Asymptotic analysis of the Askey-scheme II: from Charlier to Hermite

Diego Dominici *
Department of Mathematics
State University of New York at New Paltz
75 S. Manheim Blvd. Suite 9
New Paltz, NY 12561-2443
USA
Phone: (845) 257-2607
Fax: (845) 257-3571

August 15, 2005

Abstract

We analyze the Hermite polynomials $H_n(\xi)$ and their zeros asymptotically as $n \to \infty$, using the limit relation between the Charlier and Hermite polynomials. Our formulas involve some special functions and they yield very accurate approximations.

Keywords: Hermite polynomials, Askey-scheme, asymptotic analysis, orthogonal polynomials, hypergeometric polynomials, special functions.

MSC-class: 33C45 (Primary) 34E05, 33C10 (Secondary)

*e-mail: dominicd@newpaltz.edu
1 Introduction

The Hermite polynomials $H_n(x)$ are defined by [18]

$$H_n(x) = n! \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k}{k!(n-2k)!} (2x)^{n-2k}$$

for $n = 0, 1, \ldots$. They satisfy the orthogonality condition [14]

$$\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) \, dx = \sqrt{\pi} 2^n n! \delta_{mn}$$

and the reflection formula

$$H_n(-x) = (-1)^n H_n(x).$$

The Hermite polynomials are special cases of the parabolic cylinder function $U(a, z)$,

$$H_n(x) = 2^n \exp \left(\frac{x^2}{2} \right) U \left(-n - \frac{1}{2}, \sqrt{2}x \right),$$

which was analyzed by Nico Temme in [5], [19] and [22].

The Hermite polynomials have been extensively studied since the pioneer article of C. Hermite [6] in 1864 (they were previously considered by Fourier and Chebyshev). They have many applications in the physical sciences and are particularly important in the quantum mechanical treatment of the harmonic oscillator [13] (see also [1], [7] and [24] for some extensions). We refer the interested reader to [3] and [15] for further properties and references.

There are several families of orthogonal polynomials which have asymptotic approximations in terms of $H_n(x)$. Some cases studied by Nico Temme include the Gegenbauer [17], Laguerre [12], [16], Tricomi-Carlitz and Jacobi polynomials [10]. He also considered the asymptotic representations of other families of polynomials such as the generalized Bernoulli, Euler, Bessel and Buchholz polynomials in [11].

A rich source of asymptotic relations between the $H_n(x)$ and other polynomials [4], [20], [21] is provided by the Askey-scheme of hypergeometric orthogonal polynomials [8]:

2
where the arrows indicate limit relations between the polynomials.

In particular, the limit relation between the Charlier polynomials $C_n^{(a)}(x)$ and the Hermite polynomials is given by

$$
\lim_{a \to \infty} (-1)^n (2a)^\frac{3}{2} C_n^{(a)} \left(a + x\sqrt{2a} \right) = H_n(x).
$$

(3)

In this article we investigate the asymptotic behavior of $H_n(x)$ as $n \to \infty$, using (3) and the asymptotic results on the Charlier polynomials derived in [2]. We believe that our method provides a useful approach to asymptotic analysis and could be used for other families of polynomials of the Askey scheme.

2 Previous results

We define the Charlier polynomials by

$$
C_n^{(a)}(x) = 2F_0 \left(\begin{array}{c} -n, -x \\ - \end{array} \right| - \frac{1}{a} \right), \quad n = 0, 1, \ldots
$$

(4)

with $a > 0$. The following results were derived in [2].

Theorem 1 As $n \to \infty$, $C_n^{(a)}(x)$ admits the following asymptotic approximations, with

$$
\Omega^\pm = (\sqrt{n} \pm \sqrt{a})^2.
$$

(5)
1. \(n = O(1) \).

\[C_n^{(a)} \simeq \left(1 - \frac{x}{a} \right)^n \]

(6)

2. \(x < \Omega^- \), \(0 < n < a \).

\[C_n^{(a)} \sim F_3(x) = \exp[\Psi_3(x)] L_3(x), \]

(7)

where

\[\Psi_3(x) = x \ln \left(\frac{a + x - n + \Delta}{2a} \right) + n \ln \left(\frac{a - x + n + \Delta}{2a} \right) + \frac{1}{2} (a - x - n + \Delta) \]

(8)

and

\[L_3(x) = \sqrt{\frac{a - x - n + \Delta}{2\Delta}}, \]

(9)

with

\[\Delta(x) = \sqrt{a^2 - 2a(x + n) + (x - n)^2}. \]

(10)

3. \(\Omega^+ < x \).

\[C_n^{(a)} \sim F_4(x) = (-1)^n \exp[\Psi_4(x)] L_4(x), \]

(11)

where

\[\Psi_4(x) = x \ln \left(\frac{a + x - n - \Delta}{2a} \right) + n \ln \left(\frac{x - a - n + \Delta}{2a} \right) + \frac{1}{2} (a - x - n + \Delta) \]

(12)

and

\[L_4(x) = \sqrt{\frac{x - a + n + \Delta}{2\Delta}}. \]

(13)

4. \(x \approx \Omega^- \), \(0 < n < a \).

\[C_n^{(a)} \sim \sqrt{2\pi} \left(\frac{n}{a} \right)^{1/4} \left(\sqrt{a} - \sqrt{n} \right)^{3/4} \text{Ai} \left[\left(\frac{n}{a} \right)^{1/4} \frac{\Omega^- - x}{\left(\sqrt{a} - \sqrt{n} \right)^{3/4}} \right] \]

(14)

\[\times \exp \left[\frac{1}{2} n \ln \left(\frac{n}{a} \right) + x \ln \left(1 - \sqrt{\frac{n}{a}} + \sqrt{an} - \sqrt{n} \right) \right], \]

where \(\text{Ai}(\cdot) \) is the Airy function.

5. \(\Omega^- < x < \Omega^+ \).

\[C_n^{(a)} \sim F_{10}(x) = F_3(x) + F_4(x). \]

(15)
6. $x \approx \Omega^+$.

$$C_n^{(a)} \sim \sqrt{2\pi} \left(\frac{n}{a} \right)^{\frac{1}{6}} (\sqrt{a} + \sqrt{n})^{\frac{1}{2}} \text{Ai} \left(\frac{n}{a} \right)^{\frac{1}{6}} \frac{(x - \Omega^+)}{(\sqrt{a} + \sqrt{n})^4}$$

$$\times (-1)^n \exp \left[\frac{1}{2} n \ln \left(\frac{n}{a} \right) + x \ln \left(1 + \sqrt{\frac{n}{a}} \right) - \sqrt{an} - \sqrt{n} \right].$$

\[(16) \]

3 Limit analysis

From (5) we have, as $a \to \infty$,

$$\frac{\Omega^\pm - a}{\sqrt{2a}} \to \pm \sqrt{2n}. \quad (17)$$

Hence, the six regions of Theorem 1 transform into the following regions:

1. Region I: $n = O(1)$.

Setting

$$x = a + \xi \sqrt{2a} \quad (18)$$

in (6) and using (3), we get

$$H_n(\xi) \approx (2\xi)^n. \quad (19)$$

The formula above is exact for $n = 0, 1$ and is a good approximation when $\xi \gg n$.

2. Region II: $\xi < -\sqrt{2n}$.

From (10) and (18) we have

$$\Delta \sim \sqrt{2\sigma} \sqrt{a} - \frac{\xi n}{\sigma}, \quad a \to \infty, \quad (20)$$

with

$$\sigma = \sqrt{\xi^2 - 2n}. \quad (21)$$

Using (20) in (8) and (9), we get

$$\frac{n}{2} \ln(2a) + \Psi_3(x) \sim \Phi_1(\xi) \equiv n \ln(\sigma - \xi) + \frac{\xi^2 + \sigma \xi - n}{2}, \quad (22)$$
\[L_3(x) \sim U_1(\xi) = \sqrt{\frac{1}{2} \left(1 - \frac{\xi}{\sigma} \right)}, \quad (23) \]

as \(a \to \infty \). Thus, from (3) we have

\[H_n(\xi) \sim \Lambda_1(\xi) \equiv (-1)^n \exp[\Phi_1(\xi)] U_1(\xi). \quad (24) \]

3. Region III: \(\xi > \sqrt{2n} \).

Using (20) in (12) and (13), we obtain

\[\frac{n}{2} \ln(2a) + \Psi(x) \sim \Phi_2(\xi) \equiv n \ln(\sigma + \xi) + \frac{\xi^2 - \sigma^2 - n}{2}, \quad (25) \]

\[L_4(x) \sim U_2(\xi) = \sqrt{\frac{1}{2} \left(1 + \frac{\xi}{\sigma} \right)}, \quad (26) \]

as \(a \to \infty \). Hence,

\[H_n(\xi) \sim \Lambda_2(\xi) \equiv \exp[\Phi_2(\xi)] U_2(\xi). \quad (27) \]

Note that

\[\Lambda_1(-\xi) = (-1)^n \Lambda_2(\xi), \]

as one would expect from (2).

4. Region IV: \(\xi \approx -\sqrt{2n} \).

Using (18) in (14) we have, as \(a \to \infty \),

\[\frac{n}{2} \ln(2a) + \frac{1}{2} n \ln\left(\frac{n}{a}\right) + x \ln\left(1 - \sqrt{\frac{n}{a}}\right) + \sqrt{an} - \sqrt{n} \sim \Phi_3(\xi), \]

where

\[\Phi_3(\xi) = \frac{n}{2} \ln(2n) - \frac{3}{2} n - \xi \sqrt{2n}. \quad (28) \]

Also,

\[\sqrt{2\pi} \left(\frac{n}{a}\right)^\frac{1}{2} (\sqrt{a} - \sqrt{n})^{\frac{1}{2}} \sim n^{\frac{1}{2}} \]

and

\[\left(\frac{n}{a}\right)^\frac{1}{2} \frac{(\Omega - x)}{\left(\sqrt{a} - \sqrt{n}\right)^{\frac{1}{2}}} \sim -n^{\frac{1}{2}} \sqrt{2} \left(\xi + \sqrt{2n}\right). \]
Therefore,

\[H_n(\xi) \sim \Lambda_3(\xi) \equiv (-1)^n \sqrt{2\pi n} \frac{1}{\xi} \exp[\Phi_3(\xi)] \text{Ai} \left[-n^{\frac{1}{2}} \sqrt{2} \left(\xi + \sqrt{2n} \right) \right]. \]

(29)

5. Region V: \(\xi \approx \sqrt{2n} \).

Using (18) in (16) we have, as \(a \to \infty \),

\[\frac{n}{2} \ln(2a) + \frac{1}{2} n \ln \left(\frac{n}{a} \right) + x \ln \left(1 + \sqrt{\frac{n}{a}} \right) - \sqrt{an} - \sqrt{n} \sim \Phi_4(\xi), \]

with

\[\Phi_4(\xi) = \frac{n}{2} \ln(2n) - \frac{3}{2} n - \xi \sqrt{2n}. \]

(30)

Also,

\[\sqrt{2\pi} \left(\frac{n}{a} \right)^{\frac{3}{2}} (\sqrt{a} + \sqrt{n})^{\frac{3}{2}} \sim n^{\frac{1}{2}} \]

and

\[\left(\frac{n}{a} \right)^{\frac{1}{6}} \frac{x - \Omega^+}{(\sqrt{a} + \sqrt{n})^{\frac{3}{2}}} \sim n^{\frac{1}{2}} \sqrt{2} \left(\xi - \sqrt{2n} \right). \]

Therefore,

\[H_n(\xi) \sim \Lambda_4(\xi) \equiv \sqrt{2\pi n} \frac{1}{\xi} \exp[\Phi_4(\xi)] \text{Ai} \left[n^{\frac{1}{2}} \sqrt{2} \left(\xi - \sqrt{2n} \right) \right]. \]

(31)

Once again, we have

\[\Lambda_3(-\xi) = (-1)^n \Lambda_4(\xi). \]

6. Region VI: \(-\sqrt{2n} \ll \xi \ll \sqrt{2n} \).

From (15), we immediately obtain

\[H_n(\xi) \sim \Lambda_5(\xi) \equiv \Lambda_1(\xi) + \Lambda_2(\xi). \]

Since \(-1 < \frac{\xi}{\sqrt{2n}} < 1\), we set

\[\xi = \sqrt{2n} \sin(\theta), \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}. \]

(32)

From (21) we have

\[\sigma = \sqrt{2n} \cos(\theta)i. \]
Thus,
\[n\pi i + \Phi_1 (\xi) = \frac{n}{2} [\ln (2n) - \cos (2\theta)] + n \left[\frac{1}{2} \sin (2\theta) + \theta - \frac{\pi}{2} \right] i, \]
and
\[\Phi_2 (\xi) = \frac{n}{2} [\ln (2n) - \cos (2\theta)] - n \left[\frac{1}{2} \sin (2\theta) + \theta - \frac{\pi}{2} \right] i, \]

and
\[U_1 (\xi) = \frac{\exp (\xi i)}{\sqrt{2 \cos (\theta)}}, \quad U_2 (\xi) = \frac{\exp (-\xi i)}{\sqrt{2 \cos (\theta)}}. \]

Hence,
\[\Lambda_5 \left[\sqrt{2n} \sin (\theta) \right] = \sqrt{ \frac{2}{\cos (\theta)}} \exp [\Phi_5 (\theta)] \cos (\Theta), \quad (33) \]

with
\[\Phi_5 (\theta) = \frac{n}{2} [\ln (2n) - \cos (2\theta)] \]

and
\[\Theta = n \left[\frac{1}{2} \sin (2\theta) + \theta - \frac{\pi}{2} \right] + \theta. \quad (35) \]

Using (32), we can write (34) and (35) in terms of \(\xi \)
\[\Phi_5 (\theta) = \frac{n}{2} [\ln (2n) - 1] + \frac{\xi^2}{2}, \]
\[\Theta = \frac{\xi}{2} \sqrt{2n - \xi^2} + \left(n + \frac{1}{2} \right) \arcsin \left(\frac{\xi}{\sqrt{2n}} \right) - n \frac{\pi}{2}. \]

Also,
\[\sqrt{ \frac{2}{\cos (\theta)}} = \sqrt{2} \left(1 - \frac{\xi^2}{2n} \right)^{-\frac{1}{4}}. \]

Therefore,
\[\Lambda_5 (\xi) = \sqrt{2} \left(1 - \frac{\xi^2}{2n} \right)^{-\frac{1}{4}} \exp \left\{ \frac{n}{2} [\ln (2n) - 1] + \frac{\xi^2}{2} \right\} \]
\[\times \cos \left[\frac{\xi}{2} \sqrt{2n - \xi^2} + \left(n + \frac{1}{2} \right) \arcsin \left(\frac{\xi}{\sqrt{2n}} \right) - n \frac{\pi}{2} \right]. \quad (36) \]
Considering the leading term of (36) as $n \to \infty$, we obtain

$$\Lambda_5 (\xi) \sim \sqrt{2} \exp \left\{ \frac{n}{2} \left[\ln (2n) - 1 \right] + \frac{\xi^2}{2} \right\} \cos \left(n \frac{\pi}{2} - \xi \sqrt{2n} \right)$$

in agreement with formula (4.14.9) in [9].

4 Zeros

Let us denote by $\zeta_1^n > \zeta_2^n > \cdots > \zeta_n^n$ the zeros of $H_n (\xi)$, enumerated in decreasing order. It then follows from (33) that $\zeta_j^n = \sqrt{2n} \sin (\tau_j^n)$, where τ_j^n satisfies

$$n \left[\frac{1}{2} \sin (2\tau_j^n) + \tau_j^n - \frac{\pi}{2} \right] + \frac{\tau_j^n}{2} = \frac{\pi}{2} - j\pi, \quad 1 \leq j \leq n.$$

We can rewrite the equation

$$n \left[\frac{1}{2} \sin (2t) + t - \frac{\pi}{2} \right] + \frac{t}{2} = A$$

as Kepler’s equation

$$E - \varepsilon \sin (E) = M,$$

with

$$E = 2t, \quad M = 2A + n\pi, \quad \varepsilon = -\frac{2n}{2n + 1}.$$

(38)

It is well known [23] that the solution of (37) can be expressed as a Kapteyn series

$$E = M + 2 \sum_{k=1}^{\infty} \frac{1}{k} J_k (k\varepsilon) \sin (kM),$$

(39)

where $J_k (\cdot)$ is a Bessel function of the first kind.

Thus, using (38) in (39) with $A = \frac{\pi}{2} - j\pi$, we obtain

$$\tau_j^n = \pi \frac{1 + n - 2j}{2n + 1} + \sum_{k=1}^{\infty} \frac{1}{k} J_k \left(-\frac{2n}{2n + 1} \right) \sin \left(2\pi \frac{1 + n - 2j}{2n + 1} k \right),$$

(40)
for \(1 \leq j \leq n\). Using the reflection formula [14] \(J_k(-x) = (-1)^k J_k(x)\), we can write (40) as

\[
\tau^n_j = \frac{\pi}{2} - \frac{\pi}{2} (4j - 1) N^{-1} - \sum_{k=1}^{\infty} \frac{1}{k} J_k \left[(1 - N^{-1}) k \right] \sin \left(\frac{4j - 1}{N} k \pi \right),
\]

(41)

where \(N = 2n + 1\).

References

