters (c1, c2, c3).
While more computationally intensive, higher-

resolution figures would be necessary to establish the
geometry and fractality of these sets, one may already
notice basic properties. For example, Fig. 12 shows that
if one were to consider complex equi-parameters, the
multi-Julia set may not only be connected (Fig. 12a), or
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Fig. 13 Real network Julia
sets for the self-drive model
with a = 1/2 and b = 1.
The two multi-parameters
(c1, c2, c3) =
(−0.5,−0.7,−0.7) (left
panels) and (c1, c2, c3) =
(−0.5,−0.7,−0.6) (right
panels) are not in the
Mandelbrot set for the
network. The top row shows
the 3-dimensional Julia sets,
and the bottom panels show
top views of the same sets.
Plots were generated with
50 iterations and in
resolution 2003

totally disconnected (not shown), but may also be bro-
ken into a number of connected components (Fig. 12b,
c).

This remained truewhen imposing the restriction for
our multi-parameters to be in R

3, once we allow arbi-
trary (that is, not necessarily equi) parameters. The pan-
els of Fig. 13 show themulti-J sets for twodifferent, but
close parameters, (c1, c2, c3) = (−0.5,−0.7,−0.7)
and (c1, c2, c3) = (−0.5,−0.7,−0.6), respectively,
both of which are not in the multi-M set. The figures
suggest a disconnected (although not totally discon-
nected) multi-J set in the first case and a connected
multi-J set in the second case. This implies that the tra-
ditional Fatou–Julia dichotomy fails in this context—
and that the statement relating boundedness of the criti-
cal orbit with connectedness of the multi-J set does not
hold for real networks. More precisely, we found para-
meters for which the multi-Julia set appears to be con-
nected, although the critical multi-orbit is unbounded.
On the other hand, the counterpart of the theorem may
still hold, in the following form: “If the parameter
belongs to the multi-M set, then the multi-J set is con-
nected.”

Part of our current visual investigations consists
in running optimized numerical algorithms comput-
ing multi-M and multi-J sets in R3, with high enough

resolution to allow (1) observation of possible fractal
properties of multi-J and of multi-M set boundaries
and (2) computation of the genus of the filled multi-J
sets, in attempt to phrase a topological extension of the
theorem that takes into account the number of handles
and tunnels that open up in these sets as their con-
nectivity breaks down when leaving the Mandelbrot
set.

5 Discussion

5.1 Comments on our results

In this paper, we used a combination of analytical and
numerical approaches to propose possible extensions
of Fatou–Julia theory to networked complex maps.
Broadly, our paper suggests a new direction of study,
with potentially tractable, although complex mathe-
matical questions. While existing results do not apply
in their traditional form to the context of networks, it
appears that connectivity of uni-Julia and multi-Julia
sets may still be strongly influenced by the behavior of
the critical orbit. We conjectured weaker extensions of
the Fatou–Julia theorem, based thus far only on numer-
ical inspection, and which remain subject to a rigorous
study that would support or refute them.
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Our line of study includes understanding and inter-
preting the importance of this type of results in the con-
text of networks from natural sciences. One potential
view, proposed by the authors in their previous joint
work, is to interpret iterated orbits as describing the
temporal evolution of an evolving system (e.g., copy-
ing and proofreading DNA sequences, or learning in a
neural network). Along these lines, an initial condition
which escapes to ∞ under iterations may represent a
feature of the system which becomes in time unsus-
tainable, while an initial condition which is attracted to
a simple periodic orbit may represent a feature which
is too simple to be relevant or efficient for the system.
Then, the points on the boundary between these two
behaviors (i.e., the Julia set) may be viewed as the set
of optimal features, allowing the system to operate in a
dynamic regime ideal for performing its complex func-
tion. One can try to interpret the current results in light
of how this “optimal set of features” changes when per-
turbing the network’s architecture.

Philosophically, one may interpret that in the case
of a network with connected Julia set, all sustainable
initial conditions (i.e., initial points leading to bounded
orbits) can be reached by perturbations from rest (i.e.,
from the critical point, with all nodes set at zero), with-
out having to leave thefilled Julia set to get fromone ini-
tial condition to the other. At the other end of the spec-
trum, totally disconnected Julia sets may characterize
pathological networks with only a dust of scattered ini-
tial states leading to sustainable dynamics.Unlike in the
traditional Fatou–Julia theory, networks allow for the
intermediate case of Julia sets which are disconnected,
without being totally disconnected.Multiple connected
components for the Julia set may correspond concep-
tually to different healthy functional ranges that are
accessible to a network/individual andmay be themark
of a healthy system, capable to respond more swiftly to
changes in the initial state by tuning to different—yet
still sustainable—asymptotic dynamics.

Along the same lines, we defined the Mandelbrot
set as the structural node range (range of node-wise
dynamic parameters c) for which the network is func-
tionally sustainable when started at rest (the orbit does
not escape when all nodes are initiated at zero). One of
our aims was to question whether this range coincides
with the parameter locus for which the Julia set is con-
nected. The answer was “no” in the case of networks
with real nodes, as well as in the context of complex
slices for identical node maps (equi-parameters c) and

identical node-wise initial conditions (uni-Julia sets).
However, a weaker statement seems to hold, in the
sense that one always has to traverse an intermediate
asymptotic region characterized by disconnected Julia
setswhen transitioning fromaparameter regimeof con-
nected Julia sets (always inside the Mandelbrot set) to
a regime of totally disconnected Julia sets (always out-
side of the Mandelbrot set).

One of our first observations was that even in net-
works where all nodes are identical maps, their behav-
ior may not be “synchronized,” in the sense that dif-
ferent nodes may have different asymptotic behavior
(reflected in topological differences betweennode-wise
Mandelbrot and Julia sets). Node coupling enhances
“de-synchronization” between two or more nodes, by
differentially shrinking specific node-wise asymptotic
sets, the extent of the shrinking being correlated for
each node with its afferent connectivity (i.e., node dif-
ferences being dependent on the network architecture).

We found interesting the idea that additional net-
working may generally lead to smaller network Man-
delbrot and Julia sets than the traditional versions for
single decoupled maps. We therefore followed up with
a more in-depth investigation on how the topologi-
cal and fractal behavior of these sets depend on spe-
cific changes in the network hard wiring. We found
instances in which small perturbations in the strength
of one single connection may lead to dramatic topo-
logical changes in the asymptotic sets, and instances in
which these sets are robust to much more significant
changes.

For example, our numerical results indicate that
introducing feedback in our system has a much more
dramatic effect than changing the level of cross talk a
between the input nodes (e.g., Figs. 2, 7). This agrees
with existing evidence from other discrete dynamic
models (e.g., of transcriptional regulatory networks),
which found that feed-forward loops provide higher
temporal coherence with lower entropy [15]. However,
although network data demonstrate the statistical sig-
nificance between the effects of the two [11,12], it is not
yet clearwhy feed-forward loops are advantageousover
feedback loops in dynamical systems. Understanding
analytically the underpinnings of these differences in
simple model networks of quadratic maps may shed
light on existing numerical and empirical observations
in biological networks.

Another interesting observation regards the differ-
ences we found between the effects of excitation versus
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inhibition in the system. We investigated this question
in relationwith all our three types of connections (input
cross talk, self-drive and feedback strength), by allow-
ing both positive (excitatory) and negative (inhibitory)
values for the three corresponding parameters a, b and
f , and then comparing the effects. An upturn of excita-
tory cross talk a > 0 generally led to a nesting (and rel-
atively rapid shrinking) of the asymptotic sets (Fig. 3).
This is not surprising and supports our intuition that
the sustainable network range will shrink if too much
feed-forward excitation is added into the system. In the
absence of other network influences (that is, for the sim-
ple dual model with b = 0 and f = 0), inhibitory cross
talk a < 0 led to little changes in the size and topol-
ogy of the uni-J and equi-M sets and instead affected
the Hausdorff dimension of their boundary (perhaps
a suggestion that excessive cross talk inhibition may
reduce the system’s complexity, as reflected in the frac-
tality of its asymptotic sets). Altogether, the main dif-
ference between the effects of excitation and inhibition
in this case seems to be in the size of the sustainable
range.

Subsequent simulations (illustrated in the follow-
ing figures) clarified that, as one would expect, the
self-drive b and the feedback f gate and modulate
the effect of the input cross talk. For example, when
introducing an additional small b < 0, increasing
the inhibitory cross talk a < 0 did not consistently
affect the size of the uni-J set more than a compara-
ble increase in excitatory cross talk a > 0. However,
even slight levels of inhibition were able to break down
the uni-J set into connected components, more effec-
tively than by introducing much higher levels of exci-
tation (Figs. 8, 9). This ability of inhibition to affect
connectivity remained true for the equi-M sets (Fig. 4,
with the sets beginning to break into disconnected com-
ponents in the bottom left panels, for a < 0). On
the other hand, we noticed that a positive self-drive
b > 0 canceled both size and connectivity effects
subsequent to boosting cross talk in the simple dual
model. Indeed, for b = 1 (Fig. 4, top row), the equi-
M sets for all a, positive or negative, look very sim-
ilar. A complex network (the brain in particular) may
have to know in advance, and be able to do so, which
hardwired structure is most effective to use in order
to obtain either or both effects, and how to plastically
modify this structure on a continuous basis, adapt-
ing online to new behavioral requirements and restric-
tions.

5.2 Future work

There are a few interesting aspects which we aim to
address in our future work on iterated networks. For
example, we are interested in studying the structure
of equi-M and uni-J sets for larger networks, and
in understanding the connection between the network
architecture and its asymptotic dynamics. This direc-
tion can lead to ties and applications to understanding
functional networks that appear in the natural sciences,
which are typically large.

The authors’ previous work has addressed some
of these aspects in the context of continuous dynam-
ics and coupled differential equations. However, when
translating network architectural patterns into network
dynamics, the great difficulty arises fromacombination
of the graph complexity and the system’s intractable
dynamic richness. Addressing the question at the level
of low-dimensional networks can help us more eas-
ily identify and pair specific structural patterns to their
effects on dynamics and thus better understand this
dependence. The next natural step is to return to the
search for a similar classification in high-dimensional
networks, where specific graph measures or patterns
(e.g., node degree distribution, graph Laplacian, pres-
ence of strong components, cycles or motifs) may help
us, independently or in combination, classify the net-
work’s dynamic behavior.

Of high interest are methods that can identify robust
versus vulnerable features of the graph from a dynamic
standpoint. As Figs. 14 and 15 show, it is clear that a
small perturbation of the graph (e.g., adding a single
edge) has the potential, even for higher-dimensional
networks, to produce dramatic changes in the asymp-
totic dynamics of the network and readily leads to sub-
stantially different M and J sets. However, this is not
consistently true. We would like to understand whether
a network may have a priori knowledge of which
structural changes are likely to produce large dynamic
effects. This is a real possibility in large natural learning
networks, including the brain—where such knowledge
probably affects decisions of synaptic restructuring and
temporal evolution of the connectivity profile.

Once we gain enough knowledge of networked
maps for fixed nodes and edges, and we formulate
which applications this framework may be appropri-
ate to address symbolically, we will allow the nodes’
dynamics, as well as the edge weights and distribu-
tion, to evolve in time together with the iterations. This
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A =
M A1

A2 M
, M =

1 1
1 1

A1 =
0 0
1 0

, A2 =
1 0
1 1

A =
M A1

A2 M
, M =

1 1
1 1

A1 =
0 1
1 0

, A2 =
1 0
1 1

Fig. 14 Equi-M sets for two bipartite networks of size N = 4
described schematically on the left, together with their adja-
cency matrices. Both systems have connectivity parameters

gxx = gyy = 1/2 (between same-color nodes), gxy = gyx =
−1/2 (between nodes of different colors). (Color figure online)

Fig. 15 Equi-M sets for a bipartite network with 20 nodes,
formed of two cliques X and Y , with N = 10 nodes in each.
The adjacency matrix is therefore similar to those in Fig. 14,
with square blocks M , A1 and A2 of size N = 10. The densi-
ties (number of ones in each block, i.e., number of X -to-Y and,
respectively, Y -to-X connecting edges) were taken in each panel

to be (out of the total of N 2 = 100): a Nxy = Nyx = 10, b
Nxy = 15, Nyx = 10, c Nxy = Nyx = 15, d Nxy = Nyx = 50.
In all cases, the connectivity parameters (i.e., edge weights) were
gxx = gyy = 1/10 (between nodes within the same clique X or
Y ) and gxy = gyx = −1/10 (between nodes in different cliques).
(Color figure online)

process may account for phenomena such as learning
or adaptation—a crucial aspect that needs to be under-
stood about systems. This represents a natural direction
in which to extend existing work by the authors on ran-
dom iterations in the one-dimensional case.
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Appendix: Uni-J sets for higher-dimensional net-
works

The figures show four uni-J sets, for N = 4 and N = 8
nodes. The equi-parameters, adjacency matrices and
connectivity parameters of each network are given in
Figs. 16, 17, 18 and 19.

Fig. 16 Size N = 4, equi-parameter c = −0.117 − 0.76i .

Adjacency: A =

[
M A1

A2 M

]
, where M =

(
1 1
1 1

)
, A1 =

(
1 0
0 0

)
,

A2 =
(
1 0
1 0

)
. Connectivity parameters: gxx = gyy = 1/2,

gxy = gyx = −1/2

Fig. 17 Size N = 4, equi-parameter c = −0.117−0.856i . A =[
M A1

A2 M

]
, where M =

(
1 1
1 1

)
, A1 =

(
0 1
0 0

)
, A2 =

(
1 0
1 1

)
.

Connectivity parameters: gxx = gyy = 1/2, gxy = gyx = −1/2

Fig. 18 Size N = 4, equi-parameter c = −0.5622 − 0.62i . A

=

[
M A1

A2 M

]
, where M =

(
1 1
1 1

)
, A1 =

(
0 1
0 0

)
, A2 =

(
1 0
1 0

)
.

Connectivity parameters: gxx = gyy = 1/2, gxy = gyx = −1/2

Fig. 19 Size N = 8, equi-parameter c = −0.62 − 0.62i . A

=

[
M A1

A2 M

]
, where M =

⎛
⎜⎜⎝
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠, A1 =

⎛
⎜⎜⎝
1 0 1 1
1 1 1 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠,

A2 =

⎛
⎜⎜⎝
0 0 0 0
0 1 1 1
1 1 0 1
0 1 1 0

⎞
⎟⎟⎠. Connectivity parameters: gxx = gyy = 1/4,

gxy = gyx = −1/4
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