
NONDUALIZABLE SEMIGROUPS

DAVID HOBBY

Abstract. A family of semigroups is produced, none of which can be dualized.

One of the fundamental problems in the theory of natural dualities is the dual-
izability problem, that of deciding which finite algebras are dualizable, generating
a quasi-variety which admits a natural duality. This problem has been solved
piecemeal for a variety of well-known algebras. Dualizable classes include Boolean
Algebras (shown by Stone in [14]), Distributive Lattices (by Priestley in [11] and
[12]) and Abelian Groups (by Pontryagin in [9] and [10]). Many more examples are
included in [2], the definitive book by Clark and Davey.

In many classes of algebras, the “simplest” algebras are dualizable, while the
others are not. But the dualizability problem of determining which algebras in a
given class are dualizable seems to be very difficult in general. In a few cases the
dualizability problem has been completely solved, with some elements of the class
proved dualizable and the others proved nondualizable. The most successful re-
sults are for the class of congruence distributive algebras. (Who??) proved in (cite
something??) that an algebra in a congruence distributive variety is dualizable if it
has an n-ary near-unanimity term for some n. And Davey, Heindorf and McKen-
zie proved the converse in [6]. Together, these two results solve the dualizability
problem for congruence distributive algebras.

Two other classes for which the dualizability problem has been solved are finite
Commutative Rings (by Clark, Idziak, Sabourin, Szabó and Willard in [5]) and
three-element unary algebras (by Clark, Davey and Pitkethly in [4]). The latter
also constitutes a nice example that shows how difficult it can be to separate the
dualizable algebras from the nondualizable ones. Indeed, most of those who have
studied the problem conjecture that there is no recursive method for solving it in
general. (Cite something? McKenzie, et al?)

An area that is presently being worked on is the class of Semigroups. As men-
tioned above, Abelian Groups are dualizable. And Quackenbush and Szabó proved
in [13] that finite nilpotent groups are not dualizable. While the dualizability prob-
lem is still not completely solved for Groups, it is even more open for Semigroups
in general. Clark and Davey show in [2] that both Rectangular Bands and Meet-
Semilattices with one are dualizable. (The last example does use a language with
an additional constant. Since the dualizability of an algebra depends on what one
chooses its type to be, this result is not directly applicable.) And (Knox?) shows
in (?) that certain small commutative semigroups are dualizable. Apart from the
work of Quackenbush and Szabó mentioned above, no examples of nondualizable
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semigroups were known. The role of this paper is to provide a new class of such
examples, the first which are not groups.

The new results are in the second section, after a preliminary section devoted to
background material and notation. A section of examples and remarks concludes
this paper.

1. Preliminaries

We let N denote {0, 1, 2, . . . }, the set of natural numbers, and we use N+ for the
set {1, 2, 3, . . . }. Our notation will be standard for Universal Algebra–either of the
books [1] or [8] may be used as a reference.

We will briefly review the specialized concepts and theorems that will be needed.
A more detailed exposition may be found in Clark and Davey [2]. Let M be a finite
algebra. An algebraic relation on M is a relation r ⊆ Mn which forms a subalgebra
of Mn, for some n ∈ N. An algebraic operation on M is a homomorphism
g : Mn → M, for some n ∈ N. And an algebraic partial operation on M is a
homomorphism h : D → M such that D is a subalgebra of Mn, for some n ∈ N+.

We say that a topological structure M∼ = 〈M ;G,H, R, T 〉 is an alter ego of M
if G is a set of algebraic operations, H is a set of algebraic partial operations and
R is a set of algebraic relations on M, and T is the discrete topology on M . We
hope to use some alter ego M∼ of M to represent the algebras in the quasi-variety
A := ISPM as algebras of continuous homomorphisms.

To see how this works, let M∼ = 〈M ;G, H, R, T 〉 be some fixed alter ego of M.
Given A ∈ A, we define its dual, D(A), to be the set A(A,M), of all homo-
morphisms from A to M, regarded as a substructure of M∼

A. Thus D(A) belongs
to the category X := IScP+ M∼ consisting of all isomorphic copies of topologically
closed substructures of non-zero powers of M∼ . Similarly, the dual, E(X), of a
structure X ∈ X is the set X(X,M∼ ) regarded as a subalgebra of MX . There is
a natural evaluation map eA : A → ED(A), given by eA(a)(x) := x(a), for all
a ∈ A and each x ∈ D(A). The map eA is an embedding, since A belongs to
the quasi-variety ISPM. For each a ∈ A, we say that the map eA(a) is given by
evaluation at a and that eA(a) is an evaluation. For any Y ⊆ D(A) and for any
a ∈ A, a map α : D(A) → M is given by evaluation at a on Y if α�Y = eA(a)�Y .
A subset B of A is a support for such a map α : D(A) → M iff for all x, y ∈ D(A)
with x�B = y�B we have α(x) = α(y).

We say that M∼ yields a duality on A, or equivalently, that G ∪ H ∪ R yields
a duality on A, iff eA is surjective. For in this case eA is an isomorphism from
A onto the algebra of all continuous homomorphisms from its dual, D(A), into
M∼ . Thus, M∼ yields a duality on A iff every morphism α : D(A) → M∼ is an
evaluation. We say that the structure M∼ yields a duality on A iff eA is surjective
for all A ∈ A. If M∼ yields a duality on A, then we also say that M∼ dualizes M.
Finally, if there is some alter ego M∼ of M which dualizes M, then we say that M
is dualizable. When no alter ego exists which dualizes it, we of course say that M
is nondualizable.

For each n ∈ N+, let Rn denote the set of n-ary algebraic relations on M. Let
A ∈ ISPM and let α : D(A) → M . We say that α preserves Rn if α preserves
every relation in Rn. The following lemma was first explicitly proved in [3]. It is
also implicit in [2], and proved again in [4].
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Lemma 1.1 Let n ∈ N, let A ∈ ISPM and let α : D(A) → M . Then α agrees
with an evaluation on each n-element subset of D(A) if and only if α preserves Rn.

Proof Assume that α preserves Rn and let x1, . . . , xn ∈ D(A). The relation
r := { (x1(b), . . . , xn(b)) | b ∈ A } belongs to Rn, so r is preserved by α. Thus there
is an a ∈ A such that α(xi) = xi(a), for all i ∈ {1, . . . , n}. The other direction is
easy.

2. A Condition for Nondualizability

We will use the ghost element method to prove that certain semigroups nondualiz-
able. This method was introduced in [7] and has been used extensively since then.
For a good survey of its use, the interested reader is refered to [2].

The basic idea of this method is to use the following lemma to obtain a contra-
diction. The version given here is taken from [2]. For an algebra A 6 MS and
s ∈ S, we define ρs : A → M to be the restriction to A of the projection onto s.

Lemma 2.1 Let M be a finite algebra. Let S be a non-empty set, let A 6 MS

and let α : D(A) → M . Assume that

(i) α has finite support in A, and
(ii) α is an evaluation on each finite subset of D(A).

Define gα ∈ MS by gα(s) := α(ρs), for all s ∈ S. If M is dualizable, then gα ∈ A.

Proof Assume that some structure M∼ = 〈M ;G,H, R, T 〉 yields a duality on
ISPM. It is easy to see that (i), insures that the map α is continuous. By (ii) and
Lemma 1.1, we have that the map α preserves Rn for all n. So α preserves every
relation r ∈ R, and it preserves the graph of each h in G∪H. Thus α : D(A) → M∼
is a morphism. So there is some a ∈ A such that α is given by evaluation at a. For
all s ∈ S, we have gα(s) = α(ρs) = ρs(a) = a(s). Thus gα = a ∈ A.

This lets us show that a finite algebra M is non-dualizable by finding an algebra
A and a map α : D(A) → M which satisfies (i) and (ii) of Lemma 2.1, such that
gα /∈ A. The element gα is then called a ghost element of A.

We will use the following refinement of the previous lemma for all our ghost
element proofs. In it, we take the set S to be N and make a number of other fairly
nonrestrictive assumptions. This lemma first appeared in [4]; a proof has been
provided for completeness.

Lemma 2.2 Let M be a finite algebra. Let g ∈ MN, let A0 ⊆ MN and let
A 6 MN with A0 ⊆ A. Assume there is some m0 ∈ M , a finite subset Af of A0,
and a directed order 4 on A0 such that the following hold:

(i) g−1(m0) ⊇
⋃

{a−1(m0) | a ∈ Af} and g−1(m) ⊇
⋂

{a−1(m) | a ∈ Af}, for all
m ∈ M\{m0};

(ii) for every homomorphism x : A → M such that x�A0
is not constant, we have

m0 ∈ x(Af) and Ax ⊆ x−1(m0), for some upset Ax of 〈A0;4〉.
If M is dualizable, then g ∈ A.
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Proof Let a0 be any fixed element of Af , and define α : D(A) → M by

α(x) =

{

x(a0) if m0 /∈ x(Af),
m0 otherwise.

We will first show that when gα is defined as in Lemma2.1, that it is in fact
equal to g. So consider any n ∈ N, and put ρn in for x. Our first case is where
m0 /∈ ρn(Af). Then ρn�A0

is constant, by (ii). We must show that g(n) = ρn(a0),
for then we will have g(n) = ρn(a0) = α(ρn) = gα(n). Letting m = ρn(a0), we have
m 6= m0. Since ρn�A0

is constant, ρn(a) = m for all a ∈ A0. Thus n ∈ a−1(m) for
all a ∈ Af , and n ∈ g−1(m) by (i). This gives g(n) = m = ρn(a0), as required.

Our other case is where m0 ∈ ρn(Af). Then n is in
⋃

{a−1(m0) | a ∈ Af}, which
is a subset of g−1(m0) by (i). Thus g(n) = m0 = α(ρn) = gα(n). This shows that
g = gα.

The set Af is clearly a finite support for α. To see that α is locally an evaluation,
let X be a finite subset of D(A). Let Xnc denote the set of all x ∈ X such that
x�A0

is not constant, and for each x ∈ Xnc let Ax be as in (ii). Since the order
4 is directed on A0, the finite intersection

⋂

{Ax | x ∈ Xnc } is nonempty. Thus
there is an element a of A0 which is in all those Ax. For all x ∈ X\Xnc, we have
α(x) = x(a0) = x(a). And for all x ∈ Xnc, we have α(x) = m0 = x(a), because
a ∈ Ax. This shows that α�X is given by evaluation at a. It now follows from
Lemma 2.1 that g ∈ A if M is dualizable.

For various semigroups M we will be working with elements of the Cartesian
power MN that are almost everywhere constant. It will be convenient to modify
some notation from [4] to refer to these sequences. So let k, n1, . . . , nk ∈ N and let
a, b1, . . . , bk ∈ M. We define the sequence ab1

n1

...

...
bk
nk

in MN by

ab1
n1

...

...
bk
nk

(i) =

{

bj if i = nj , for some j ∈ {1, . . . , k},
a otherwise.

Ghost element arguments in the literature tend to be ad hoc, with new ap-
proaches needed for every new class of algebras. It does indeed seem to be hard to
prove a nice general result for semigroups by this method as well. The next lemma
does the best it can to carve out as large a class of semigroups as possible in which
one particular kind of ghost element argument shows nondualizability.

Lemma 2.3 Let M be a finite semigroup. Suppose that there are three distinct
elements a, b and c of M such that the following conditions hold.

(i) For all x ∈ M , a · x = a and b · x = b.
(ii) c is an identity for {a, b, c}, that is, a · c = c · a = a, b · c = c · b = b, and

c · c = c.
(iii) Any endomorphism of M that does not send a and b to the same element is

equal to the identity on {a, b, c}.
(iv) Let C be the subalgebra of M3 generated by the set

{h ∈ M3 | h(j) = b for some j in {0, 1, 2}}. Any homomorphism of C into M
that sends 〈a, b, a〉 to a, 〈b, b, a〉 to b and 〈c, b, a〉 to c must also send 〈a, a, b〉
to a.

Then M is not dualizable.
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Proof Suppose that M is a finite semigroup that satisfies the conditions of the
lemma. We will use Lemma 2.2, taking g ∈ MN to be ab

0 (That is, 〈b, a, a, a, ...〉).
The set A0 will be {ab

0
b
j | j > 0}, and we will take A to be the subalgebra of MN

generated by A0 together with
{h ∈ MN | h(0) = b and there exists j > 0 with h(j) = b}. Note that condition (i)
implies that g is not in A. We let m0 be a, Af be {ab

0
b
1, a

b
0
b
2} and define 4 on A0

by setting ab
0
b
i 4 ab

0
b
j iff i 6 j.

Then g−1(m0) = g−1(a) = N \ {0} ⊇ (N \ {0, 1}) ∪ (N \ {0, 2}) =
⋃

{h−1(b) | h ∈ Af}, g−1(b) = {0} =
⋂

{h−1(b) | h ∈ Af}, and so on, showing that
(i) of Lemma 2.2 is satisfied.

For (ii), let x : A → M be such that x�A0
is not constant. So there are m,n > 1

with x(ab
0

b
m) 6= x(ab

0
b
n). Now consider x(ab

0
b
m

b
n). It must be different from at least one

of x(ab
0

b
m) and x(ab

0
b
n). Without loss of generality, suppose it differs from x(ab

0
b
m),

and consider B = {ab
0

d
m

b
n | d ∈ M}. We have that B is a subalgebra of A, and that

f : M → B given by f(d) = ab
0

d
m

b
n is an isomorphism.

Then (x�B)◦f is an endomorphism of M that takes a and b to different elements,
so it is the identity on {a, b, c} by (iii). Thus x(ab

0
a
m

b
n) = a, x(ab

0
b
m

b
n) = b and

x(ab
0

c
m

b
n) = c.

Now consider x(ab
0
b
k), where k is a number different from 0, m and n. We will

be done if we can show that x(ab
0
b
k) must always be a, for then ab

0
b
n will be the only

element of A0 that x does not send to a, and Ax = {ab
0
b
j | j > n + 1} will be the

requisite upset of 4.
To simplify the remainder of the argument, we will assume that m = 1, n = 2

and k = 3. Observe that {h ∈ A | h(0) = b and h(j) = a for all j > 4} is
a subalgebra of A, and that it is isomorphic to the algebra C of condition (iv)
in a natural way, where ab

0
a
m

b
n, ab

0
b
m

b
n and ab

0
c
m

b
n correspond to 〈a, b, a〉, 〈b, b, a〉 and

〈c, b, a〉, respectively. So the restriction of x to this subalgebra of A corresponds to
a homomorphism of C into M that takes 〈a, b, a〉 to a, 〈b, b, a〉 to b and 〈c, b, a〉 to
c. By condition (iv), this homomorphism must take 〈a, a, b〉 to a. This implies that
x takes ab

0
b
k = ab

0
a
m

a
n

b
k to a.

Note that there are some trade-offs between the statements of conditions (iii)
and (iv) in the previous lemma. This is governed by the size of the algebra A used
in the proof. A similar argument will work for a range of situations. We may take
A to be as small as possible, and say that it is generated by
{h ∈ {a, b, c}N | h(0) = b and there exists j > 0 with h(j) = b}. Then condition
(iii) would be modified to refer to homomorphisms into M from the subalgebra of
M generated by {a, b, c}. Condition (iv) would also be modified by defining C to
be the subalgebra generated by {h ∈ {a, b, c}3 | h(j) = b for some j in {0, 1, 2}}.
We could also take A to be larger than in the lemma, provided that its universe
did not contain the ghost element g. Condition (iii) would stay the same, but the
subalgebra C used in condition (iv) could be larger. The version of the lemma
given has a simple statement, and will suffice for our purposes.

It seems natural to define semigroups by representing them as sets of functions
under composition, for this way it is not necessary to check associativity. By the
analogue of Cayley’s Theorem, nothing is lost by doing this.
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If p > 2, we define the following functions on {0, 1, 2, · · · p}. Let 0, 1, 2, · · · p be
the constant functions with values 0, 1, 2, · · · p respectively. If T is any subset of
{2, 3, · · · p}, we define the function fT on {0, 1, 2, · · · p} by setting fT (n) to be 1 if
n = 1 or n ∈ T and to be 0 otherwise. Observe that whenever T and U are subsets
of {2, 3, · · · p}, that fT ◦ fU = fU , 0 ◦ fT = fT ◦ 0 = 0, and so on. This shows
that any set of the form {0, 1, 2, · · · p, fT , fU , fV , · · · } is closed under composition
and forms a semigroup. We will call semigroups produced by this construction 2-
idempotent derived, since their nonconstant functions are all 2-idempotent, that
is idempotent functions into a common two element set. So which 2-idempotent
derived semigroups can be shown by Lemma 2.3 to be nondualizable?

Theorem 2.4 Let p > 2, let n > 1, and let T1, T2, ...Tn be subsets of {2, 3, · · · p}.
Then if the following conditions are met the semigroup
〈{0, 1, 2, · · · p, fT1 , fT2 , · · · fTn}, ◦〉 is not dualizable.

(i) For all distinct elements q and r of {0, 1, 2, · · · p}, there is a set Tj for some
j 6 n such that fTj (q) 6= fTj (r).

(ii) There is a set T = Tj for some j such that |T | and p− 1− |T | are not equal,
and none of the other sets T1, T2, · · ·Tn are of either of those cardinalities.

Proof Let S = 〈{0, 1, fT1 , fT2 , · · · fTn}, ◦〉 satisfy conditions (i) and (ii) of the
theorem, and let T be as in condition (ii). We will use Lemma 2.3, with a = 0,
b = 1 and c = fT . Checking the conditions of the lemma, we see that (i) is true
since the functions a and b are constant. Condition (ii) holds since fT is constant
on both 0 and 1.

For (iii), we first show that S is subdirectly irreducible with monolith {0, 1}2∪∆.
So let distinct q and r in S be given. If q and r are both in {0, 1, 2, · · · p}, then (i)
gives a Tj such that one of fTj (q) and fTj (r) is 0 and the other is 1. This shows
that 〈0, 1〉 ∈ Cg(〈q, r〉). Next suppose that one of the two elements, say q, is in
{0, 1, 2, · · · p}, while r is some fTj . Then r ◦ 0 = fTj (0) = 0, while q ◦ 0 = q. Thus
〈q, 0〉 ∈ Cg(〈q, r〉). Similarly, r◦1 = fTj (1) = 1 and q◦1 = q yield 〈q, 1〉 ∈ Cg(〈q, r〉).
Combining, we get 〈0, 1〉 ∈ Cg(〈q, r〉). Lastly, suppose that q is fTi and r is fTj ,
for some i and j. Since q 6= r, there is some s 6 p with fTi(s) 6= fTj (s). That is,
fTi ◦ s 6= fTj ◦ s. So one is 0, the other is 1, and 〈0, 1〉 ∈ Cg(〈q, r〉). It is easy to
verify that {0, 1}2 ∪∆ is a congruence, so it is the monolith of S.

So we have that any endomorphism of S that does not send 0 and 1 to the same
place must actually be an automorphism. Such an automorphism would have to
permute the elements 0, 1, 2, · · · p of S, since they are characterized as the values of
y such that y ◦z = y for all z. Now consider c, which is fT where T is as in (ii). We
see that fT ◦x has one value (i.e. 1) for |T |+1 many values of x in {0, 1, 2, · · · p}, and
another (i.e. 0) for the other p−|T | possible values of x in {0, 1, 2, · · · p}. Condition
(ii) of the theorem implies that fT is unique in this respect, so it must be fixed by
any automorphism. We also have that the two values of the expression fT ◦ x for
x ∈ {0, 1, 2, · · · p} are fixed–they are 0 and 1. (In case T is ∅ or {2, 3, · · · p}, only
one of 0 and 1 is obtained this way. The other one can then be found by looking
at the values of fTj ◦ x for some other j.) This shows that (iii) of Lemma 2.3 is
satisfied.

To see that (iv) holds, let C be the subalgebra of S3 and let x : C → S be
a homomorphism with x(〈a, b, a〉) = a, x(〈b, b, a〉) = b and x(〈c, b, a〉) = c. Since
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◦ 0 1 2 3 f? f{2} f{3}

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

f? 0 1 0 0 f? f{2} f{3}
f{2} 0 1 1 0 f? f{2} f{3}
f{3} 0 1 0 1 f? f{2} f{3}

Table 1. Smallest nondualizable semigroup known

〈c, b, a〉 = 〈c, b, a〉 ◦ 〈c, a, b〉, c = c ◦ x(〈c, a, b〉). It is clear that x(〈c, a, b〉) must be
an fTj , so c ◦ x(〈c, a, b〉) = x(〈c, a, b〉) and c = x(〈c, a, b〉). Now 〈c, a, b〉 ◦ 〈a, b, a〉 =
〈a, a, b〉, so c ◦ a = x(〈a, a, b〉). That is, a = x(〈a, a, b〉), as required.

As with Lemma 2.3, it is possible to modify the statement of this theorem so that
it still applies even when conditions (i) and (ii) are not quite met. But it seems
that as the conditions are weakened, the proof grows rapidly more complicated!
The examples in the next section will make this point clearer.

3. Examples and Remarks

The smallest 2-idempotent derived semigroups do not meet the conditions of
Theorem ??. When p = 2, the only possible 2-idempotent functions are f{2} and
f∅. Condition (i) fails unless both are included in the semigroup, but (ii) fails if
they are.

When p = 3, there are four 2-idempotent functions: f∅, f{2}, f{3}, f{2,3}. Con-
dition (i) holds whenever at least three of them are included, or when just f{2}
and f{3} are. But condition (ii) fails for all of these, except when the set of in-
cluded functions is {f∅, f{2}, f{3}}. (Or when it is {f{2}, f{3}, f{2,3}}, but that
yields an isomorphic semigroup.) So the smallest nondualizable semigroup given
by the theorem has its operation given by Table 1.

To explicitly demonstrate that there are infinitely many 2-idempotent derived
semigroups that are not dualizable, we can generalize the previous example in the
following way. For each p > 3, we let Sp be the semigroup obtained by including
the 2-idempotent functions f∅, f{2}, f{3}, f{4}, · · · f{p}. It is easily verified that all
of the Sp satisfy conditions (i) and (ii) of Theorem 2.4.

Other semigroups can also be shown to be nondualizable by using Lemma 2.3
directly. The arguments are of course more involved. As a second example, here
is the first nondualizable semigroup I discovered. Consider functions on the set
{0, 1, 2, 3}, where 0, 1, 2 and 3 are the respective constant functions. We add to
these f∅ and f{3}, defined as in the first example. And also add two more functions
g and h, defined as follows:
g(0) = 2, g(1) = 3, g(2) = 2, g(3) = 3 and h(0) = 2, h(1) = 3, h(2) = 2, h(3) = 2.
Let K = 〈{0, 1, 2, 3, f{3}, g, f∅, h}, ◦〉 be the semigroup formed by these functions.
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s0 s1

s2 s3

U U? ?

f{3}

s0 s1

s2 s3U U

6 6

g

s0 s1

s2 s3

U U?
�

���

f∅

s0 s1

s2 s3U

6 6

�

h

Figure 1. Functions for the second example

◦ 0 1 2 3 f{3} g f? h

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

f{3} 0 1 0 1 f{3} f{3} f? f?
g 2 3 2 3 g g h h

f? 0 1 1 1 f{3} 1 f? 1

h 2 3 3 3 g 3 h 3

Table 2. The operation of K

The reader easily verifies that the eight functions of K form a semigroup under
composition, and that the table of this group is as in Table 2.

Theorem 3.1 The semigroup K given above is not dualizable.

Proof We will use Lemma 2.3, taking a = 0, b = 1 and c = f{3}. Conditions (i)
and (ii) are easily verified by looking at the table for K.

To see that condition (iii) holds, we first observe that whenever q and r are
distinct elements of K, that 〈0, 1〉 ∈ Cg(〈q, r〉), unless {q, r} = {1, 3} (This is best
done by trying all possible values for the pair 〈q, r〉, each time using the table).
Now consider any endomorphism x of K that does not send 0 and 1 to the same
place. By the above, it must have either ∆ or Cg(〈1, 3〉) = {1, 3}2∪∆ as its kernel.
Looking at the patterns in the rows of the table, we see that x must preserve the
set {0, 1, 2, 3} (That is, send its elements back into the set). Since the patterns
of their rows are sufficiently different, x must also preserve the sets {f{3}, g} and
{f∅, h}. We now look at the patterns in the columns of the table, keeping in mind
the sets we know are preserved. This gives us that the element f∅ must stay fixed
under x. For we know that f∅ must go to an element of {f∅, h}, and we have
f{3} ◦ f∅ = f∅ ◦ f∅. This implies that x(f{3}) ◦ x(f∅) = x(f∅) ◦ x(f∅), where
x(f{3}) ∈ {f{3}, g} and x(f∅) ∈ {f∅, h}. The only solution is where x(f∅) = f∅
and x(f{3}) = f{3}. A similar argument shows that x(h) = h as well.

This implies that f∅ ◦ h = 1 and h ◦ h = 3 are also fixed under x. Thus x is
an automorphism that fixes 1, 3, f∅ and h. It is now easy to verify by looking at
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columns in the table that x must be the identity, which is more than enough to
show (iii).

To show (iv), recall that a = 0, b = 1 and c = f{3}. We let C be the subalgebra
of K3 generated by {l ∈ K3 | l(j) = b for some j in {0, 1, 2}}, and let y : C → K
send 〈a, b, a〉 to a, 〈b, b, a〉 to b and 〈c, b, a〉 to c. We must show that y(〈a, a, b〉 = a.

Since 〈c, b, a〉 ◦ 〈c, a, b〉 = 〈c, b, a〉, we have that c ◦ y(〈c, a, b〉) = c. So y(〈c, a, b〉)
is f{3} or g. Thus 〈a, a, b〉 = 〈c, a, b〉 ◦ 〈a, b, a〉 implies that y(〈a, a, b〉) is either
f{3} ◦ 0 = 0, or g ◦ 0 = 2. We want to show that the second possibility leads to a
contradiction.

So assume that y(〈a, a, b〉) = 2. Then 〈a, c, b〉 ◦ 〈a, a, b〉 = 〈a, a, b〉 implies
y(〈a, c, b〉) ◦ 2 = 2 and y(〈a, c, b〉) ∈ {2, g}. And 〈a, b, c〉) ◦ 〈a, b, a〉 = 〈a, b, a〉
implies y(〈a, b, c〉) ◦ 0 = 0 and y(〈a, b, c〉) ∈ {0, f{3}, f∅}. But 〈a, c, b〉 ◦ 〈a, b, c〉 =
〈a, b, b〉 = 〈a, b, c〉 ◦ 〈a, c, b〉, so y(〈a, c, b〉) and y(〈a, b, c〉) must commute. Trying all
possible values for them, we see that this is impossible. This contradiction shows
that y(〈a, a, b〉) = 0 = a, and (iv) is proved.

Note how complex the argument showing condition (iv) was in the above proof.
This complexity seems to be necessary, and explains the somewhat inelegant form of
condition (iv). It seems difficult to give a simpler version of this condition without
weakening it.
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5. D.M. Clark, P. Idziak, L. Sabourin, Cs. Szabó, and R. Willard, Natural dualities for quasi-
varieties generated by a finite commutative ring, preprint.

6. B.A. Davey, L. Heindorf, and R. McKenzie, Near unanimity: an obstacle to general duality
theory, Algebra Universalis 33 (1995), 428–439.

7. B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Contributions
to lattice theory (Szeged, 1980), North-Holland, Amsterdam, 1983, 101–275.

8. R.M. McKenzie, G.F. McNulty and W.F. Taylor, Algebras, Lattices, Varieties. Vol. 1,
Wadsworth & Brooks/Cole, Monterey, California, 1987.

9. L.S. Pontryagin, Sur les groupes abélian continus, C.R.Acad. Sci. Paris 198 (1934), 238–240.
10. L.S. Pontryagin, The theory of topological commutative groups, Ann. Math. 35 (1934), 361–

388.
11. H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull.

London Math. Soc. 2 (1970), 186–190.
12. H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc.

London Math. Soc. 3 24 (1972) 507–530.
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