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Abstract. This note is a shortened version of my dissertation paper, defended
at Stony Brook University in December 2004. It illustrates how dynamic com-
plexity of a system evolves under deformations. The objects I considered are

quartic polynomial maps of the interval that are compositions of two logistic
maps. In the parameter space P Q of such maps, I considered the algebraic
curves corresponding to the parameters for which critical orbits are periodic,
and I called such curves left and right bones. Using quasiconformal surgery
methods and rigidity, I showed that the bones are simple smooth arcs that join
two boundary points. I also analyzed in detail, using kneading theory, how
the combinatorics of the maps evolve along the bones. The behavior of the
topological entropy function of the polynomials in my family is closely related
to the structure of the bone-skeleton. The main conclusion of the paper is that
the entropy level-sets in the parameter space that was studied are connected.

1. Previous work and summary of results. This paper illustrates how dynamic
complexity of a system evolves under deformations. This evolution is in general only
partly understood. Previous work has approached simple examples of dynamical
systems from a quantitative perspective and has made use of the topological entropy
h(f) as a particularly useful measure of the complexity of the iterated map f . A
lot has been said about entropy, although not much on monotonicity.

The logistic family {fµ(x) = µx(1 − x) , µ ∈ [0, 4]} illustrates many of the
important phenomena that occur in Dynamics. The theory in this case is the most
complete (see [5]): µ → h(fµ) is continuous, monotonically increasing, and different
values h0 = h(fµ) are realized not only for a single µ in some cases but also for
infinitely many in other cases.

The cubic polynomials on the unit interval are a 2-parameter family. In the
compact parameter space of this family, the level sets of the entropy, called isen-
tropes, were proved to be connected (see [6] and [16]). The argument makes use
of a theorem of Heckman (see [8]), which does not apply in the context of higher
degree polynomials.

In general, families of degree d polynomials depend on d − 1 parameters, so the
same concepts are harder to inspect for higher degrees. It is most natural to research
next a family of quartic polynomials that depends only on two parameters. This
paper focuses on showing the Connected Isentropes Conjecture for the family
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of alternate compositions of two logistic maps. More detailed proofs to some results
presented here can be found in my dissertation paper [17], as cited.

I organized the ideas as follows:
I introduce the diorbit as an extension of the orbit of a point, to accommodate

alternate iterations of two distinct (+,-) interval maps h1 and h2. I call d’itinerary
the symbolic sequence extending correspondingly the classical notion of itinerary.
I briefly study the diorbits of the two critical points of h1 and h2, respectively.
For the cases when they are 2n-periodic, I introduce a way to keep track of the
succession of the diorbit points along the unit interval I by defining the order-data
of the diorbit as a pair of permutations (σ, τ) ∈ S2

n.
My focus is on alternate iterations of two logistic maps and on the phenomena

that appear in the parameter space PQ corresponding to such pairs. For a given
order-data (σ, τ), I define the left and right bones in PQ to be the algebraic curves
of parameters at which either critical point has periodic orbit of order-data (σ, τ).

To obtain combinatorial properties along the bones (such as information on their
crossings and boundary points), I compare the space PQ with a model space PST

of compositions of stunted tent maps. This technique is not accidental; the stunted
sawtooth maps are generally useful models in kneading-theory, because they are rich
enough to encode in a canonical way all possible kneading-data of m-modal maps.
My combinatorial results used Thurston’s Uniqueness Theorem and an extension of
it due to Poirier and interpreted by [16].

The correspondence between the two parameter spaces PQ and PST turns out to
be topologically very strong (homeo of cell complexes). To pin down the homeomor-
phic relationship, I need (besides combinatorics results) a few results addressing the
geometry and the degree of smoothness of the bones in PQ. The geometric results
require crucial use of a rigidity theorem to prove density of hyperbolicity in PQ

( [9]). To prove C1 smoothness, I perform a quasiconformal surgery construction
to perturb a map with a superattracting cycle to a map having an attracting cycle
with small nonzero multiplier.

Finally, I emphasize the relations between the behavior of the entropy in PQ

and the bone structure. The main result, connectedness of the entropy level-sels, is
obtained by topological correspondence with the level-sets in the model space PST ,
which are contractible.

2. Combinatorics.

2.1. A discussion on the kneading-data. Let h : I → I be an m-modal map of
the interval, i.e., there exist 0 < c1 ≤ c2 ≤ ... ≤ cm < 1 folding points or critical
points of h such that h is alternately increasing and decreasing on the intervals
H0, ..., Hm between the folding points.

I =

m
⋃

k=0

Hk ∪

m
⋃

j=1

{cj}.

We say that h is of shape s=(+,-,+,...) if h is increasing on H0 and of shape
s=(-,+,-,...) if h is decreasing on H0. We say that h is strictly m-modal if there is
no smaller m with the properties above.

We define the itinerary ℑ(x) = (A0(x), A1(x), ...) of a point x ∈ I under h as a
sequence of symbols in A = {H0, ..., Hm} ∪ {c1, ..., cm}, where
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{

Ak(x) = Hj , if f◦k(x) ∈ Hj

Ak(x) = cj, if f◦k(x) = cj.

The kneading sequences of the map h are defined as the itineraries of its folding
values:

Kj = K(cj) = ℑ(f(cj)), 1 ≤ j ≤ m.

The kneading-data K of h is the m-tuple of kneading-sequences:

K = (K1, ...,Km).

The simplest example of an m-modal map is a sawtooth map with m teeth (see
Figure 1.1(a)).

0 c1 c2 cm−1 0 c1 c2 cm−11 1

Figure 1. (a)Sawtooth map of the interval. (b)Stunted sawtooth map

We call a stunted sawtooth map a sawtooth map whose peaks have been stunted
by plateaus placed at chosen heights (see Figure 1.1(b)). Its folding points are
considered to be the centers of the plateaus. For this paper’s specific purposes we
will need to look at tent maps (1-modal sawtooth maps) and their stunted version,
which we will call stunted tent maps.

Another simple and rich example of m-modal maps is the collection of (m + 1)-
degree polynomials from I to itself. The folding points could be taken in this case to
be the critical points of the polynomial (in the classical sense) of odd order. In the
context of polynomial m-modal maps, we have a powerful tool to use in Thurston’s
Uniqueness Theorem.

Definition 2.1.1. A polynomial map is called post-critically finite if the orbit of
every critical point is periodic or eventually periodic.

Theorem 2.1.1. Thurston Uniqueness Theorem for Real Polynomial Maps:

A post-critically finite real polynomial map of degree m+1 with m distinct real criti-
cal points is uniquely determined, up to a positive affine conjugation, by its kneading
data.
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We will also use a converse of this basic theorem of Thurston, due to Poirier (as
interpreted by [16]).

Definition 2.1.2. We say that a symbolic sequence ℑ(x) = (A0(x), A1(x), ...) is
flabby if some point of the associated orbit, which is not a folding point, and an
immediately adjacent folding point have corresponding folding values with identical
itineraries. A symbolic sequence is called tight if it is not flabby. The kneading
data of a map is tight if each of its kneading sequences is tight.

Lemma 2.1.1. The kneading data of a stunted sawtooth map is tight if and only if
the orbit of each folding point never hits a plateau except at its folding point.

Theorem 2.1.2. Suppose that the kneading data K is achieved by some m-modal
map of shape s, with Ki 6= Kj for all i. Then there exists a post-critically finite
polynomial map of degree m+1 and shape s with kneading-data K if and only if
each Ki is periodic or eventually periodic, and also tight. This polynomial is always
unique when it exists, up to a positive affine change of coordinates.

2.2. Definitions and first goals.

In light of the general definition given in Section 2.1, we call a boundary anchored,
(+,-) unimodal map of the unit interval a map h : I = [0, 1] → I such that h(0) =
h(1) = 0 and such that there exists γ ∈ (0, 1), called folding or critical point, with
h increasing on (0, γ) and decreasing on (γ, 1). The orbit of a point x ∈ I under
such an h will be the sequence of iterates {h◦n(x)}n≥0. The itinerary of x under h
is the sequence (J0, J1, ...) of symbols L (left), R (right) and Γ (center, or critical)
such that:







Jj = L, if h◦j(x) < γ
Jj = R, if h◦j(x) > γ
Jj = Γ, if h◦j(x) = γ.

The next few sections of this paper are dedicated to the study of the combina-
torics of the dynamical system we are considering: generated by alternate iterates
of two unimodal interval maps. In this sense, it is convenient to consider two copies
of the unit interval I1 = I2 = I and think of our pair of maps (h1, h2) as a self map
of the disjoint union I1 ⊔ I2 → I1 ⊔ I2, which carries I1 to I2 as h1 and I2 to I1 as
h2, with critical points γ1 ∈ I1 and γ2 ∈ I2, respectively.

We call an diorbit under the pair (h1, h2) a sequence:

x → h1(x) → h2(h1(x)) → h1(h2(h1(x)))...

We say a diorbit is critical if it contains either critical point γ1 or γ2. A critical
diorbit that contains both γ1 and γ2 will be called bicritical.

We call the d’itinerary of a point x under (h1, h2) the infinite sequence ℑ(x) =
{Jk(x)}k≥0 of alternating symbols in {L1, Γ1, R1} and {L2, Γ2, R2} that expresses
the positions of the iterates of x in I1 and I2 with respect to γ1 or γ2.

Clearly, not all arbitrary sequences of appropriate symbols are in general admis-
sible as d’itineraries of a point under a pair of given maps.

It is fairly easy to show that the pair of critical d’itineraries (ℑ(γ1),ℑ(γ2)) un-
der a pair (h1, h2) of unimodal maps determines the kneading-data of h2 ◦ h1 and
conversely (the proof is left as an exercise). In particular this applies to pairs of
stunted tent maps and to pairs of logistic maps, which are the objects of this paper.
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We will use the same order on admissible d’itineraries as the total order used on
regular itineraries (see [3]), which is consistent with the order of points on the real
line:

ℑ(x) < ℑ(x′) ⇒ x < x′

x < x′ ⇒ ℑ(x) ≤ ℑ(x′).

We say that the diorbit of x is periodic of period 2n under (h1, h2) if n is the
smallest positive integer such that (h2 ◦h1)

◦n(x) = x (i.e., x has period n under the
composition (h2 ◦ h1)). We will use the following notation for a 2n-periodic diorbit
under (h1, h2):

x1 = xi1
h1−→ yj1

h2−→ xi2
h1−→ ...

h1−→ yjn

h2−→ xi1 , (1)

where {xi}1≤i≤n ⊂ I1 and {yj}1≤j≤n ⊂ I2 are both increasing.

Definition 2.2.1. The order-data of the periodic diorbit (1) is defined as the pair
(σ, τ) of permutations in Sn given by

h1(xi) = yσi

h2(yj) = xτj
,

so that σik
= jk and τjk

= ik+1. (Here the subscripts must be understood as
integers mod n, e.g., in+1 = i1 = 1.) An admissible order-data is a (σ, τ) ∈ S2

n

which is achieved as order-data of a periodic orbit of some pair (h1, h2) of interval
unimodal maps.

The (+,-) unimodal shape of h1 and h2 imposes a set of necessary and sufficient
conditions for a (σ, τ) to be admissible:

(I)

{

If σi+1 < σi , then σj+1 < σj , ∀j ≥ i (i.e., σ monotone or unimodal)
If τi+1 < τi , then τj+1 < τj , ∀j ≥ i (i.e., τ monotone or unimodal)

(II) τ ◦ σ is a cyclic permutation (i.e., has no smaller cycles).

σ = (123), τ = (231) σ = (132), τ = (321) σ = (231), τ = (123)

σ = (231), τ = (231) σ = (321), τ = (132)

Figure 2. All admissible order-data (σ, τ)of period 2n = 6. Each
sketch represents the interval I = I1 on top, with the diorbit points
x1 < x2 < x3 and the interval I = I2 underneath, with the diorbit
points y1 < y2 < y3.
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The first goal will be to research the relation between the d’itinerary and the
order-data of a periodic critical diorbit.

Suppose γ1 is periodic of period 2n under (h1, h2), and let x1 = xi1 → yj1 →
... → yjn

→ xi1 be its diorbit. Then the order-data (σ, τ) ∈ S2
n of the diorbit

determines its d’itinerary via the position of the element yjl
∈ I2 closest to γ2. In

other words, there are at most two critical d’itineraries containing γ1 corresponding
to a given order-data, and the same for γ2. If in particular the diorbit is bicritical,
then yjl

= γ2 and the d’itinerary is completely defined.
Note also that the order of points in a critical periodic diorbit of a (+,-) unimodal

map is strictly preserved in the order of their d’itineraries, i.e., x < x′ implies
ℑ(x) < ℑ(x′). Hence conversely, knowing the d’itinerary ℑ of the bicritical diorbit,
we can obtain the order of occurrence of the diorbit points in I1 and I2, respectively.
This proves the following:

Theorem 2.2.1. If the diorbit of γ1 is bicritical of period 2n under a pair of (+,-)
unimodal maps (h1, h2), then the d’itinerary of γ1 determines the order-data of the
diorbit and conversely.

2.3. Parameter spaces.

We plan to study in more detail the dynamics of our particular family of such
pairs of interval unimodal maps.

Recall that the logistic map (with critical value v) is defined as qv(x) = 4vx(1−
x), x ∈ R. Clearly qv(0) = qv(1) = 0, for any value of the parameter v. Moreover,
for v ∈ [0, 1], qv carries the unit interval to itself, so it is a boundary anchored, (+,-)
unimodal interval map.

Our goal is to study the dynamics of pairs (qv, qw) (i.e., of alternate iterations of
qv and qw), where (v, w) ∈ [0, 1]2. We call the family of (qv, qw) the Q-family, and
we parameterize it by the pair of critical values, so that the parameter space will
be

PQ = {(v, w) ∈ [0, 1] × [0, 1]} = [0, 1]2.

The behavior of the pairs in the Q-family is not very well-understood. We will
compare it to the dynamics in a model family much easier to research, the family
of pairs (stv, stw) of stunted tent maps:

stv : I1 → I2, γ1 =
1

2
and stw : I2 → I1, γ2 =

1

2
,

where

stv(x) =







2x if x ≤ v
2

v if v
2 ≤ x ≤ 1 − v

2
2 − 2x if x ≥ 1 − v

2 .

Recall from 2.1 that the folding point of such a stunted tent map is by convention
the midpoint γ = 1

2 , hence the critical value is st(γ) = v. We call the family of pairs
of such maps the ST -family. Its corresponding parameter space will be denoted by

PST = {(v, w) ∈ [0, 1] × [0, 1]}.

We aim to obtain combinatorics results in PQ = [0, 1]2. However, we start by
proving similar results in the parameter space PST = [0, 1]2 of “approximating”
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stunted tent maps. Comparison of the two spaces will be a frequent strategy. The
topological correspondence of PQ and PST will be eventually sustained with a
rigorous proof and will enable us to translate topological properties from one space
to the other.

2.4. The combinatorics in the ST -family.

Next, let’s see how the combinatorics in Section 2.2 applies to the model ST -
family:

Theorem 2.4.1. Given (σ, τ) ∈ S2
n admissible order-data, there is a unique pair of

stunted tent maps (stv, stw) with periodic bicritical diorbit of order-data (σ, τ).

Proof. First, let ℑ be a sequence of alternating symbols in {L1, Γ1, R1} and {L2, Γ2,
R2}, admissible as a bicritical d’itinerary of period 2n under a pair of unimodal
maps:

ℑ = (J0 = Γ1, J1, J2, ..., J2l, J2l+1 = Γ2, J2l+2, ..., J2n−1, J2n = Γ1, ...),

where J2n+k = Jk for all k and Jk 6= Γ1, Γ2, for all k not equal to 0 or 2l + 1 mod
2n. There exists a unique pair of stunted tent maps (stv, stw) that has a bicritical
diorbit of period 2n:

x1 = xi1
stv−→ yj1

stw−→ ...yjn

stv−→ xi1 = x1,

having ℑ as its d’itinerary.
To prove the existence, it is easier to consider a diorbit that has the required

d’itinerary through a pair of regular tent maps, then stunt the maps at the highest
values of the diorbit in I1 and I2, respectively. The proof of the uniqueness is an
easy exercise (see [17]): starting with the critical points γ1 and γ2, iterate backwards
following the branch indicated by the d’itinerary ℑ. This way, we obtain the values
of v and w.

Going back to the proof of our theorem: given an admissible order-data (σ, τ)
∈ S2

n for a required bicritical diorbit, we can determine the d’itinerary ℑ of the
diorbit (by Theorem 2.2.2). As shown above, we can find a unique pair (stv, stw)
of stunted tent maps with a bicritical diorbit of length 2n and d’itinerary ℑ. By
the converse in Theorem 2.2.2, the order-data for the diorbit we have found will be
(σ, τ).

To make the discussion again a step more general, we return to pairs (h1, h2)
of arbitrary unimodal maps. If both critical points γ1 and γ2 are periodic, then
there are two possible cases that can occur: (h1, h2) has either a bicritical diorbit
(discussed earlier) or two disjoint critical diorbits.

Definition 2.4.1. Let (σ, τ) ∈ S2
m+n be a pair of permutations decomposable into

two cycles: (σ1, τ1) ∈ S2
m and (σ2, τ2) ∈ S2

n. We say that two disjoint periodic
diorbits o1 and o2 under a pair (h1, h2) of (+,-) unimodal maps have joint order-
data (σ, τ) if:

1. o1 has order-data (σ1, τ1) and o2 has order-data (σ2, τ2);
2. the order of the points in I1 and I2 is given by (τ ◦σ) and (σ ◦ τ) respectively

(see [16] for the definition of order-type).
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We will say about a permutation (σ, τ) ∈ S2
m+n that it is admissible as a joint

order-data if there exist two disjoint diorbits under some pair of (+,-) unimodal
maps which have joint order-data (σ, τ).

Similarly as for regular order-data, one can obtain the following two results
(see [17] for detailed proofs):

Theorem 2.4.2. Suppose a pair (h1, h2) of (+,-) unimodal maps has disjoint criti-
cal diorbits o1 and o2. Then their d’itineraries determine their joint order-data and
conversely.

Theorem 2.4.3. Given (σ, τ) = ((σ1, τ1), (σ2, τ2)) ∈ S2
m+n admissible joint order-

data, there exists a unique pair (stv, stw) of stunted tent maps with disjoint critical
diorbits o1 ∋ γ1 and o2 ∋ γ2 having joint order-data (σ, τ).

2.5. Description of bones in the ST -family.

Definition 2.5.1. Fix an admissible order-data (σ, τ) ∈ S2
n. By the left bone in

the parameter space of the ST -family we mean the set of pairs (v, w) ∈ PST such
that the critical point γ1 ∈ I1 has under (stv, stw) a periodic diorbit of period 2n
and order-data (σ, τ).

We will use the notation BST
L (σ, τ), or BST

L if there is no ambiguity. We define a
right bone symmetrically (i.e., we require γ2 to be periodic of specified period and
order-data), and we denote it by BST

R (σ, τ), or BST
R .

We will need for later a comprehensive approach to the left and right bones and
their properties. Recall (from Theorem 2.4.1) that there is a unique pair (v0, w0) ∈
BST

L such that the periodic of γ1 is bicritical (i.e., hits γ2) under (stv0 , stw0).

Theorem 2.5.1. For each admissible order-data (σ, τ), let (v0, w0) be the parameter
pair for the associated bicritical diorbit in the ST -family. Then there are unique
numbers v1 < v0 < v2 so that the left bone BST

L (σ, τ) is the union {v1, v2} ×
[w0, 1] ∪ (v1, v2) × {w0} of three line segments, as illustrated in Figures 3 and 4.
The description of the right bone BST

R (σ, τ) is completely analogous.

(v0, w0)

(v1, w0)

(v1, 1) (v2, 1)

(v2, w0)

Figure 3. BST
L = {v1, v2} × [w0, 1] ∪ (v1, v2) × {w0} ∋ (v0, w0)
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Proof. We can determine the shape of BST
L , hence proving 2.5.2, by constructive

means, starting with the point (v0, w0). Under (stv0 , stw0), the critical point γ1 →
v0 → ... → γ2 → w0 → ... → γ1. The bicritical diorbit hits each plateau only
once, at its center. By sliding the first plateau up and down, the diorbit of γ1

will change in a continuous way. For a fixed height v of the left plateau, call
yl(v) the element in the diorbit of γ1 under (stv, stw0) that is closest to γ2 in I2.
Clearly, if v = v0, then yl(v0) = γ2. We can move v continuously within an interval
[v1, v2] = [v0 − ǫ, v0 + ǫ], ǫ > 0 such that yl(v) moves from w0

2 to 1− w0

2 . Along the
process, the diorbit stays periodic and the order of the occurrence of points remains
consistent with (σ, τ).

2 4 6

4 6

6

6

6

Figure 4. Left bones in the ST-family of period at most 6.We
marked by (2) the unique bone of period 2, corresponding to order-
data in (σ = (1), τ = (1)) ∈ S2

1 . (4) are the two bones of period 4
and have the two possible order-data in S2

3 : (σ = (12), τ = (1)(2))
or (σ = (1)(2), τ = (12)) ∈ S2

2 . (6) are the bones of period 6 and
any admissible order-data: (σ = (123), τ = (231), (σ = (132), τ =
(321)), (σ = (231), τ = (231)), (σ = (321), τ = (132)) or (σ =
(231), τ = (123))

It is not hard to see that BST
L = {v1, v2}× [w0, 1]∪ (v1, v2)×{w0}. In particular,

there are exactly two values v = v1 and v = v2 such that the diorbit of γ1 has
given order-data (σ, τ) under (stv, st1) (i.e., there are exactly two boundary points
of BST

L , on [0, 1]× {1}).

2.6. Important points on the bones.

In either space, we consider the 2n-bones for an admissible (σ, τ) ∈ S2
n.

Definition 2.6.1. The left bone BL(σ, τ) is the set of all parameters for which γ1

has periodic diorbit of order-data (σ, τ). The right bone BR(σ, τ) is the set of all
parameters for which γ2 has periodic diorbit of order-data (σ, τ).

We will distinguish between the two parameter spaces whenever necessary, by
using the ST superscript for the bones in PST (i.e., BST

L , BST
R ) and the Q super-

script for the bones in PQ (i.e., BQ
L , BQ

R ).
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Remarks: (1) In either parameter space, any two left bones are disjoint and any
two right bones are disjoint by definition.

(2) It follows easily from Theorem 2.5.2 that in the ST -family a left bone can
cross a right bone only at 0, 2 or 4 points (see Figure 10).

Definition 2.6.2. In either parameter space, an intersection of BL(σ1, τ1) and
BR(σ2, τ2) is called a primary intersection if (σ1, τ1) = (σ2, τ2) and the pair of
maps corresponding to the intersection has a bicritical diorbit with this order-data.
It is called a secondary intersection if the corresponding map has disjoint critical
diorbits, of order-data (σ1, τ1) and (σ2, τ2) respectively, and joint order-data (σ, τ).
A capture point on BL(σ1, τ1) in either PST or PQ is a pair of maps for which γ2

eventually maps on γ1 such that it has an eventually periodic, but not periodic,
diorbit. We define symmetrically a capture point on BR(σ2, τ2).

y1

x1

y2 y3

x2 x3

(σ, τ) = ((231), (321))

y1

x1

y2 y3

x2 x3

(σ, τ) = ((132), (231))

Figure 5. Combinatorics of the two secondary intersections of a
period 4 left bone with a period 2 right bone. The two possible
order-data are: (σ, τ) = ((231), (321)) and (σ, τ) = ((132), (231)).

2.7. More on kneading-data.

In this section we will construct a bijective correspondence between bones inter-
sections in our two parameter spaces PST and PQ. For the proof, it is necessary
to view the composition qw ◦ qv of two logistic maps, depending on the case, either
as a 3-modal map with three critical points in I = I1: c1 ≤ c2 ≤ c3 (with c2 = γ1

and qv(c1) = qv(c3) = γ2) or as a unimodal map with folding point γ1 (in case
qv(x) = γ2 has a double real root or two complex roots).

We will use rigidity theorems that involve essentially properties of the kneading-
data. So let us look in more detail at the possible kneading-data of the maps in
PST and PQ.

Maps in PST : For any (v, w) ∈ PST , the map stw ◦ stv could be considered
3-modal, with folding points c1 = 1

4 , c2 = γ1 = 1
2 and c3 = 3

4 .

AST = {[0,
1

4
),

1

4
, (

1

4
,
1

2
),

1

2
, (

1

2
,
3

4
),

3

4
, (

3

4
, 1]}

and

KST = (K(c1),K(c2),K(c3)).
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We can consider PST as made of three parts: PST = PST
1 ∪ PST

2 ∪ PST
3 , where

PST
1 = {(v, w) ∈ [0, 1]2, w ≥ 2v}, PST

2 = {(v, w), w < 2v, w ≤ 2 − 2v}, and
PST

3 = {(v, w), w > 2 − 2v}.

I. There are no right bones in PST
1 , and hence no bones intersections.

II. PST
2 contains no secondary intersections, since w

2 ≤ v ≤ 1 − w
2 . Indeed,

stw(γ2) = w = (stw◦stv)(γ1), so the diorbits of γ1 and γ2 are not disjoint. Moreover,
if (v, w) ∈ PST

2 is a primary intersection, then the map stv ◦ stw is strictly 3-modal,
with only one exception: (v, w) = (1

2 , 1
2 ).

III. For (v, w) ∈ PST
3 we have that stw ◦ stv is strictly 3-modal, hence K(c1) =

K(c3) 6= K(c2).

Maps in PQ: The behavior of the degree 4 polynomials in the Q-family is also
different for distinct values of the parameters.

Figure 6. A few examples of behavior of maps in PQ. The critical
points of the quartic map qw ◦ qv are distinct and real for v > 1

2 ,

and all coincide for v = 1
2 , while two of them are complex for v < 1

2 .

I. If v < 1
2 , then qw ◦qv has only one real critical point C2 = γ1 = 1

2 and two com-
plex ones C1, C3 ∈ C\R. This parameter subset will be of somewhat less interest,
as it is not crossed by any right bones and hence contains no bones intersections.
Indeed, qv(x) ≤ v < 1

2 , ∀x ∈ I1, so no diorbit can go through γ2.

II. If v = 1
2 , then qw ◦ qv has a degenerate real critical point C1 = C2 = C3 = γ1.

This line contains primary intersections with right bones. More precisely, if a left
bone hits {v = 1

2}, then the crossing point is its primary intersection. However, in

this case its reflection qv ◦ qw is strictly 3-modal, with the exception of v = w = 1
2 ,

which is the period 2 primary intersection.
III. If v > 1

2 , then there are three distinct real critical points for qw ◦ qv: C1 <
C2 < C3, with C2 = γ1 and qv(C1) = qv(C3) = γ2. The map is 3-modal:

KQ = {[0, C1), C1, (C1, C2), C2, (C2, C3), C3, (C3, 1]}
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and

KQ = (K(C1),K(C2),K(C3)).

Remarks.(1) There are no bones in PQ in the region {v < 1
2 , w < 1

2}.

(2) If v < 1
2 , then qw ◦ qv has complex critical points. However, if (v, w) is on a

bone in the region {v < 1
2}, then it must be on a left bone, so that w ≥ 1

2 . Hence
in this case the map qv ◦ qw corresponding to its symmetric point (w, v) on the
corresponding right bone has real critical points, non-degenerate if w 6= 1

2 .

A correspondence is already apparent between the shape and position of two
left bones with identical order-data in the two spaces PST and PQ. For instance,
the unique primary intersection of period two: (v, w) = (1

2 , 1
2 ) ∈ PST clearly cor-

responds combinatorially to the point (v, w) = (1
2 , 1

2 ) ∈ PQ. We will consider at
least this case classified in our future analysis. The following theorems will there-
fore concern specifically the strictly 3-modal case (applicable either for stw ◦stv and
qw◦qv or for their reflections stv◦stw and qv◦qw) (as shown by the previous remark).

2.8. The correspondence of the bones intersections.

We use Thurston’s Theorem and its extension for boundary anchored polynomials
of degree four and shape (+,-,+,-) to construct in this section a bijection between
bones crossings in the two parameter spaces. For the rest of Section 2, we will
need to adapt our notation to distinguish between parameters (v, w) ∈ PST and
parameters (v′, w′) ∈ PQ, in order to avoid confusion.

Theorem 2.8.1. Let (σ, τ) ∈ S2
n be admissible order-data. There is a unique

primary intersection (v′, w′) in PQ with this data and conversely.

Proof. Uniqueness: Suppose we have a pair (v, w) ∈ PQ with a bicritical diorbit
of order-data (σ, τ). We implicitly know the d’itinerary of the bicritical diorbit,
hence the kneading sequences of the three real distinct critical points C1 < C2 =
1
2 < C3 of qw ◦ qv ( if v > 1

2 ) or qv ◦ qw (if w > 1
2 ). By Thurston’s Theorem,

the boundary anchored polynomial of degree 4 with the expected kneading data is
unique, implying the uniqueness of the pair (qv, qw) with the given order-data.

Existence: Let (stv, stw) be the pair of stunted tent maps with bicritical dior-
bit of order-data (σ, τ). We know by Theorem 2.2.2 that we can determine the
d’itinerary of this bicritical diorbit. If we exclude the case v = w = 1

2 , which is
already classified, then either stw ◦ stv or stv ◦ stw is strictly 3-modal (say stw ◦ stv,
to fix our ideas). We know the kneading-data KST = (K(c1),K(c2),K(c3)) for
stw ◦ stv, which should also be the kneading-data for the polynomial qw′ ◦ qv′ that
we want to find. We hence need to prove existence of a polynomial of degree 4 with
the required kneading-data K and then show that it can be written as a composi-
tion of two logistic maps qv′ and qw′ . We will finally show that the pair (qv′ , qw′)
we found has indeed the given order-data.

Each two consecutive kneading-sequences of K are distinct. Also, each K(ci) hits
each plateau of stw ◦ stv at most once, above its corresponding critical point. So,
by Lemma 2.1.4, all kneading sequences of K are tight.

By Thurston’s Theorem, these imply existence and uniqueness of a polynomial P
with kneading-data K, of shape (+,-,+,-) and conditions at the boundary P (0) = 0
and P (1) = 0. In general, we know that a boundary anchored polynomial P of
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degree 4, shape (+,-,+,-) and real distinct critical points 0 < C1 < C2 < C3 < 1
is a composition of logistic maps if and only if P (C1) = P (C3). In our case, we
know that the kneading sequences K(C1) = K(c1) and K(C3) = K(c3) are identical.
Suppose P (C1) < P (C3). Then the whole interval [P (C1), P (C3)] will have the
same (bicritical) d’itinerary, as K(C1) = K(C3), so after a finite number of iterations
under P it will all map to C2, a contradiction. So P (C1) = P (C3), and hence there
exists a pair of quadratic maps such that P = qw′ ◦ qv′ .

The kneading data K determines the d’itinerary of the bicritical diorbit and its
order-data. So, the polynomial map we found can only have the given order-data
(σ, τ).

The proof is similar for the equivalent statement on secondary intersections:

Theorem 2.8.2. Let (σ, τ) ∈ S2
m+n be admissible joint order-data. There is a

unique secondary intersection in PQ with this data and conversely.

2.9. The correspondence of the boundary points.

Fix (σ1, τ1) ∈ S2
n. The left bone BST = BST

L (σ1, τ1) in PST with order-data
(σ1, τ1) is as an algebraic curve in PST . Its boundary consists of two points, as
shown in Theorem 2.5.2:

δBST = BST ∩ (I × {1}) = {(v1, 1), (v2, 1)},

with v1 < v2.
We will use a subscript notation to distinguish between the two parameter spaces.

For any (v, w) ∈ PST , we will call ℑST (x)(v, w) the d’itinerary of x under (stv, stw)
and KST (v, w) the kneading-data of stw ◦ stv. For any (v′, w′) ∈ PQ, we will call
ℑQ(x)(v′, w′) the d’itinerary of x under (qv′ , qw′) and KQ(v′, w′) the kneading-data
of qw′ ◦ qv′ .

The d’itineraries of the critical points γ1 and γ2 under (stv1 , st1) and (stv2 , st1)
are as follows:

ℑST (γ1)(v1, 1) 6= ℑST (γ1)(v2, 1)

ℑST (γ2)(v1, 1) = ℑST (γ2)(v2, 1) = (Γ2, R1, L2, L1, L2, L1, ...).

At any (v, w) on the left bone BST , γ1 has a periodic diorbit o1 of period 2n and
order-data (σ1, τ1). At the two boundary points (v1, 1), (v2, 1) ∈ δBST , the diorbit
o2 of γ2 is also finite, although not periodic. So the stunted sawtooth map stw ◦ stv
is postcritically finite.

We expect the boundary of the corresponding quadratic left bone BQ = BQ(σ1, τ1)
to look similarly to δBST :

Theorem 2.9.1. The boundary of BQ(σ1, τ1) = BQ consists of exactly two distinct
points in [0, 1] × {1}.

Proof. Consider the corresponding ST -left bone BST (σ1, τ1) and its boundary points
(v1, 1) and (v2, 1). For i = 1 and i = 2, we will work with the reflections stvi

◦ st1
because they have real distinct critical points c1 < c2 < c3. For both i = 1 and
i = 2, the pair of critical d’itineraries at (1, vi) determines the respective kneading-
data KST (1, vi). Note that ℑST (γ1)(v1, 1) 6= ℑST (γ1)(v2, 1), so KST (1, v1) 6=
KST (1, v2). The kneading-data also satisfies for each i the conditions in the ex-
tended version of Thurston’s theorem: the kneading sequences are finite and tight
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and KST (1, vi)(c1) = KST (1, vi)(c3) 6= KST (1, vi)(c2). Hence for each i there exists
a point (w′

i, v
′
i) ∈ PQ such that qv′

i
◦qw′

i
has kneading-data KQ(w′

i, v
′
i) = KST (1, vi),

and subsequently the same critical d’itineraries as (stvi
, st1). In consequence:

ℑQ(γ1)(v
′
i, w

′
i) = ℑST (γ1)(vi, w1)

ℑQ(γ2)(v
′
i, w

′
i) = ℑST (γ2)(vi, 1) = (Γ2, R1, L2, L1, L2, L1, ...).

So clearly (v′i, w
′
i) must be in the left bone BQ

L = BQ in PQ corresponding
to BST

L = BST in PST . We also get that the d’itinerary of γ2 under (qv′

i
, qw′

i
)

is (Γ2, R1, L2, L1, L2, L1, ...). As (v′i, w
′
i) are on a left quadratic bone, we have

v′iw
′
i > 1

16 , so zero is a repeller for the composition qw′

i
◦ qv′

i
. So, the only way for

the d’itinerary of a point to stay indefinitely on L2 and L1 is for the point to map
to zero after a number of iterates. To be consistent with the required d’itinerary,
we need to have (qv′

i
◦ qw′

i
)(γ2) = 0 and qw′

i
(γ2) > 1

2 , so qw′

i
(γ2) = 1, and hence

w′
i = 1, for both i = 1 and i = 2.
In conclusion: for the two points (v1, 1), (v2, 1) ∈ δBST we found two points

(v′1, 1), (v′2, 1) ∈ δBQ with the same corresponding kneading-data. The two points
(v′1, 1) and (v′2, 1) we found in δBQ are the only two boundary points of BQ. This
follows almost immediately from Thurston’s uniqueness.

2.10. A more complete description of bones in PST and PQ.

We showed that every bone in PQ is composed of a bone-arc joining two distinct
boundary points, and possible other components with no additional boundary points
(i.e., loop components). For the time being, let’s fix an order-data (σ1, τ1) ∈ S2

n

and focus on the simple arc component of the corresponding bone. In order to keep
notation relatively simple, within this section we will designate this arc-bone by
BQ = BQ(σ1, τ1), which is not entirely wrong, as we will eventually rule out the
existence of bone-loops.

We plan to prove that, along BQ, the crossings with other bones occur in the
same order of their combinatorics as the crossings along the corresponding bone
BST = BST (σ1, τ1) ⊂ PST .

We study first the order of occurrence of the primary and secondary intersections
along a bone in PST with order-data (σ1, τ1). To fix our ideas, all proofs and results
are developed for left bones BST = BST

L , hence we will omit writing the index L
unless it causes ambiguity.

Fix a stunted left bone BST = BST (σ1, τ1) and slide (v, w) along BST . Clearly,
ℑST (γ1) only changes at the primary intersection (v0, w0). Therefore, BST

∗ =
BST \{(v0, w0)} can be divided into two halves, each corresponding to a different
d’itinerary of γ1 under (stv, stw); call BST

− the left half, containing the boundary

point (v1, 1) ∈ δBST , and BST
+ the one containing (v2, 1) ∈ δBST (where v1 < v2):

BST = BST
∗ ∪ {(v0, w0)} = BST

− ∪ {(v0, w0)} ∪ BST
+ .

To fix our ideas, we look at BST
− ; the results and their proofs should work sym-

metrically for BST
+ . BST

− is composed of a vertical segment and a horizontal one:

BST
− = BST

−,v ∪ BST
−,h,

where BST
−,v = {v1} × [w0, 1] and BST

−,h = [v1, v0] × {w0}.
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BST
−,h

BST
−,v

Figure 7. We divide the left half BST
− of a left bone in PST

into a vertical segment BST
−,v and a horizontal segment BST

−,h. All

secondary intersections occur along BST
−,v. All points along the hor-

izontal part are capture points.

We can now state the following:

Lemma 2.10.1. The secondary intersections occur along BST
−,v in the strictly de-

creasing order of their d’itinerary ℑST (γ2), as w decreases from 1 to w0.

Proof. For a fixed m ≥ 1, call Dm
ST the set of all parameters (v, w) (secondary

intersections and capture points) on BST
−,v for which γ2 maps to either γ1 in 2m− 1

iterates or to γ2 in 2m iterates. Call DST =
⋃

m≥1 D
m
ST the distinguished points on

BST
−,v. Also call ℑm

ST (γ2) the d’itinerary ℑST (γ2) truncated to the first 2m positions.
As w decreases from 1 to w0, ℑ

m
ST (γ2) decreases (in the order inherited from the

total order on infinite d’itineraries), with actual changes at all points in
⋃

k≤m Dk
ST .

Hence ℑST (γ2) decreases, with changes at all points in DST .
Subsequently, ℑST (γ2) decreases strictly on the set of distinguished points, in

particular on the set of secondary intersections (see [17] for details).

Remark. The theorem makes it possible to identify the order of occurrence of
the distinguished points (in particular of the secondary intersections) along BST

−,v

by looking at the d’itinerary of γ2. From the construction of the stunted bones
it is also easy to see that there are no secondary intersections on the horizontal
segment of BST

−,h. In fact, all points of BST
−,h are capture points, and ℑST (γ2)(v, w0)

is constant for v ∈ [v1, v0].

We shift our focus now to the parameter space PQ. The corresponding left bone
BQ is a connected arc joining two boundary points (v′1, 1) and (v′2, 1) (with v′1 < v′2)
and having a unique primary intersection (v′0, w

′
0). As before, the d’itinerary of γ1

under (qv′ , qw′) changes only at (v′0, w
′
0) as we move (v′, w′) along BQ. Hence we can

divide BQ into two halves: left of (v′0, w
′
0), containing (v′1, 1), and right of (v′0, w

′
0),

containing (v′2, 1).

BQ = BQ
− ∪ {(v′0, w

′
0)} ∪ BQ

+

We will study the left half, by comparison with the vertical left half BST
−,v.
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We know that there is a bijective correspondence between secondary intersections

along BST
−,v and BQ

− that associates to each intersection in BST
−,v one with ℑQ(γ2) =

ℑST (γ2) in BQ
− . We would like to prove that these secondary intersections occur on

both BST
−,v and BQ

− in the same decreasing order of ℑ(γ2), going from the boundary
towards the primary intersection. In other words, we prove that the bijection is
order preserving.

Fix m ≥ 1. By analogy, we call ℑm
Q (γ2) the d’itinerary ℑQ(γ2) truncated to

the first 2m positions. Also, Dm
Q will be the set of all parameters (v′, w′) on BQ

−
for which γ2 maps to either γ1 in 2m − 1 iterates or to γ2 in 2m iterates, and

DQ =
⋃

m≥1 D
m
Q will stand for the set of distinguished points on BQ

− .

Take the first distinguished point (l1, m1) ∈
⋃

k≤m Dk
Q on BQ

− (from (v′1, 1) along

the connected curve, with the regular order inherited by the order on (0, 1) ⊂ R). We
know that there exists a corresponding distinguished point (α, β) ∈

⋃

k≤m Dk
ST ⊂

BST
−,v with the same critical d’itineraries:

1. ℑST (γ1)(α, β) = ℑQ(γ1)(l1, m1).
2. ℑST (γ2)(α, β) = ℑQ(γ2)(l1, m1).

Claim. (α, β) is the first point to occur in
⋃

k≤m Dk
ST along BST

−,v.

Suppose not. Then there exists a point (v∗, w∗) ∈
⋃

k≤m Dk
ST between the bound-

ary point (v1, 1) and (α, β). We then have:

ℑm
ST (γ2)(v1, 1) > ℑm

ST (γ2)(v
∗, w∗) > ℑm

ST (γ2)(α, β)

ℑm
ST (γ2)(v1, 1) = ℑm

Q (γ2)(v
′
1, 1)

ℑm
Q (γ2)(l1, m1) = ℑm

ST (γ2)(α, β).

The contradiction follows easily. (Note, for instance, that the conditions imply that
the pair of critical d’itineraries at (v1, 1) has to be the same as the pair at a point
right before (α, β)).

So the distinguished point in (α, β) ∈ BST
− with d’itinerary ℑST (γ2)(α, β) =

ℑQ(γ2)(l1, m1) is the first to occur in
⋃

k≤m Dk
ST . Continuing the procedure shows

that the order of occurrence of all points in
⋃

k≤m Dk
ST along BST

−,v is the same as the

order of points in
⋃

k≤m Dk
Q along BQ

− (i.e., the decreasing order of the d’itinerary

ℑm(γ2)). We can state this as follows:

Theorem 2.10.1. For a fixed m ≥ 1, going along BST
−,v from (v0, w0) to (v1, 1) and

along BQ
− from (v′0, w

′
0) to (v′1, 1), the d’itinerary ℑm(γ2) is monotonically increas-

ing, with actual changes occurring at each distinguished point in
⋃

k≤m Dk
ST and

⋃

k≤m Dk
Q, respectectively.

A similar argument proves the corresponding statement for boundary points of
bones:

Theorem 2.10.2. For a fixed m ≥ 1, going along [0, 1]× {1} ⊂ ∂PST and [0, 1]×
{1} ⊂ ∂PQ, the d’itinerary ℑ(γ2) = (Γ2, R1, L2, L1, L2, L1, ...) stays constant, but
the d’itinerary ℑm(γ1) increases monotonically, with an actual change at each end-
point of a bone of period 2k ≤ 2m.
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2.11. The big picture. Overview of results:

Fix m ≥ 1. Going along BST
− from (v0, w0) to (v1, 1) and along BQ

− from (v′0, w
′
0)

to (v′1, 1), the truncated d’itinerary ℑm(γ2) increases monotonically, with an actual
increase at each crossing with a right bone. The same result holds for the right halves

BST
+ and BQ

+ . There is a one-to-one correspondence between the crossing points of
bones of period at most 2m in the two families, correspondence that preserves the
order of critical d’itineraries (i.e., of the joint order-data).

Slide from left to right along the upper boundary segment [0, 1] × {1} of the
two parameter spaces. The d’itinerary ℑ(γ2) does not change, and the truncated
d’itinerary ℑm(γ1) increases monotonely, with an actual change at each end-point
of a left bone. There is a one-to-one correspondence between all boundary points of
bones of period smaller than 2m in the two families, correspondence that preserves
the order of the critical d’itineraries.

We want to restate the results in terms of kneading-data.

Theorem 2.11.1. In the parameter space PQ, the kneading-data of the maps
qw′ ◦ qv′ increases along a left bone-arc from its primary intersection towards either
boundary point and increases along the upper boundary interval [0, 1] × {1} ∈ ∂PQ

from left to right (see picture). A symmetric statement holds for right bones and
the right boundary interval.

Proof. Consider two arbitrary (v′1, w
′
1), (v

′
2, w

′
2) ∈ BQ

− and the d’itineraries ℑi
Q(γ2)

of γ2 under qw′

i
◦ qv′

i
, for i = 1, 2. If ℑ1

Q(γ2) < ℑ2
Q(γ2), then the kneading data

K(qw1 ◦ qv1) << K(qw2 ◦ qv2). If (v′1, 1), (v′2, 1) ∈ [0, 1]×{1} are such that ℑ1
Q(γ1) <

ℑ2
Q(γ1), then K(q1 ◦ qv1) << K(q1 ◦ qv2).

We know (see for example [16]) that if the kneading-data of two maps f and g
are such that K(f) << K(g), then the values of their topological entropies are such
that h(f) ≤ h(g). Hence:

Theorem 2.11.2. The topological entropy increases in PQ along each bone-arc
from its primary intersection towards the boundary ∂PQ and along the boundary
segments [0, 1]× {1} and {1} × [0, 1] towards the upper right corner (see picture).

Figure 8. The arrows show the direction of increasing entropy
along the bones and the boundary in PST and PQ.
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We know now a few things about the combinatorics along the bones, but we have
no information about their geometry or degree of smoothness. In Sections 3 and 4,
we will obtain two important results addressing these issues. For now, however, we
want to point out a few major consequences of our results.

Firstly, let’s note that Thurston’s uniqueness implies that for any arbitrary left
bone in PQ, the bone-arc BQ contains all possible post-critically finite kneading data
admissible for the given bone. In consequence, any loop component that the bone
may have cannot contain any post-critically finite points. We will use this in our
proof in Section 3.

Secondly, let’s assume the results that will be proved independently in Sections 3
and 4: the bones in PQ are smooth C1 curves, intersecting transversally with each
other and with the boundary. There are no bone loops in PQ, so each bone is a
smooth arc connecting two boundary points. Moreover, we have already seen that
each such bone-arc contains all post-critically finite kneading-data existing on the
corresponding bone in PST , in the same order of occurrence. Then we obtain a
strong topological correspondence between PST and PQ as follows.

Definition 2.11.1. Fix n ∈ N. We define the n-skeleton in either parameter space
to be:

SST
n = the union of all (left and right) bones BST

2k ⊂ PST of period 2k ≤ 2n,
together with the boundary ∂PST ;

SQ
n = the union of all (left and right) bones BQ

2k ⊂ PQ of period 2k ≤ 2n,
together with the boundary ∂PQ.

By a vertex of either skeleton we mean either an end-point of its bones or a
(primary or secondary) intersection point.

Theorem 2.11.3. For any fixed n ∈ N, there is a homeomorphism:

ηn : PST → PQ,

which maps SST
n onto SQ

n , carrying ∂PST to ∂PQ and carrying bones to correspond-
ing bones and vertexes to vertexes with the same data.

Proof. The construction of the homeomorphism is topologically natural. Define ηn

on the set of vertices by corresponding to each vertex in SST
n the unique one in

SQ
n with the same data. Along each bone, ηn preserves the order of the vertices.

Hence we can extend it continuously to the intervals on the bones or boundary
between each two vertices, then to each skeleton-enclosed region. This can easily
be done in such a way that the resulting continuous map ηn : PST → PQ is a
homeomorphism.

We can associate to the n-skeleton in either parameter space a topological cell-
structure as follows:

• the 0-cells are points, more precisely the vertexes of the n-skeleton;
• the 1-cells are the connected components of the bones obtained by deleting the

vertexes, hence they are homeo to open intervals;
• the 2-cells are the connected components of the complement of the n-skeleton

in the respective parameter space, hence they are homeo to open discs.
We will also use the closures of such cells, which are homeo to points, closed

intervals and closed discs respectively.
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η3

ψ3 = η−1
3

Figure 9. The n-skeletons define topological cell-complexes in
both parameter spaces. The map ηn is a homeomorphism between
these complexes. The picture illustrates n = 3.

We call the resulting complexes PST
n in PST and PQ

n in PQ. The map ηn : PST
n →

PQ
n is a homeomorphism of cell complexes, taking each cell in PST

n to a corresponding
cell in PQ

n by carrying vertexes to vertexes with the same entropy and edges to edges
with the same interval of entropies.

3. Hyperbolicity in PQ.

3.1. The mapping schema of a hyperbolic map.

Definition 3.1.1. Let M be a finite disjoint union of copies of C, and let f : M −→
M be a proper holomorphic map of degree ≥ 2 on each component of M . We say
that f is hyperbolic if every critical orbit converges to an attracting cycle.

Let f be a hyperbolic map as above. Let W (f) be the union of the basins of
attraction of all attracting cycles of f . f carries each component Wα ⊂ W (f) onto
a component Wβ by a map of degree dα ≥ 1. Also let W c(f) be the union of all
critical components Wα ⊂ W (f) (i.e., of all components Wα that contain critical
points of f).

We define the reduced mapping schema S(f) = (|S|, F, w) associated to f as the
triplet made of:

• a set of vertices |S|, obtained by associating a vertex α to each critical compo-
nent Wα ⊂ W c(f);

• a weight function w : |S| → |S|, defined as w(α) = the number of critical points
of f in Wα;

• a set of edges F : |S| → |S|, F (α) = β, where Wβ is the image of Wα under
the first return map to W c(f).

The critical weight of S(f) is defined as w(f) =
∑

α w(α).
All hyperbolic maps that interest us have reduced mapping schemata of critical

weight 2, so we will only look at the cases that appear for w = 2. For a more general
analysis, see [11].

To a fixed mapping schema with w = 2, we associate the universal polynomial
model space P . This will be the space of all maps f from C1⊔C2 to itself such that
the restriction of f to each copy of C is a monic centered polynomial of degree 2.
More precisely, for a1, a2 ∈ C:
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f(z) = z2 − a1, for all z ∈ C1 and f(z) = z2 − a2, for all z ∈ C2.

We say that a map f ∈ P belongs to the connectedness locus C if its filled Julia
set K(f) intersects both C1 and C2 in a connected set. The hyperbolic connectedness
locus H ⊂ C is the open set of all f ∈ P for which the orbits of both critical points
0 ∈ C1 and 0 ∈ C2 converge to attracting periodic orbits.

Such hyperbolic maps can be roughly classified into the three following types
(see [13]):

(1) Bitransitive case: 0 ∈ U1 ⊂ C1 and 0 ∈ U2 ⊂ C2 such that U1 is mapped
to U2 under q1 iterates of f , and U2 is mapped back to U1 under q2 iterates.

U1 ∋ 0

f◦q1

f◦q2

U2 ∋ 0

Figure 10. The behavior of a bitransitive hyperbolic map.

(2) Capture case: 0 ∈ U1 ⊂ C1 and 0 ∈ U2 ⊂ C2 such that U1 is periodic and
U2 is not, but some forward image of U2 coincides with U1. Also its symmetric case.

U1 ∋ 0 f◦q1

U2 ∋ 0

f◦qf◦q2

f◦q1(U1) = f◦q(U2)

Figure 11. The behavior of a map in the capture case.

(3) Disjoint periodic sinks: 0 ∈ U1 and 0 ∈ U2, where U1 and U2 are periodic
of periods q1 and q2, but no forward image of U1 coincides with U2 and vice versa.

U1 ∋ 0

f◦q2

U2 ∋ 0

f◦q1

Figure 12. The behavior of a map in the disjoint sinks case.

For maps f ∈ H, we may consider their reduced mapping schemata S(f). These
schemata will all have critical weight 2, but not all are isomorphic (see Figure
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14). However, all maps in each connected component of H clearly have isomorphic
schemata. Furthermore, by Theorem 4.1 in [11]:

Theorem 3.1.1. If Hα ⊂ C is a hyperbolic component of H with maps having
reduced schemata isomorphic to S, then Hα is diffeomorphic to a model space B(S).
In particular, any two hyperbolic components Hα and Hβ with schemata isomorphic
to S are diffeomorphic. Moreover, each Hα contains a unique post-critically finite
map fα, called its center.

(3)(2) (1) 

α2

α1

α1
α2α2α1

Figure 13. Mapping schemata of weight w = 2. (1) Bitransi-
tive case: |S| = {α1, α2}, F (α1) = α2, F (α2) = α1, ω(α1) =
ω(α2) = 1. (2) Capture case: |S| = {α1, α2}, F (α1) =
α1, F (α2) = α1, ω(α1) = ω(α2) = 1. (3) Disjoint sinks case:
|S| = {α1, α2}, F (α1) = α1, F (α2) = α2, ω(α1) = ω(α2) = 1

Definition 3.1.2. A real form of the mapping schema S is an antiholomorphic
involution ρ : C1 ⊔ C2 → C1 ⊔ C2, which commutes with the special map fS

0 : C1 ⊔
C2 → C1 ⊔ C2, fS

0 (z) = z2. The collection of maps f ∈ P that commute with ρ is
an affine space PR(ρ), which we call the real form of P associated with ρ. We also
define the corresponding real connectedness locus and the real hyperbolic locus as:

CR(ρ) = C ∩ PR(ρ)
HR(ρ) = H ∩ PR(ρ).

For each mapping schema of weight 2, there are exactly two real forms. The form
ρ0(z) = z corresponds to the space PR(ρ0) of real polynomials in P . If we restate
Theorem 6.4 of [11] in our particular case, we obtain:

Theorem 3.1.2. Any hyperbolic component in CR = CR(ρ0) ⊂ PR(ρ0) is a topolog-
ical 2-cell with a unique “center point” and is real analytically homeomorphic to a
model space BR(S, ρ0).

In other words, all hyperbolic components with the same schemata in CR are
diffeomorphic to each other. For example, all bitransitive components are diffeo to
the principal component centered at

fS
0 : C1 ⊔ C2 −→ C1 ⊔ C2, fS

0 (z) = z2.

For a detailed characterization of the construction and properties of the suitable
model spaces, see [11].
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3.2. Hyperbolic components in PQ.

Let us return to our space, containing real quartic polynomials that are compo-
sitions qw ◦ qv of logistic maps.

Let C1 and C2 be two copies of the complex plane. Fix (v, w) ∈ [0, 1]2 and
consider qv : C1 → C2 and qw : C2 → C1 as the complex extensions of two fixed
logistic maps of the interval. We define a new map: qv

w : C1 ⊔C2 → C1 ⊔C2, acting
as qv on C1 and as qw on C2.

Let W (qv
w) ⊂ C1 ⊔ C2 be the open set consisting of all complex numbers in C1

and C2 whose forward orbit under qv
w converges to an attracting periodic orbit of

qv
w.

Under iteration of qv
w, each component of W (qv

w) is mapped onto a component
of W (qv

w). As before, we will say that qv
w is hyperbolic if both γ1 ∈ I1 ⊂ C1 and

γ2 ∈ I2 ⊂ C2 are contained in W (qv
w).

It would be convenient to find a correspondence between our family of pairs of
real quadratic maps, parametrized by (v, w) ∈ PQ and the family of degree 2 normal
polynomials. It can be shown that each map qw ◦ qv : C1 → C2 is conjugated by
a complex affine map L to a composition of maps z → z2 − a1 and z → z2 − a2.
Moreover, the correspondence (v, w) → (a1, a2) is “nice” enough to permit us to
carry over to PQ properties we have in the space of normal forms. More precisely:

Theorem 3.2.1. Let U be the subset of PQ consisting of pairs (v, w) with vw > 1
16 .

For each such pair (v, w) ∈ U , there is a unique pair (A, B) ∈ R2 such that qw ◦qv is
linearly conjugate to z → z4 +Az2 +B; there also exists a unique pair (a1, a2) ∈ R2

so that qw◦qv is linearly conjugate to the composition of z → z2−a1 and z → z2−a2.
Furthermore, recall that the connectedness locus CR ⊂ R2 is the subset of param-

eters (a1, a2) ∈ R2 for which the complex critical points of (z2 − a1)
2 − a2 have

bounded orbits. The correspondence described above,

Ξ: U → CR

Ξ(v, w) = (a1, a2),

is a bijective diffeomorphism.

Proof. Each qw ◦ qv with (v, w) ∈ PQ is conjugated by an affine map L(z) =
− 8

3√
v2w

z + 1
2 to a composition of the two monic centered quadratic complex maps:

z → ζ = z2 − a1(v, w) and ζ → z = ζ2 − a2(v, w). The correspondence

Ξ : U → R
2, Ξ(v, w) = (a1(v, w), a2(v, w))

is a diffeomorphism onto its image, where the image Ξ(U) is exactly the real con-
nectedness locus CR in PR.

Remarks. (1) The region PQ \ U = {(v, w) with vw < 1
16} is itself a hyperbolic

component of PQ, whose maps have all critical points attracted to zero. The map
Ξ folds this region and the principal component centered at (v, w) = (1

2 , 1
2 ) ∈ PQ

onto the same component in CR.
(2) All bones in PQ are contained in U . Indeed, suppose (v, w) /∈ U . The fixed

origin is not repelling for the map qw ◦ qv with negative Schwarzian derivative, so
it attracts all critical points, and hence (v, w) can’t be on a bone.
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A. B.

Figure 14. A. Hyperbolic components in R2 for the classical fam-
ily of pairs of quadratic monic centered maps. The picture shows
the parameter window (a1, a2) ∈ [−2, 2] × [−2, 2]. B. Hyperbolic
components in U ⊂ PQ. The principal component in both cases is
visible as the large central dark region.

We use the terminology in Section 2 to give the needed description of the hy-
perbolic components in our original parameter space PQ. Hyperbolic components
within each class (bitransitive, capture and disjoint sinks) are diffeomorphic to each
other. The center points in each case will be respectively a primary intersection, a
capture point, or a secondary intersection.

Theorem 3.2.2. Each hyperbolic component in U ⊂ PQ is a topological 2-cell that
contains a unique post-critically finite point, called its center. Moreover, every bone
that intersects such a component does it along a simple arc passing through the
center. Subsequently, there could be either one bone crossing the component through
its center (capture case) or a pair of left-right bones intersecting transversally at the
center point (bitransitive and disjoint sinks cases).

For more details on the proof of Theorem 3.2.2, see [17].

3.3. Density of hyperbolicity in PQ.

Theorem 3.3.1. Hyperbolicity is dense in the parameter space PQ.

Remark. The proof of this density result in the context of the present paper is
an adaptation of the proof of the Fatou conjecture presented in [9]. We will only
sketch the main steps; for complete arguments, see the cited references. One of the
main results in [9] is the following Rigidity Theorem, which we will also use (in our
more restricted context).

Rigidity Theorem. Let f and f ′ be two polynomials with real coefficients, real
non-degenerate critical points, connected Julia set and no neutral periodic points. If
f and f ′ are topologically conjugate as dynamical systems on the real line R, then
they are quasiconformally conjugate as dynamical systems on the complex plane C.
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Proof. We define the family S4 as the set of complex polynomials Q : C → C of
degree 4, boundary anchored (i.e., Q(0) = Q(1) = 0) and such that Q(z) = Q(1−z),
for all z ∈ C.

Consider Xs to be the subset of maps in S4 with the following properties:
• They have real coefficients.
• Their three critical points are real and nondegenerate.
• All critical points and values are in [0,1]. Hence, their Julia sets are connected

(see for example [14]).
• The boundary {0, 1} is repelling.

w = 1
2

v = 1
2

vw = 1
16

Figure 15. All maps in {vw < 1
2} and in {v < 1

2 , w < 1
2}

are hyperbolic. Hyperbolic maps are dense in {vw > 1
16 , v ≥ 1

2}

(slant shaded). By symmetry, they are dense in {vw > 1
16 , w ≥ 1

2}

(horizontaly shaded). The region vw > 1
16 contains all left and

right bones.

The three complex critical points of an arbitrary P ∈ PQ are C1, C2 = 1
2 and

C3 = 1 − C1. An equivalent condition to C1 ∈ R is that

qv

(

1

2

)

≥
1

2
⇔ v ≥

1

2
.

So,

Xs = {qw ◦ qv, where (v, w) ∈ PQ, v ≥
1

2
, vw >

1

16
}.

We claim that hyperbolic polynomials are dense in Xs. Then the proof of 3.3.1
follows relatively easily. Indeed, the claim implies directly density of hyperbolicity
in the region in PQ where vw > 1

16 and v ≥ 1
2 . By the symmetry property (2),

the result follows in the region where vw > 1
16 and w ≥ 1

2 . In the regions {vw >
1
16 , v < 1

2 , w < 1
2} and {vw < 1

16}, the proof is trivial: if vw < 1
16 , then all three

critical diorbits of qw ◦ qv converge to zero, while if v < 1
2 , w < 1

2 and vw > 1
16 ,

then all critical diorbits converge to a point in (0, 1
2 ).
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Next, we aim to prove density of hyperbolicity in Xs.

Lemma 3.3.1. Consider P ∈ Xs with one parabolic cycle {z1, ..., zm}. We can
approximate P by a polynomial S ∈ Xs for which the cycle is attracting.

Sketch of proof: Fix P ∈ Xs as above.
It is fairly easy to show the existence of a polynomial Q : C → C with real

coefficients and the following properties (see [17]):
• Q(z) = Q(1 − z), ∀ z ∈ C

• Q(zj) = 0, ∀ j = 1, m
• Q(0) = Q(1) = 0
• Q′(x) = 0 when P ′(x) = 0

•
∑ Q′(zj)

P ′(zj)
< 0.

Consider the new polynomial R = P +ǫQ. For small real values of ǫ, R perturbes
the neutral cycle of P to an attracting cycle:

∑

log|R′(zj)| =
∑

log|P ′(zj)| +
∑

log

∣

∣

∣

∣

1 + ǫ
Q′(zj)

P ′(zj)

∣

∣

∣

∣

=

= ǫ
∑ Q′(zj)

P ′(zj)
+ ≀(ǫ2) < 0.

For small enough values of ǫ, R has the following properties:
• The parabolic cycle of P is attracting for R.
• The attracting/repelling cycles of P change to attracting/repelling cycles for

R (hence {0} remains a repelling fixed boundary point for R).
• R(z) = R(1 − z), ∀ z ∈ C and R(0) = R(1) = 0 (i.e., R ∈ S4).
• R has real coefficients.
• The critical points of R are the same as the critical points of P , hence they are

real and nondegenerate; all critical points and values are contained in [0, 1], hence
the Julia set J(R) is connected.

However, in order to satisfy all required conditions, the polynomial Q we have
found (hence R) may have degree larger than 4. We use the Straightening Theorem
to obtain a degree 4 polynomial S ∈ Xs with the same behavior as R (see for
example [4] or [17]). �

For every Q ∈ S4, let τ(Q) be the number of critical points contained in the
attracting basin of a hyperbolic attracting cycle of Q. Define

X ′
s = {Q ∈ Xs / τ(Q) has a local maximum at Q}.

As τ is uniformly bounded above, X ′
s is dense in Xs. Moreover, τ is locally

constant at any P ∈ X ′
s, hence we have the following:

Proposition 3.3.1. X ′
s is open and dense in Xs.

Proposition 3.3.2. No map in X ′
s has a neutral cycle.

Proof. Consider P ∈ X ′
s and S given by the lemma. By making the perturbation

small enough, we can arrange that the other hyperbolic attractors of P do not
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disappear. Moreover, we can also make sure that the critical points that were
attracted to the attracting cycles remain so under the perturbation.

On the other hand, each attracting cycle attracts at least one critical point.
Hence, introducing a new attractor by perturbing P to S will change τ :

τ(S) ≥ τ(P ) + 1,

a contradiction with the local maximality of τ at P .

We finish by giving a reduced statement, from which Theorem 3.3.1 should follow
now immediately.

Theorem 3.3.2. Hyperbolic polynomials are dense in X ′
s.

The proof of the reduced statement is detailed in Section 3.4.

3.4. A reduced density result.

Recall that two points z1 and z2 are in the same foliated equivalence class of a
map f if their grand orbits under f have the same closure. For a fixed f , we denote
by nac the number of foliated equivalence classes of acyclic critical points in the
Fatou set of f . By [15], the complex dimension of the Teichmuller space of a map
f : C → C is given by

dim(Teich(f)) = nac + nhr + nlf + np,

where:
nac = the number of foliated equivalence classes of acyclic critical points in the

Fatou set F (f);
nhr = the number of Herman rings of f ;
nlf = the number of invariant line fields;
np = the number of parabolic cycles.

If P ∈ X ′
s, P has no Herman rings and no Siegel discs. By [9] and [18], P does

not support an invariant line field in its Julia set. We also proved in Lemma 3.3.2
that P does not have any parabolic basins. So, all connected components of its
Fatou set are attracting basins.

nhr = nlf = np = 0 ⇒ dim(Teich(P )) = nac.

Hence, the set

QC(P ) = {Q ∈ S4 / Q quasiconformally conjugate toP}

is covered by countably many complex submanifolds of dimension nac. Subse-
quently, the set

QCR(P ) = QC(P ) ∩ Xs

is covered by countably many embedded real analytic submanifolds of Xs with real
dimension nac.

We will also use the following( [7]):
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Definition 3.4.1. Consider two 3-modal maps P, Q : [0, 1] → [0, 1] with critical
points ci(P ) and ci(Q), for i ∈ {1, 2, 3}. Consider also:

hQ
P :

⋃

n,iP
n(ci(P )) →

⋃

n,iQ
n(ci(Q)),

defined by:

hQ
P (Pn(ci(P ))) = Qn(ci(Q)), ∀i ∈ {1, 2, 3} and ∀n ∈ N.

If hQ
P is an order-preserving bijection, then we say that P and Q are combinatorially

equivalent as 3-modal maps of the interval.

The relationship between combinatorial equivalence and topological conjugacy
in our space Xs can be described by the following theorem ( [7]):

Theorem 3.4.1. Call F the family of maps f of the interval satisfying the follow-
ing:

(1) they are of class C3;
(2) they have nonflat critical points (i.e., D2f(c) 6= 0, ∀c such that Df(c) = 0);
(3) they have negative Schwartzian derivative: Sf < 0;
(4) the boundary of the interval is repelling (i.e., |Df(x)| > 1, if x ∈ {0, 1});
(5) they have no one-sided periodic attractors.

Two maps f, g ∈ F are topologically conjugate (f
top
∼

R
g) if and only if they are

combinatorially equivalent (f
c.e.
∼

R
g).

Remark. If P and Q are maps in X ′
s restricted to the interval [0, 1], then both the

conditions of Theorem 3.4.2 and the Rigidity Theorem are satisfied, and hence we
have the following equivalences:

P
c.e.
∼

R
Q ⇔ P

top
∼

R
Q ⇒ P

qc.
∼

C
Q.

Proof of theorem 3.3.1. If we think of S4 as a subset of C2, then we can consider
the three holomorphic functions ci : U → C, for i ∈ {1, 2, 3}, that give the three
critical points of each map Q ∈ U .

Fix P ∈ X ′
s. By taking B ⊂ U ⊂ S4 to be a small ball around P , we can arrange

to have c1(Q) < c2(Q) < c3(Q) = −c1(Q), for any Q ∈ B ∩ Xs. Take B small
enough for τ to be constant: τ = τ(Q), ∀Q ∈ B ∩ Xs (recall τ is locally constant
at each P ∈ X ′

s).
We want to prove (by contradiction) that B∩Xs contains hyperbolic maps. Sup-

pose the maps in U ∩Xs are not hyperbolic, hence τ < 3. There are two cases that
remain for analysis:

(1) τ = 1 (only C2 is attracted) or τ = 2 (only C1 and C3 are attracted). Either
way, there is only one foliated equivalent class of critical points in the Fatou set,
hence nac ≤ 1 (note that the critical points are not necessarily acyclic). Hence
QCR(Q) is in this case at most a countable union of lines in Xs, for any Q ∈ B∩Xs.

(2) τ = 0 (no critical points are attracted). Hence nac = 0, so QCR(Q) is a
countable union of points in Xs, for any Q ∈ B ∩ Xs.

A. Suppose first there are no bones crossing the neighbourhood B.
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Let’s first remark that if there are no other critical relations in B (i.e., there are
no m, n ∈ N such that Qm(c1(Q)) = Qn(c2(Q)) for some Q ∈ B), then for any

arbitrary Q ∈ B the map hQ
P defined in 3.4.1 is order preserving. (Note that we

do not consider Q(c1(Q)) = Q(c3(Q)) a critical relation.) Indeed, suppose that h
reverses the order of two elements:

P k(ci(P )) < P l(cj(P )) and Qk(ci(Q)) > Ql(cj(Q)).

By continuity, there exists a T ∈ B such that T k(ci(T )) = T l(cj(T )), a contradic-
tion.

When hQ
P is order-preserving for any Q ∈ B∩Xs, it follows that P is combinato-

rially equivalent to any Q ∈ B ∩ Xs, and hence P is quasiconformally conjugate to
any Q ∈ B ∩ Xs, by the Rigidity Theorem. This contradicts the fact that QCR(P )
is at most a union of countably many lines in Xs.

Clearly, the “no critical relations” condition applies in the case τ = 1 or τ = 2. If
τ = 0, it could happen that all neibourhoods of τ , arbitrarily small, contain critical
relations. In other words, there could exist a map R arbitrarily close to P that has
a critical relation, say Rm(c1(R)) = Rn(c2(R)).

In this case, consider Σ = {Q ∈ B ∩ Xs / Qm(c1(Q)) = Qn(c2(Q))}. This is a

1-dim curve in B∩Xs. Since there are no other critical relations on Σ, the map hQ
R

is order-preserving for any Q ∈ Σ. Subsequently, all maps in Σ are combinatorially
equivalent to R and hence quasiconformally conjugate to R. This contradicts the
fact that QCR(R) is a collection of countably many points in Xs, as τ = 0.

B. B ∩ Xs is crossed by a bone B.

Let R ∈ B ∩ B ∩ Xs. Bones can’t accumulate at R, or R would be hyperbolic.
So, there exists a neighbourhood V of R, V ⊂ B∩Xs that intersects no other bones
than B. Take S ∈ V\B, and take W a neighbourhood of S in V\B. Then the
argument at A. applies for W and leads us to a contradiction.

This concludes the proof of Theorem 3.3.1.

4. Geometric properties of the Q-bones.

4.1. Smoothness of the Q-bones. As we have stated before, a bone in PQ is an
algebraic variety with two boundary points. In this section, we will prove that:

Theorem 4.1.1. The bones are smooth C1 curves that intersect transversally.

WLOG, fix an arbitrary point (v0, w0) on a left bone BQ
L of order-data (σ, τ) ∈

S2
n. We want to show that BQ

L is smooth at (v0, w0).
For h = qw0 ◦qv0 extended as a map on the complex plane, γ1 has a superattract-

ing periodic diorbit of period 2n. Let Uh = Uh(γ1) be the immediate attracting
basin of γ1. Hence, if K(h) is the filled Julia set of h, then Uh ⊂ K(h) is a simply
connected bounded open neighbourhood of γ1 that is carried to itself by h◦n. We
point out the two cases that could appear, depending on the behavior of the other
two (complex) critical points of h, called C1 and C3.

Case 1. The map h is hyperbolic (i.e., C1 and C3 are attracted).
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Proof. Within each hyperbolic component in PQ, the locus of the maps with a
specific superattracting diorbit is a smooth complex manifold. Each intersection of
two bones is a center point for some hyperbolic component, and the general theory
tells us that these intersections are transverse (see [11]).

Case 2. The map h is not hyperbolic (i.e., C1 and C3 are not attracted to attract-
ing cycles).

Proof. We will use quasiconformal surgery in the neighbourhood of our fixed map
h ∈ PQ. No iterates of the other two critical points of h belong to Uh, the immediate
attracting basin of γ1, hence Uh is isomorphic to the open unit disc, parametrized
by its Bottcher coordinate. That is, there exists a biholomorphic isomorphism that
conjugates h◦n to the squaring map z → z2:

β : Uh → D, β(h◦n(z)) = (β(z))2.

We want to replace the superattracting basin Uh by a basin with small positive
multiplier Λ. For each Λ in a small disc centered at zero, we will construct a new
map hΛ = qwΛ ◦ qvΛ , (vΛ, wΛ) ∈ PQ in such a way that Λ → (vΛ, wΛ) is analytic
and h0 = h.

The composition of smooth (analytic) maps

Λ → (vΛ, wΛ) ∈ PQ → m(hΛ)

is the identity. (Here m denotes again the function that assigns to each map in
PQ its multiplier at the specified attracting point.) It follows that the partial

derivatives
∂m

∂v
and

∂m

∂w
can’t be simultaneously zero on a small neighbourhood of

(v0, w0) ∈ PQ. By the Implicit Function Theorem, the bone curve is smooth C1 on
a small neighbourhood of (v0, w0).

4.2. Quasiconformal surgery construction.

Consider the map f(z) = z2 on the open unit disk D (which is the Bottcher
parametrization of h◦n). Its unique critical point is the origin. Fix a small ǫ > 0
(along the proof we will make specific requirements of how small we want ǫ to be),
and let Λ be an arbitrary complex number such that 0 ≤ |Λ| ≤ ǫ.

Using a partition of unity, we perturb the map f to a new degree 2 map gΛ such
that:

• gΛ has the same dynamics as fΛ(z) = z2 + Λz inside a small disc around zero;
in particular, the origin will be fixed, with multiplier Λ;

• gΛ has the same dynamics as f(z) = z2 outside a larger disc around zero.

We do this by choosing a radius r with
ǫ

2
≤ r ≤ min(

1

2
, 1 − ǫ), so that fΛ maps

∆r2 into itself and the critical point of fΛ is in ∆r2 . We then construct a C1

partition of unity ρ : C → R with ρ = 0 outside ∆ r
2
, ρ = 1 inside ∆r2 , and

0 ≤ ρ ≤ 1 on ∆r/2\∆r2 .
We define gΛ : C → C as:

gΛ(z) = z2 + Λρ(z)z.
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By asking that r
2 ( r

2 + ǫ) ≤ r2 (i.e., 2ǫ
3 ≤ r), and by making ǫ smaller if necessary,

we make sure that gΛ has no critical point outside ∆r2 , for any 0 ≤ |Λ| ≤ ǫ. (Recall
that the critical point of g0(z) = f(z) = z2 is 0 ∈ ∆r2 and the dependence Λ → gΛ

is smooth for |Λ| ≤ ǫ.)
In a nutshell: For any fixed |Λ| ≤ ǫ, the map gΛ : D → D obtained by this

construction is a 2-to-1 C1 smooth map that carries ∆r\∆r2 into ∆r2 and ∆r2 into
itself. It coincides with fΛ inside ∆r2 and with f outside of ∆ r

2
(in particular it

is conformal outside ∆r) and has no critical points in ∆r\∆r2 . We would like to
emphasize that, as ∆r\∆r2 is mapped by gΛ directly into ∆r2 , the annulus ∆r\∆r2

is intersected at most once by any orbit under gΛ.
We pull gΛ back to Uh through the Bottcher biholomorpic diffeomorphism β:

GΛ = β−1 ◦ gΛ ◦ β : Uh → Uh.

The new map GΛ is 2-to-1 and C1 smooth, and it has similar properties as the
ones stated above for gΛ (see figure):

gΛ = f

∆ r
2

∆r

∆r2
Wh

GΛ = h◦n

Vh

β

Xh

Figure 16. Xh, Vh and Wh are the preimages under the Bottcher
map β of ∆r, ∆ r

2
and ∆r2 , respectively. The map gΛ : D → D

pulls back as the C1-map GΛ, which acts as h◦n outside Vh and
carries Vh to Wh.

But h : C → C carries Uh → h(Uh)
∼
−→ ...

∼
−→ h◦(n−1)(Uh)

∼
−→ h◦n(Uh) = Uh

(acting as a diffeo except on Uh).
So, we can define HΛ as:

HΛ = h outside Vh and HΛ = h
◦(1−n)

◦ GΛ inside Xh.

The new HΛ is C1 (notice that its two expressions coincide on Xh\Vh) and has
the desired dynamical behavior. However, it may fail to be analytic, hence it may
not be a map in PQ. The rest of the construction aims to transform HΛ into a
polynomial hΛ ∈ PQ, preserving the dynamics.

The Beltrami dilatation of HΛ is:

µHΛ(z) =
(HΛ)z

(HΛ)z
.

Recall that gΛ has no critical point in ∆r\∆r2 , so (gΛ)z 6= 0 on ∆r\∆r2 . Hence,
the denominator of

µgΛ(z) =
(gΛ)z

(gΛ)z
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never vanishes. Moreover, for fixed z, both top and bottom above are linear in Λ,
so it follows easily that

Λ → µgΛ

is an analytic dependence. Hence, µHΛ(z) depends itself analytically on Λ, and:

µHΛ(z) = µGΛ(z) = µgΛ(β(z))
β′(z)

β(z)
on Xh

µHΛ(z) = 0 outside Vh.

Under iteration of gΛ, points hit the annulus ∆r\∆r2 at most once, hence µgΛ is
bounded less than 1 in modulus. Automatically:

|µHΛ(z)| = |µgΛ(β(z))|

∣

∣

∣

∣

∣

β′(z)

β′(z)

∣

∣

∣

∣

∣

= |µgΛ(β(z))| ≤ 1 on Xh\Wh and

µHΛ(z) = 0 outside Xh\Wh.

We define an ellipse field starting with circles inside Wh and outside all preimages
of Xh under HΛ and pulling it back invariantly under HΛ. All orbits hit Xh\Wh

(the annular region where HΛ is not analytic) at most once, so the ellipse field is
distorted at most once along any orbit. Let µΛ be the coefficient of this field. The
dependence of µΛ on Λ is holomorphic on |Λ| ≤ ǫ.

Let φΛ solve the Beltrami equation:

φz

φz
= µΛ,

determined uniquely by the normalization φΛ(0) = 0, φΛ(1) = 1, φΛ(∞) = ∞.
With this choice for φΛ, hΛ = φΛ ◦ HΛ ◦ φ−1

Λ is a quartic complex polynomial.
Moreover, for Λ ∈ R, |Λ| < ǫ, hΛ corresponds to a pair in the Q -family (see [17]).

4.3. The impossibility of bone-loops.

Our plan for this section is to prove that bones in the parameter space PQ can’t
contain any loops (i.e., simple closed curves). Recall that we proved in Section 2
that each bone contains a simple bone-arc connecting two boundary points, and
that all possible distinguished kneading data of the bone can be found in a certain
order along this bone-arc.

We argue by contradiction. Suppose there exists a bone loop L. We will show
next that the interior U of the loop can’t contain any hyperbolic maps. This will
contradict the genericity of hyperbolicity stated in Theorem 3.3.1.

Remark. The following statements and proofs are given for left bones, but they
apply by symmetry to right bones.

Lemma 4.3.1. A left bone loop in PQ can’t contain any distinguished point, hence
it can’t contain any crossing with a right bone.

Proof. Any distinguished point on the loop L would need to have a kneading-data
already achieved along the bone arc. Thurston’s Theorem shows easily that this is
impossible.
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Theorem 4.3.1. The region enclosed by a left bone loop in PQ can’t contain any
hyperbolic maps.

Proof. We know by Theorem 3.2.2 that each hyperbolic component in PQ is an open
topological 2-cell that contains a unique post-critically finite point, called center.
Moreover, the intersection of any bone with a hyperbolic component must be a
simple arc passing through the center.

Suppose, by contradiction, that some hyperbolic component H intersects the re-
gion U . We have two cases:

(1) H ⊂ U . Then there is a bone that passes through the center of H. This can
only be a bone arc, as bone loops can’t contain distinguished points (by Lemma
4.3.1). From the Jordan Curve Theorem, this bone arc has to intersect the bone
loop L, a contradiction with Lemma 4.3.1.

(2) H intersects the loop L. Then the loop must contain the center point of H,
again a contradiction.

5. Topological conclusions.

5.1. The entropy and the bones.

In Section 5 we will obtain the main result of this paper: for each fixed h0 ∈
[0, log 4], the level-set {h = h0} of the entropy function in either parameter space is
connected.

In the ST -family, the analysis of the properties of entropy level-sets is an easy
exercise. The following is straightforward (see [16] and [17]):

Theorem 5.1.1. In PST , the entropy is a monotone function of either coordinate.
For each h0 ∈ [0, log 4], the corresponding h0-isentrope is contractible, as it is a
deformation retract of the contractible region {h ≤ h0}.

We want to obtain similar results for quartic polynomials qw ◦ qv, with (v, w) ∈
PQ. We will need some notations and results from the general theory of m-modal
maps of the interval.

If f :→ I is an m-modal map with folding points c1 ≤ c2 ≤ ... ≤ cm, then we
define the sign of the fixed point x of f◦k with itinerary ℑ(x) = (A0, A1, ..., Ak−1)
as the number

sign(x) = ǫ(A0)ǫ(A1)...ǫ(Ak−1),

where ǫ(Aj) = +1, −1 or 0 according to Aj being an increasing/decreasing lap of
f or a folding point c1, ..., cm. If sign(x) = −1, then we say that x is a fixed point
of negative type of f◦k.

We define Neg(f◦k) as the number of fixed points of negative type of f◦k.

Theorem 5.1.2. If f is an interval m-modal map, then its topological entropy is:

h(f) = lim
k→∞

1

k
log+(Neg(f◦k)),

where log+ s = max(log(s), 0).

Proof. See, for example, [16].
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Remark: Neg(f◦k) is an integer ≥ 1 unless f◦k has no fixed points of negative
type; in that case, log+(Neg(f◦k)) = 0.

The following result is a simple consequence of Theorem 5.1.2 (see [17] for proof
and details).

Lemma 5.1.1. If for two m-modal interval maps f and g the topological entropies
h(f) 6= h(g), then the sequence |Neg(f◦k)−Neg(g◦k)| must be unbounded as k → ∞.

Lemma 5.1.2. Consider (v1, w1) and (v2, w2) in PQ such that

h(qw1 ◦ qv1) 6= h(qw2 ◦ qv2).

Then any path in PQ from (v1, w1) to (v2, w2) crosses infinitely many bones.

Proof. Consider an arbitrary path in PQ from p1 to p2:

p : [0, 1] → PQ , p(t) = (v(t), w(t))
p(0) = (v1, w1) , p(1) = (v2, w2).

For a fixed k ∈ N, as t goes from 0 to 1, Neg((qw(t) ◦ qv(t))
◦k) changes whenever a

fixed point of negative type appears or disappears for (qw(t)◦qv(t))◦k ( i.e., whenever
a periodic point of negative type and period dividing k appears or vanishes for
qw(t) ◦ qv(t)). An existing negative-type fixed point of (qw(t) ◦ qv(t))

◦k can be lost
under continuous deformations of the map by becoming a positive-type fixed point.
Conversely, such a fixed point can appear by a reverse process. Both changes imply
the existence of an intermediate state, corresponding to some t∗ ∈ [0, 1], in which
the respective fixed point is a critical point of (qw(t∗) ◦ qv(t∗))

◦k. (In other words, a
critical point of qw(t∗) ◦ qv(t∗) has to be periodic of period dividing k.) This implies

that p(t∗) = (v(t∗), w(t∗)) ∈ PQ is on either a left or a right bone of period 2n
dividing 2k.

So if the integer Neg ((qw(t) ◦ qv(t))
◦k) has an actual change at t = t∗, then the

path p(t) crosses a bone at t = t∗.
To end the proof of the lemma, suppose that the path p(t) only crosses N bones.

Then, for all k ∈ N,

|Neg((qw2 ◦ qv2)
◦k) − Neg((qw1 ◦ qv1)

◦k)|

would be bounded by N , a contradiction with Lemma 5.1.3.

5.2. The entropy and the cellular structure.

Recall that either parameter space, PST or PQ, has for each fixed value of n an
associated cellular complex structure, called PST

n and PQ
n , respectively. The two

cell complexes are homeomorphic through the function η defined in Section 2.11.
The following lemma is valid for either complexes, Pn = PST

n or Pn = PQ
n .

Lemma 5.2.1. For any ǫ > 0, there exists n ∈ N such that, if p and p′ are
parameters that belong to the same closed cell in Pn and hp represents the entropy
value at the parameter p, then:

|hp − hp′ | < ǫ.
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Proof. Suppose the contrary: there exists ǫ > 0 such that, for all n ∈ N, there are
two parameters pn and p′n in some common cell of Pn with

|hpn
− hp′

n
| ≥ ǫ.

By the compactness of P , we can choose a subsequence {kn}n∈N ⊂ N such that
both {pkn

}n∈N and {p′kn
}n∈N converge in P :

pkn
→ p as n → ∞ and p′kn

→ p′ as n → ∞.
The entropy function is a continuous function of parameters in either family (see

for example [16]). We use this and take the limit:

|hpkn
− hp′

kn
| ≥ ǫ ⇒ |hp − hp′ | ≥ ǫ.

Moreover, the closed cells of Pn are nested as n increases (in other words, the
cell complex gets “finer” with larger values of n).

Fix an arbitrary N ∈ N. For all kn ≥ N , pkn
and p′kn

are in the same closed cell
of Pkn

, and hence in the same closed cell of PN .
In conclusion, for any arbitrary N ∈ N, p and p′ are in the same closed cell of

PN , yet

|hp − hp′ | ≥ ǫ > 0,

a contradiction with Lemma 5.1.4.

Lemma 5.2.2. Fix n ∈ N. In either parameter space, the entropy function re-
stricted to any closed cell in Pn takes its maximum and minimum values on the
boundary of the cell (more precisely on the boundary vertices).

Proof. In the case Pn = PST
n , the proof is a simple corollary of Theorem 5.1.1. We

have to prove the statement for Pn = PQ
n .

For the fixed n ∈ N, suppose the lemma is not true for some closed cell CQ
n ∈ PQ

n ,
that is, there exists (v∗, w∗) ∈ int(CQ

n ) such that

h(qw∗ ◦ qv∗) > hmax ,

where hmax is the maximum value of the entropy on the boundary δ(CQ
n ).

Let

ǫ =
h(qw∗ ◦ qv∗) − hmax

2
≥ 0.

By Lemma 5.2.1, there exists m ∈ N such that the entropy variation on all closed
cells of PQ

m is less than ǫ. WLOG, we can take m > n. Call CQ
m the closed cell in

PQ
m such that (v∗, w∗) ∈ CQ

m ⊂ CQ
n and consider any arbitrary vertex (vm, wm) of

CQ
m.
As (v∗, w∗) and (vm, wm) are in CQ

m, we automatically have:

|h(qw∗ ◦ qv∗) − h(qwm
◦ qvm

)| < ǫ.

But hmax + 2ǫ ≤ h(qw∗ ◦ qv∗), so:

h(qwm
◦ qvm

) > hmax.

The homeomorphism of complexes η−1
m : PQ

m −→ PST
m carries vertices to vertices

with the same entropy, edges to edges with the same interval of entropies, and 2-cells
to 2-cells. So CST

m = η−1
m (CQ

m) will be a 2-cell in PST
m and (vST

m , wST
m ) = η−1

m (vm, wm)
will be a vertex of CST

m . Also, η−1
n (δCQ

n ) = δ(CQ
n ) = δCST

n , so the maximum value
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hmax(δCQ
n ) of the entropy on δCQ

n is the same as the maximum value hmax(δCST
n )

on δCST
n . Hence we have

h(stwST
m

◦ stvST
m

) = h(qwm
◦ qvm

) > hmax(δCQ
n ) = hmax(δCST

n ) ,

a contradiction, since the result has already been proved for PST .

Corollary 5.2.1. For a fixed n ∈ N, the interval of entropy values realized by any
cell in PQ

n is the same as the interval of values for the corresponding cell in PST
N .

Definition 5.2.1. In either family, we call the h0-isentrope the level-set of the
entropy corresponding to the fixed value h0.

iST (h0) = {(v, w) ∈ PST / h(stw ◦ stv) = h0}

iQ(h0) = {(v, w) ∈ PQ / h(qw ◦ qv) = h0}.

For a fixed n ∈ N∗, we call NST
n (h0) the union of all cells CST

n in PST
n which in-

tersect iST (h0), and we call NQ
n (h0) the union of all cells CQ

n in PQ
n which intersect

iQ(h0).

Remarks : (1) Clearly: iST (h0) ⊂ NST
n (h0) and iQ(h0) ⊂ NQ

n (h0).
(2) Recall that for fixed n we have the homeomorphism of cell complexes:

ηn : PST
n → PQ

n .

If CST
n is a cell in PST

n that touches iST (h0), then the corresponding cell CQ
n =

ηn(CST
n ) will touch iQ(h0) and conversely. This follows from Corollary 5.2.3, which

states that the interval of entropy values is the same in the two closed cells CST
n

and CQ
n .

Fix an entropy value h0 ∈ [0, log 4] and an n ∈ N∗. Since NST
n (h0) and NQ

n (h0)
are both unions of closed cells, they are compact subsets of PST and PQ, respec-
tively. By the previous theorem, NST

n (h0) is connected, so its image NQ
n (h0) =

ηn(NST
n (h0)) is also connected. Hence we have the following:

Summary. For any n ∈ N∗, the set NQ
n (h0) is compact, connected and contains

iQ(h0).

We have now a quite comprehensive description of the sets NQ
n (h0). To obtain

topological properties of iQ(h0), we try to relate it to the collection {NQ
n (h0)}n∈N.

Lemma 5.2.3. iQ(h0) is the countable union of all NQ
n (h0), with n ∈ N.

Proof. Since iQ(h0) ⊂ NQ
n (h0) for all n ∈ N∗, the inclusion iQ(h0) ⊂

⋂

NQ
n (h0) is

trivial.
For the converse, suppose there exists (v, w) ∈

⋂

NQ
n (h0)\i

Q(h0). In other words:
for any arbitrary n ∈ N∗, (v, w) is contained in a closed cell CQ

n ⊂ PQ
n that touches

iQ(h0), but such that (v, w) /∈ iQ(h0). For any such closed cell CQ
n , there exists

(v∗n, w∗
n) ∈ iQ(h0) ∩ CQ

n .
The sequence (v∗n, w∗

n)n∈N∗ satisfies in particular:

(1) (v∗n, w∗
n) 6= (v, w), ∀n ∈ N∗
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Figure 17. The isentropes in PQ appear to be either arcs joining
two points in ∂PQ, or connected regions between such arcs, or a
single point (the case (v, w) = (1, 1) of entropy log 4).

(2) h(qw∗

n
◦ qv∗

n
) = h0.

We calculate:

| h(qw∗ ◦ qv∗) − h(qw ◦ qv) |= | h0 − h(qw ◦ qv) | .

This contradicts the statement of Lemma 5.2.1: the maximal variation of the
entropy over cells in PQ

n can be made arbitrarily small by increasing n.

Theorem 5.2.1. iQ(h0), the h0-isentrope in PQ, is connected.

Proof. iQ(h0) is an intersection of compact, connected sets in PQ; therefore it is
compact and connected.
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