Symmetry and Patterns
Chapter 19

Mathematics

- Mathematics – the study of patterns
- Symmetry
 - (narrow) – “mirror-image” the correspondence between parts of any object
 - (wide) – Notions of balance, similarity, repetition
Spirals

• Spiral pattern – same shape at any size

Spirals

• Phyllotaxis – spirals are geometrically similar to one another and arranged in a regular way with balance and “proportion”.
• Phyllotaxis demonstrates rotational symmetry.
Phyllotaxis (cont)

Fibonacci

- Leonardo Pisano Bigollo
 - Greatest Mathematician of the Middle Ages
 - Introduces Arabic numbers to Europe
 - Descent from ancestor “bonacci”
Fibonacci Sequence

• Start with the sequence 1,1
• Then add previous 2 numbers to create the third
• Sequence 1,1,2,3,5,8,13,21,34,55,89,…

\[F_1 = 1, F_2 = 1, \quad F_{n+1} = F_n + F_{n-1} \quad \text{for } n \geq 2 \]

Fibonacci

• Sunflower
 – 55 one direction
 – 89 in the other direction

• Pineapple
 – 8 right
 – 13 left
 – 21 vertically
Balance in Symmetry

- The Sunflower spiral shows
 1. Similarity
 2. Repetition
 3. Balance – regularity in how the repetitions are arranged

The Golden Ratio

(Divine Proportion)

- Greeks – found a balance in Ratios
- Golden Ratio – proportion essential to beauty and symmetry
- Golden Ratio – becomes the standard for beautiful proportions
PHI(\(\phi\))

- **Phi** \(\phi = 1 + \frac{\sqrt{5}}{2} = 1.618\)

Balance in Ratios

- Arithmetic Mean – add all values and divide by the number of values
- Greeks preferred the Geometric Mean
- S= side of a square with the same area as a rectangle of L*W

\[LW = S^2 \]
Human Body

- Body – ratio close to Golden Ratio
- Total height = Golden Ratio
- Height to navel = 1

Rigid Motion

- Rigid Motions (isometry = “same size”) Specific kind of variation on the original pattern (e.g. move it, rotate it, flip it, etc)
 BUT don’t change its size or shape.
- What can we do to a pattern without changing its appearance?
Rigid Motion

- Rigid Motion – one that preserves the size and shape of the figures (patterns)
 - Reflection (across a line)
 - Rotation (around a point)
 - Translation (in a particular direction)
 - Glide Reflection (across a line)

Rigid motions

- All reflections and all rotations are rigid motions
- Translations are rigid – moving every point in the plane a certain distance in the same direction – known as glide
Glide Reflection

- Glide reflection – translation (glide) with reflection across a line that is parallel to the direction of the translation

Preserving the Pattern

- Preserve the pattern – the pattern must look exactly the same after the rigid motion. All of the parts must appear in the same place
Preserving the Pattern?

Patterns with repetition

• Motif – individual element or figure of a design
• Pattern (of the design) how the copies of the Motif are arranged
Analyzing Patterns

• Patterns in the plane can be divided into those that have indefinitely many repetitions in
 1. No direction – rosette patterns
 2. Exactly one direction – strip patterns
 3. More than one direction – wallpaper patterns

Rosette pattern

• Flowers
 – reflection
 – motif = ½ petal
Rosette pattern

• Pinwheel
 – no reflection
 – motif – entire petal

Strip Patterns

• All strip patterns have
 – Repetition symmetry
 – Translation symmetry along the direction of the strip
Strip Patterns

- All strip patterns have
 - Repetition symmetry
 - Translation symmetry along the direction of the strip

- Add
 - Reflection – on the center horizontal line

Strip Pattern Combinations

- Vertical Line Reflection
- Rotational Symmetry (half turn)
- Glide reflection
- NO horizontal line reflection
Symmetry Groups

- Symmetries of a pattern have the following properties
 1. If we combine two symmetries we get another symmetry
 2. There is an Identity (null) Symmetry – doesn’t change anything

Symmetry Groups (cont)

- Symmetries of a pattern have the following properties
 3. Each symmetry has an inverse (opposite) that undoes it and preserves the pattern e.g. reflection by its own inverse glide undone by another glide of the same distance in the opposite direction
 4. We may combine consecutive symmetries without affecting the result
Symmetries

- Repetition symmetry
- Translation symmetry
- Reflection – on the center horizontal line
- Reflection – on the vertical axis
- Rotational Symmetry – 180°
- Glide Reflection

Group of numbers
(Symmetry Groups)

• Numbers have the following properties
 (Symmetries of a pattern have the following properties)

1. Multiply two positive real numbers gives another positive real number (If we combine two symmetries we get another symmetry)
2. The positive real number 1 is an identity element. There is an Identity (null) Symmetry – doesn’t change anything
Group of numbers
(Symmetry Groups)

- Numbers have the following properties (Symmetries of a pattern have the following properties)

3. Any Positive real number x has an inverse $1/x$ in the collection. (Each symmetry has an inverse (opposite) that undoes it and preserves the pattern)

4. You may multiply several numbers together in any order. (We may combine consecutive symmetries without affecting the result)

Symmetry Group of a Rectangle

- The symmetries (rigid motions) that bring the rectangle back to coincide with itself (even as they interchange the labeled corners)

1. Identity symmetry I – leave all points where they are
2. Half-turn rotation R around its center
3. A reflection V in the vertical line through the center
4. A reflection H in the horizontal line through the center
Rectangle Group

- Combine any 2 symmetries you get a third
- Apply V and then H will get R

Rectangle Group

- Each element is it’s own inverse
- Apply V and then H and then R
- Same as R and then H and then V